用户名: 密码: 验证码:
永磁同步电梯曳引系统的性能优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为垂直升降的交通工具,电梯在高层建筑和公共场所已经成为重要的建筑设备而不可或缺。电梯曳引系统的控制性能集中体现在起动溜车和运行抖动的抑制性能。在起动阶段一般采用零位置伺服控制,在电梯制动器打开瞬间,突加的负载扰动会造成电梯溜车;而起动零位置伺服阶段的突加负载扰动抑制性能,主要受转子磁极初始位置辨识精度、起动过程的转子位置与速度检测精度和控制算法影响。在运行阶段采用S曲线给定的速度伺服控制,低速阶段的速度跟踪性能主要受转子位置与转速检测精度影响,而高速阶段的速度跟踪性能还受控制环输出电压饱和影响。
     为保证电梯运行的控制性能,首先必须应对转子磁极初始位置辨识精度、低速阶段速度检测精度和高速阶段电压饱和问题。因此,本文的研究内容主要包括以下三个方面:(1)研究永磁同步电机转子磁极初始位置辨识精度的提高方法;(2)研究低速阶段转子位置与速度的检测优化方法;(3)研究提高母线电压利用率的脉宽调制优化算法,增加控制环输出电压调节范围。
     为了提高转子初始位置的辨识精度,本文介绍了三种经典的静止型转子初始位置辨识方法,包括脉冲电压注入法、高频旋转电压注入法和高频脉振电压注入法,分析了三种方法辨识过程中基于摩擦模型的运动情况,给出了转子静止的边界条件,提出了超出边界条件的转子运动抑制方法。通过抑制辨识过程中转子的运动,提高转子初始位置的辨识精度。同时,针对无凸极或者凸极率较低的永磁同步电机,提出了基于动态磁阻差异的静止型转子初始位置辨识方法,通过注入高频电压信号、提取二次谐波电流分量中转子位置与极性信息来实现转子初始位置辨识,仿真与实验结果验证了该辨识方法的可行性。
     为了提高低速阶段的转子位置与转速检测精度,本文通过研究基于纯统计规律的多项式外插法和基于纯系统模型的转子位置龙伯格观测器,提出了基于多项式外插法的矢量跟踪观测器方法。该方法通过对编码器信号进行多项式外插处理,得到基于龙伯格拓扑的矢量跟踪观测器参考输入,然后由观测器估计转子位置与速度。该方法兼具多项式外插法的线性预估性能和观测器对系统变化(给定随动与负载扰动)的动态响应性能,对于编码器检测精度不高的系统,其低速检测性能有显著的提高。
     针对转子磁极位置偏差或者母线电压偏低造成的高速运行电压饱和问题,本文提出了一种新颖的考虑死区与最小脉宽限制的综合式脉宽调制(Integrated PWM, IPWM)方法。该方法综合了SVPWM、DPWM1、三段式PWM和一段式PWM,通过参考电压线性修正、调制算法优化和IPWM新死区插入,实现了在提高输出电压基波幅值线性度和抑制总谐波畸变的基础上提高母线电压的利用率,从而拓宽了控制环输出电压的调节范围,增加了电梯曳引系统运行的稳定性和鲁棒性,仿真与实验结果验证了该IPWM方法的优越性能。
As vertical transportation in high-rise buildings and public places, the elevator hasbecome important and indispensable construction equipment. The control performance of theelevator traction system is mainly manifested in the suppression performance of the startingslide and the running vibrating. In the starting stage, the system usually adopts zero positionservo control, while the sudden load disturbance can cause the elevator slide at the momentthe elevator brake opens. The load disturbance suppression performance at the starting stagemainly depends on the initial position precision, the rotor position and speed detectionprecision and control algorithm. In the running stage, the system employs the S curve givenspeed servo control. The velocity tracking performance at low speed is mainly influenced bythe rotor position and speed detection precision, while the performance at high speed isaffected by the output voltage saturation as well.
     To ensure the control performance of elevator traction system, the key problems come tothe initial position precision, the rotor position and velocity precision at low speed and theoutput voltage saturation at high speed. Therefore, this paper focuses on the following threeaspects:(a) the methods to improve the identification precision of the initial position forpermanent magnet synchronous motor rotor,(b) the rotor position and speed detectionoptimization methods at low speed,(c) the pulse-width modulation (PWM) optimizationalgorithm to increase the utilization ratio of bus voltage, which expands the output voltagerange of the control loop.
     In order to improve the identification precision of the rotor initial position, this paperintroduces three kinds of classic rotor initial position identification methods at standstill,including pulse voltage injection method, high frequency rotating voltage injection methodand high frequency pulsating voltage injection method, analyses the rotor movement duringidentification process based on friction model, presents the rotor standstill boundaryconditions and proposes the rotor motion suppression methods beyond the boundary condition.By suppressing the rotor movement during identification process, the identification precisionof the rotor initial position is improved. Simultaneously, for non-salient or low salientpermanent magnet synchronous motor, another rotor initial position identification methodbased on dynamic magnetic resistance difference at standstill is proposed. This novel methodinjects high frequency voltage signal to the stator coils and extracts the rotor position andpolarity information from the second harmonic current component to achieve the rotor initialposition identification, and simulation and experimental results verify its feasibility.
     Aiming to improve the rotor position and speed detection precision at low speed, afterstudying the polynomial extrapolation method based on pure statistical law and the rotorposition Luenberger observer based on pure system model, this paper proposed a vectortracking observer method based on polynomial extrapolation. The proposed method puts thethe polynomial extrapolation result on the basis of the encoder signal as the reference input ofthe vector tracking observer based on the Luenberger topology, and then estimates the rotorposition and speed by the observer. This method combines the linear prediction performanceof polynomial extrapolation method and the excellent dynamic performance of theLuenberger observer including refference follow-up and load disturbance. For the systemwithout high-precision encoder, the proposed method significantly improves the rotor positionand speed detection performance at low speed.
     Aim at voltage saturation problem at high speed caused by rotor position deviation or lowbus voltage, this paper proposes a novel IPWM (Integrated PWM) method with dead time andminimum pulse-width limitation considered. The method combines SVPWM (space vectorPWM), DPWM1(discontinuous PWM), three-segment PWM and one-segment PWM, by thereference voltage linear correction, modulation algorithm optimization and IPWM newdead-band insertion. With the output voltage amplitude linearity improved and the totalharmonic distortion suppressed at the same time, the method achieves the highest utilizationrate of bus voltage, which broadens the voltage regulating range of the control loop andincreases the stability and robustness of the elevator traction system operation. The simulationand experiment results demonstrate the superior performance of the IPWM method.
引文
[1]洪小圆.基于永磁同步电机的电梯运动控制研究[D].杭州:浙江大学,2012.
    [2] Xiaoyuan H, Zhe D, Wang S, et al. A novel elevator load torque identification method based onfriction mode[C]. Applied Power Electronics Conference and Exposition (APEC),2010Twenty-FifthAnnual IEEE, Palm Springs, CA,2010:2021-2024.
    [3] Valiviita S, Ovaska S J. Delayless acceleration measurement method for elevator control[J]. IndustrialElectronics, IEEE Transactions on,1998,45(2):364-366.
    [4] Jun-Koo K, Seung-Ki S. Vertical-vibration control of elevator using estimated car accelerationfeedback compensation[J]. Industrial Electronics, IEEE Transactions on,2000,47(1):91-99.
    [5] Bolognani S, Faggion A, Sgarbossa L, et al. Modelling and design of a direct-drive lift control withrope elasticity and estimation of starting torque[C]. Industrial Electronics Society,2007IECON200733rd Annual Conference of the IEEE, Taipei,2007:828-832.
    [6] Fortgang J, Patrangenaru V, Singhose W. Scheduling of input shaping and transient vibration absorbersfor high-rise elevators[C]. American Control Conference, Minneapolis, MN,2006:1772-1777.
    [7] Haiyan Y, Xin Z, Xiaohui D. A novel adaptive control for elevator system with observer and parameteridentification[C]. Automation and Logistics,2009ICAL '09IEEE International Conference on,Shenyang,2009:628-631.
    [8] Gaolin W, Guoqiang Z, Rongfeng Y, et al. Robust Low-Cost Control Scheme of Direct-Drive GearlessTraction Machine for Elevators Without a Weight Transducer[J]. Industry Applications, IEEETransactions on,2012,48(3):996-1005.
    [9] Qing H, Qingding G, Dongmei Y, et al. A Novel Adaptive Control of Elevator Motion System[C].Intelligent Control and Automation,2006WCICA2006The Sixth World Congress on, Dalian,2006:2007-2010.
    [10]陈伯时.电力拖动自动控制系统运动控制系统[M].北京:机械工业出版社,2008:62-76.
    [11]黄招彬,游林儒,占宏等.永磁同步电梯曳引机的二自由度伺服控制[J].电气传动,2013,43(12):56-60.
    [12]陈鹏展.交流伺服系统控制参数自整定策略研究[D].武汉:华中科技大学,2010.
    [13]胡任之.永磁同步电机转子初始位置估计[D].哈尔滨:哈尔滨工业大学,2008.
    [14] Ostlund S, Brokemper M. Sensorless rotor-position detection from zero to rated speed for anintegrated PM synchronous motor drive[J]. Industry Applications, IEEE Transactions on,1996,32(5):1158-1165.
    [15]滕福林,胡育文,黄文新.永磁同步伺服系统初始位置修正算法[J].中国电机工程学报,2008,28(27):109-113.
    [16]黎永华,皮佑国.基于磁定位原理的永磁同步电机转子初始位置定位研究[J].电气传动,2010,40(03):28-31.
    [17] Popa D D, Kreindler L M, Giuclea R, et al. A novel method for PM synchronous machine rotorposition detection[C]. Power Electronics and Applications,2007European Conference on, Aalborg,2007:1-10.
    [18] Boussak M. Implementation and experimental investigation of sensorless speed control with initialrotor position estimation for interior permanent magnet synchronous motor drive[J]. PowerElectronics, IEEE Transactions on,2005,20(6):1413-1422.
    [19] Yan Y, Zhu J G, Guo Y G. Initial rotor position estimation and sensorless direct torque control ofsurface-mounted permanent magnet synchronous motors considering saturation saliency[J]. ElectricPower Applications, IET,2008,2(1):42-48.
    [20] Yuzawa T, Tanaka K, Moriyama R, et al. An efficient estimation method of sensorless initial rotorposition for surface PM synchronous motor[C]. Electric Machines and Drives Conference,2001IEMDC2001IEEE International, Cambridge, MA,2001:41-49.
    [21]王子辉,陆凯元,叶云岳.基于改进的脉冲电压注入永磁同步电机转子初始位置检测方法[J].中国电机工程学报,2011,31(36):95-101.
    [22] Ishiduka N, Yoshizaki K, Komatsuzaki A, et al. Estimation of initial rotor position for slotless PMmotor[C]. Power Electronics, Electrical Drives, Automation and Motion,2008SPEEDAM2008International Symposium on, Ischia,2008:1229-1232.
    [23] Nemec M, Flisar U, Nedeljkovic D, et al. Accurate Detection of Initial Rotor Position in a Multi-PoleSynchronous Machine[C]. Industrial Electronics,2007ISIE2007IEEE International Symposium on,Vigo, Spain,2007:2274-2277.
    [24] Schmidt P B, Gasperi M L, Ray C, et al. Initial rotor angle detection of a nonsalient pole permanentmagnet synchronous machine[C]. Industry Applications Conference,1997Thirty-Second IAS AnnualMeeting, IAS '97, Conference Record of the1997IEEE, New Orleans, New Orleans, LA,1997(1):459-463.
    [25] Tursini M, Petrella R, Parasiliti F. Initial rotor position estimation method for PM motors[J]. IndustryApplications, IEEE Transactions on,2003,39(6):1630-1640.
    [26]韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术[J].中国电机工程学报,2006,26(22):104-109.
    [27] Nakashima S, Inagaki Y, Miki I. Sensorless initial rotor position estimation of surfacepermanent-magnet synchronous motor[J]. Industry Applications, IEEE Transactions on,2000,36(6):1598-1603.
    [28] Yi W, Ningning G, Jianguo Z, et al. Initial Rotor Position and Magnetic Polarity Identification of PMSynchronous Machine Based on Nonlinear Machine Model and Finite Element Analysis[J]. Magnetics,IEEE Transactions on,2010,46(6):2016-2019.
    [29]廖勇,沈朗,姚骏等.改进的面贴式永磁同步电机转子初始位置检测[J].电机与控制学报,2009,13(02):203-207.
    [30]何栋炜,彭侠夫,蒋学程等.内置式永磁同步电机转子初始位置估计方法[J].电机与控制学报,2013,17(03):49-55.
    [31] Zhu Z Q, Gong L M. Investigation of Effectiveness of Sensorless Operation inCarrier-Signal-Injection-Based Sensorless-Control Methods[J]. Industrial Electronics, IEEETransactions on,2011,58(8):3431-3439.
    [32] Yu-seok J, Lorenz R D, Jahns T M, et al. Initial rotor position estimation of an interiorpermanent-magnet synchronous machine using carrier-frequency injection methods[J]. IndustryApplications, IEEE Transactions on,2005,41(1):38-45.
    [33] Raca D, Harke M C, Lorenz R D. Robust Magnet Polarity Estimation for Initialization of PMSynchronous Machines With Near-Zero Saliency[J]. Industry Applications, IEEE Transactions on,2008,44(4):1199-1209.
    [34] Raca D, Garcia P, Reigosa D D, et al. Carrier-Signal Selection for Sensorless Control of PMSynchronous Machines at Zero and Very Low Speeds[J]. Industry Applications, IEEE Transactions on,2010,46(1):167-178.
    [35] Hyunbae K, Kum-Kang H, Lorenz R D, et al. A novel method for initial rotor position estimation forIPM synchronous machine drives[J]. Industry Applications, IEEE Transactions on,2004,40(5):1369-1378.
    [36]王高林,杨荣峰,于泳等.内置式永磁同步电机转子初始位置估计方法[J].电机与控制学报,2010,30(06):56-60.
    [37]周元钧,蔡名飞.改进的永磁同步电机转子初始位置检测方法[J].电机与控制学报,2010,14(03):68-72.
    [38] Harke M C, Raca D, Lorenz R D. Implementation issues for fast initial position and magnet polarityidentification of PM synchronous machines with near zero saliency[C]. Power Electronics andApplications,2005European Conference on, Dresden,2005:10pp.-P.10.
    [39] Shih-Chin Y, Lorenz R D. Comparison of resistance-based and inductance-based self-sensing controlsfor surface permanent-magnet machines using high-frequency signal injection[J]. IndustryApplications, IEEE Transactions on,2012,48(3):977-986.
    [40] Bianchi N, Bolognani S, Ji-Hoon J, et al. Comparison of PM Motor Structures and Sensorless ControlTechniques for Zero-Speed Rotor Position Detection[J]. Power Electronics, IEEE Transactions on,2007,22(6):2466-2475.
    [41]刘颖,周波,李帅等.转子磁钢表贴式永磁同步电机转子初始位置检测[J].中国电机工程学报,2011,31(18):48-54.
    [42]贾洪平,贺益康.基于高频注入法的永磁同步电动机转子初始位置检测研究[J].中国电机工程学报,2007,27(15):15-20.
    [43] Leidhold R, Mutschler P. Improved method for higher dynamics in sensorless position detection[C].Industrial Electronics,2008IECON200834th Annual Conference of IEEE, Orlando, FL,2008:1240-1245.
    [44] Chan-Hee C, Jul-Ki S. Pulsating Signal Injection-Based Axis Switching Sensorless Control ofSurface-Mounted Permanent-Magnet Motors for Minimal Zero-Current Clamping Effects[J]. IndustryApplications, IEEE Transactions on,2008,44(6):1741-1748.
    [45]王冉珺,刘恩海.永磁同步电机转子初始位置的检测方法[J].电机与控制学报,2012,16(01):62-66.
    [46]刘颖,周波,冯瑛等.永磁同步电机低速无传感器控制及位置估计误差补偿[J].电工技术学报,2012,27(11):38-45.
    [47] Ji-Hoon J, Seung-Ki S, Jung-Ik H, et al. Sensorless drive of surface-mounted permanent-magnet motorby high-frequency signal injection based on magnetic saliency[J]. Industry Applications, IEEETransactions on,2003,39(4):1031-1039.
    [48] Ji-Hoon J, Jung-Ik H, Ohto M, et al. Analysis of permanent-magnet machine for sensorless controlbased on high-frequency signal injection[J]. Industry Applications, IEEE Transactions on,2004,40(6):1595-1604.
    [49] Corley M J, Lorenz R D. Rotor position and velocity estimation for a salient-pole permanent magnetsynchronous machine at standstill and high speeds[J]. Industry Applications, IEEE Transactions on,1998,34(4):784-789.
    [50] Bianchi N, Bolognani S, Ji-Hoon J, et al. Advantages of Inset PM Machines for Zero-Speed SensorlessPosition Detection[J]. Industry Applications, IEEE Transactions on,2008,44(4):1190-1198.
    [51] Ghazimoghadam M A, Tahami F. Sensorless control of non-salient pmsm using asymmetricalternating carrier injection[C]. Industrial Electronics and Applications (ISIEA),2011IEEESymposium on, Langkawi,2011:7-12.
    [52] Zgorski A, Bayon B, Scorletti G, et al. LPV observer for PMSM with systematic gain design viaconvex optimization, and its extension for standstill estimation of the position without saliency[C].Sensorless Control for Electrical Drives (SLED),2012IEEE Symposium on, Milwaukee, WI,2012:1-6.
    [53] Persson J, Markovic M, Perriard Y. A New Standstill Position Detection Technique for NonsalientPermanent-Magnet Synchronous Motors Using the Magnetic Anisotropy Method[J]. Magnetics, IEEETransactions on,2007,43(2):554-560.
    [54]黄招彬,游林儒,占宏等.正余弦编码器细分技术的抗干扰设计[J].电气传动,2014,44(01):76-80.
    [55] Yue Z, Zhe Z, Cong M, et al. Sensorless control of surface-mounted permanent-magnet synchronousmachines for low-speed operation based on high-frequency square-wave voltage injection[C]. IndustryApplications Society Annual Meeting,2013IEEE, Lake Buena Vista, FL,2013:1-8.
    [56] Gaolin W, Rongfeng Y, Dianguo X. DSP-Based Control of Sensorless IPMSM Drives forWide-Speed-Range Operation[J]. Industrial Electronics, IEEE Transactions on,2013,60(2):720-727.
    [57] Al-nabi E, Bin W, Zargari N R, et al. Sensorless Control of CSC-Fed IPM Machine for Zero-andLow-Speed Operations Using Pulsating HFI Method[J]. Industrial Electronics, IEEE Transactions on,2013,60(5):1711-1723.
    [58] Zhao W, Niu S, Ho S L, et al. A Position Detection Strategy for Sensorless Surface MountedPermanent Magnet Motors at Low Speed Using Transient Finite-Element Analysis[J]. Magnetics,IEEE Transactions on,2012,48(2):1003-1006.
    [59] Wallmark O, Galic, x, et al. Sensorless control of permanent-magnet synchronous motors adoptingindirect self-control[J]. Electric Power Applications, IET,2012,6(1):12-18.
    [60] Shih-Chin Y, Lorenz R D. Surface permanent magnet synchronous machine position estimation at lowspeed using eddy-current-reflected asymmetric resistance[J]. Power Electronics, IEEE Transactions on,2012,27(5):2595-2604.
    [61] Shih-Chin Y, Lorenz R D. Surface Permanent-Magnet Machine Self-Sensing at Zero and Low SpeedsUsing Improved Observer for Position, Velocity, and Disturbance Torque Estimation[J]. IndustryApplications, IEEE Transactions on,2012,48(1):151-160.
    [62] Shih-Chin Y, Suzuki T, Lorenz R D, et al. Surface-Permanent-Magnet Synchronous Machine Designfor Saliency-Tracking Self-Sensing Position Estimation at Zero and Low Speeds[J]. IndustryApplications, IEEE Transactions on,2011,47(5):2103-2116.
    [63] Limsuwan N, Shibukawa Y, Reigosa D D, et al. Novel Design of Flux-Intensifying Interior PermanentMagnet Synchronous Machine Suitable for Self-Sensing Control at Very Low Speed and PowerConversion[J]. Industry Applications, IEEE Transactions on,2011,47(5):2004-2012.
    [64] Bolognani S, Calligaro S, Petrella R, et al. Sensorless Control of IPM Motors in the Low-Speed Rangeand at Standstill by HF Injection and DFT Processing[J]. Industry Applications, IEEE Transactions on,2011,47(1):96-104.
    [65] Sayeef S, Foo G, Rahman M F. Rotor Position and Speed Estimation of a Variable StructureDirect-Torque-Controlled IPM Synchronous Motor Drive at Very Low Speeds Including Standstill[J].Industrial Electronics, IEEE Transactions on,2010,57(11):3715-3723.
    [66] Foo G, Sayeef S, Rahman M F. Low-Speed and Standstill Operation of a Sensorless Direct Torque andFlux Controlled IPM Synchronous Motor Drive[J]. Energy Conversion, IEEE Transactions on,2010,25(1):25-33.
    [67] Foo G, Rahman M F. Sensorless Sliding-Mode MTPA Control of an IPM Synchronous Motor DriveUsing a Sliding-Mode Observer and HF Signal Injection[J]. Industrial Electronics, IEEE Transactionson,2010,57(4):1270-1278.
    [68] Shanshan W, Reigosa D D, Shibukawa Y, et al. Interior Permanent-Magnet Synchronous MotorDesign for Improving Self-Sensing Performance at Very Low Speed[J]. Industry Applications, IEEETransactions on,2009,45(6):1939-1946.
    [69] Piippo A, Hinkkanen M, Luomi J. Analysis of an Adaptive Observer for Sensorless Control of InteriorPermanent Magnet Synchronous Motors[J]. Industrial Electronics, IEEE Transactions on,2008,55(2):570-576.
    [70] Andreescu G, Pitic C I, Blaabjerg F, et al. Combined Flux Observer With Signal InjectionEnhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives[J]. EnergyConversion, IEEE Transactions on,2008,23(2):393-402.
    [71] Wallmark O, Harnefors L. Sensorless Control of Salient PMSM Drives in the Transition Region[J].Industrial Electronics, IEEE Transactions on,2006,53(4):1179-1187.
    [72] Silva C, Asher G M, Sumner M. Hybrid rotor position observer for wide speed-range sensorless PMmotor drives including zero speed[J]. Industrial Electronics, IEEE Transactions on,2006,53(2):373-378.
    [73] Arias A, Silva C A, Asher G M, et al. Use of a matrix converter to enhance the sensorless control of asurface-mount permanent-magnet AC motor at zero and low frequency[J]. Industrial Electronics, IEEETransactions on,2006,53(2):440-449.
    [74] Wallmark O, Harnefors L, Carlson O. An improved speed and position estimator for salientpermanent-magnet synchronous motors[J]. Industrial Electronics, IEEE Transactions on,2005,52(1):255-262.
    [75] Zihui W, Kaiyuan L, Blaabjerg F. A Simple Startup Strategy Based on Current Regulation forBack-EMF-Based Sensorless Control of PMSM[J]. Power Electronics, IEEE Transactions on,2012,27(8):3817-3825.
    [76] Inoue Y, Kawaguchi Y, Morimoto S, et al. Performance Improvement of Sensorless IPMSM Drives ina Low-Speed Region Using Online Parameter Identification[J]. Industry Applications, IEEETransactions on,2011,47(2):798-804.
    [77] Hejny R W, Lorenz R D. Evaluating the Practical Low-Speed Limits for Back-EMF Tracking-BasedSensorless Speed Control Using Drive Stiffness as a Key Metric[J]. Industry Applications, IEEETransactions on,2011,47(3):1337-1343.
    [78] Genduso F, Miceli R, Rando C, et al. Back EMF Sensorless-Control Algorithm for High-DynamicPerformance PMSM[J]. Industrial Electronics, IEEE Transactions on,2010,57(6):2092-2100.
    [79] Rashed M, MacConnell P F A, Stronach A F, et al. Sensorless Indirect-Rotor-Field-Orientation SpeedControl of a Permanent-Magnet Synchronous Motor With Stator-Resistance Estimation[J]. IndustrialElectronics, IEEE Transactions on,2007,54(3):1664-1675.
    [80] Jansson M, Harnefors L, Wallmark O, et al. Synchronization at startup and stable rotation reversal ofsensorless nonsalient PMSM drives[J]. Industrial Electronics, IEEE Transactions on,2006,53(2):379-387.
    [81] Chou T Y, Liu T H, Cheng T T. Sensorless micro-permanent magnet synchronous motor controlsystem with a wide adjustable speed range[J]. Electric Power Applications, IET,2012,6(2):62-72.
    [82] Zhaowei Q, Tingna S, Yindong W, et al. New Sliding-Mode Observer for Position Sensorless Controlof Permanent-Magnet Synchronous Motor[J]. Industrial Electronics, IEEE Transactions on,2013,60(2):710-719.
    [83] Corradini M L, Ippoliti G, Longhi S, et al. A Quasi-Sliding Mode Approach for Robust Control andSpeed Estimation of PM Synchronous Motors[J]. Industrial Electronics, IEEE Transactions on,2012,59(2):1096-1104.
    [84] Hongryel K, Jubum S, JangMyung L. A High-Speed Sliding-Mode Observer for the Sensorless SpeedControl of a PMSM[J]. Industrial Electronics, IEEE Transactions on,2011,58(9):4069-4077.
    [85] Foo G H B, Rahman M F. Direct Torque Control of an IPM-Synchronous Motor Drive at Very LowSpeed Using a Sliding-Mode Stator Flux Observer[J]. Power Electronics, IEEE Transactions on,2010,25(4):933-942.
    [86] Fu Z, Beizhi L, Jianguo Y, et al. A sliding model speed/position observer integrated with a PIcontroller for PM synchronous motors[C]. Robotics and Biomimetics,2007ROBIO2007IEEEInternational Conference on, Sanya,2007:1372-1377.
    [87] Foo G, Rahman M F. Sensorless Direct Torque and Flux-Controlled IPM Synchronous Motor Drive atVery Low Speed Without Signal Injection[J]. Industrial Electronics, IEEE Transactions on,2010,57(1):395-403.
    [88] Foo G, Rahman M F. Sensorless vector control of interior permanent magnet synchronous motordrives at very low speed without signal injection[J]. Electric Power Applications, IET,2010,4(3):131-139.
    [89] Paicu M C, Boldea I, Andreescu G D, et al. Very low speed performance of active flux basedsensorless control: interior permanent magnet synchronous motor vector control versus direct torqueand flux control[J]. Electric Power Applications, IET,2009,3(6):551-561.
    [90] Moussa M F, Gaber Y, El Attar M. Vector control drive of permanent magnet motor without a shaftencoder[C]. Power System Conference,2008MEPCON200812th International Middle-East, Aswan,2008:249-254.
    [91] Lidozzi A, Solero L, Crescimbini F, et al. SVM PMSM Drive With Low Resolution Hall-EffectSensors[J]. Power Electronics, IEEE Transactions on,2007,22(1):282-290.
    [92] Batzel T D, Lee K Y. Slotless permanent magnet synchronous motor operation without a highresolution rotor angle sensor[J]. Energy Conversion, IEEE Transactions on,2000,15(4):366-371.
    [93] Huang M-S, Chen C-H, Chou H-H, et al. An accurate torque control of permanent magnet brushlessmotor using low-resolution hall-effect sensors for light electric vehicle applications[C]. EnergyConversion Congress and Exposition (ECCE),2013IEEE, Denver, CO,2013:175-179.
    [94] Capponi F G, De Donato G, Del Ferraro L, et al. AC brushless drive with low-resolution Hall-effectsensors for surface-mounted PM Machines[J]. Industry Applications, IEEE Transactions on,2006,42(2):526-535.
    [95] Zhaodong F, Acarnley P P. Extrapolation Technique for Improving the Effective Resolution of PositionEncoders in Permanent-Magnet Motor Drives[J]. Mechatronics, IEEE/ASME Transactions on,2008,13(4):410-415.
    [96] Ozturk S B, Akin B, Toliyat H A, et al. Low-cost direct torque control of permanent magnetsynchronous motor using Hall-effect sensors[C]. Applied Power Electronics Conference andExposition,2006APEC '06Twenty-First Annual IEEE,2006.
    [97] Morimoto S, Sanada M, Takeda Y. High-performance current-sensorless drive for PMSM and SynRMwith only low-resolution position sensor[J]. Industry Applications, IEEE Transactions on,2003,39(3):792-801.
    [98] Dongbin L, Jing G, Jianqiu L, et al. High-performance control of PMSM based on a new forecastalgorithm with only low-resolution position sensor[C]. Vehicle Power and Propulsion Conference,2009VPPC '09IEEE, Dearborn, MI,2009:1440-1444.
    [99] Munggonrit S, Konghirun M, Tungpimolrut K. Implementation of speed controlled Permanent-MagnetSynchronous Motor drive using low-resolution encoder for low-cost applications[C]. ElectricalMachines and Systems (ICEMS),2010International Conference on, Ncheon,2010:700-705.
    [100] Hyunbae K, Sungmo Y, Namsu K, et al. Using low resolution position sensors in bumplessposition/speed estimation methods for low cost PMSM drives[C]. Industry Applications Conference,2005Fourtieth IAS Annual Meeting Conference Record of the2005,2005(4):2518-2525.
    [101] Giulii Capponi F, De Donato G, Del Ferraro L. Brushless AC drive using an axial flux synchronousPM motor with low resolution position sensors[C]. Power Electronics Specialists Conference,2004PESC042004IEEE35th Annual,2004(3):2287-2292.
    [102] Sam-Young K, Chinchul C, Kyeongjin L, et al. An Improved Rotor Position Estimation WithVector-Tracking Observer in PMSM Drives With Low-Resolution Hall-Effect Sensors[J]. IndustrialElectronics, IEEE Transactions on,2011,58(9):4078-4086.
    [103] Holtz J, Lotzkat W, Khambadkone A M. On continuous control of PWM inverters in theovermodulation range including the six-step mode[J]. Power Electronics, IEEE Transactions on,1993,8(4):546-553.
    [104] Dong-Choon L, Lee G M. A novel overmodulation technique for space-vector PWM inverters[J].Power Electronics, IEEE Transactions on,1998,13(6):1144-1151.
    [105]樊扬,瞿文龙,陆海峰等.基于叠加原理的SVPWM过调制算法[J].清华大学学报(自然科学版),2008,48(04):461-464.
    [106]张立伟,刘钧,温旭辉等.基于基波电压幅值线性输出控制的SVPWM过调制新算法[J].中国电机工程学报,2005,25(19):12-18.
    [107]杨文强,蔡旭,姜建国.空间电压矢量PWM的过调制策略[J].上海交通大学学报,2005,39(S1):53-56.
    [108] Bolognani S, Zigliotto M. Novel digital continuous control of SVM inverters in the overmodulationrange[J]. Industry Applications, IEEE Transactions on,1997,33(2):525-530.
    [109]陆海峰,瞿文龙,张磊等.基于调制函数的SVPWM算法[J].电工技术学报,2008,23(02):37-43.
    [110]吴芳,万山明,黄声华.一种过调制算法及其在永磁同步电动机弱磁控制中的应用[J].电工技术学报,2010,25(01):58-63.
    [111]张艳芳,林飞,马志文, et al.两种SVPWM过调制方法的比较研究[J].北京交通大学学报,2005,29(02):39-43.
    [112] Hava A M, Kerkman R J, Lipo T A. A high-performance generalized discontinuous PWM algorithm[J].Industry Applications, IEEE Transactions on,1998,34(5):1059-1071.
    [113] Shao-Liang A, Xiang-Dong S, Qi Z, et al. Study on the Novel Generalized Discontinuous SVPWMStrategies for Three-Phase Voltage Source Inverters[J]. Industrial Informatics, IEEE Transactions on,2013,9(2):781-789.
    [114] Hava A M, Kerkman R J, Lipo T A. Carrier-based PWM-VSI overmodulation strategies: analysis,comparison, and design[J]. Power Electronics, IEEE Transactions on,1998,13(4):674-689.
    [115] Welchko B A, Schulz S E, Hiti S. Effects and Compensation of Dead-Time and Minimum Pulse-WidthLimitations in Two-Level PWM Voltage Source Inverters[C]. Industry Applications Conference,200641st IAS Annual Meeting Conference Record of the2006IEEE, Tampa, FL,2006:889-896.
    [116]程小猛,陆海峰,瞿文龙等.一种减小SVPWM线性调制区损失的方法[J].清华大学学报(自然科学版),2009,49(11):1861-1865.
    [117]梁伟华,郗晓田,游林儒等.一种扩展SVPWM线性调制区及过调制算法实现[J].电力电子技术,2013,47(05):10-12.
    [118] Stulrajter M, Musak M. Unconventional methods for PM Synchronous Motor parametersinvestigation[C]. ELEKTRO,2012, Rajeck Teplice,2012:260-265.
    [119] Hyo-Sung A, Yang-Quan C, Huifang D. State-periodic adaptive compensation of cogging andCoulomb friction in permanent-magnet linear motors[J]. Magnetics, IEEE Transactions on,2005,41(1):90-98.
    [120] Kemao P, Chen B M, Guoyang C, et al. Modeling and compensation of nonlinearities and friction in amicro hard disk drive servo system with nonlinear feedback control[J]. Control Systems Technology,IEEE Transactions on,2005,13(5):708-721.
    [121] Chunling D, Lihua X, Jingliang Z. Compensation of VCM Actuator Pivot Friction Based on anOperator Modeling Method[J]. Control Systems Technology, IEEE Transactions on,2010,18(4):918-926.
    [122] Si-Lu C, Kok-Kiong T, Sunan H, et al. Modeling and Compensation of Ripples and Friction inPermanent-Magnet Linear Motor Using a Hysteretic Relay[J]. Mechatronics, IEEE/ASMETransactions on,2010,15(4):586-594.
    [123] Tan K K, Huang S N, Lee T H. Robust adaptive numerical compensation for friction and force ripplein permanent-magnet linear motors[J]. Magnetics, IEEE Transactions on,2002,38(1):221-228.
    [124] Dong-Hee L, Jin-Woo A. Dual Speed Control Scheme of Servo Drive System for a Nonlinear FrictionCompensation[J]. Power Electronics, IEEE Transactions on,2008,23(2):959-965.
    [125] Jamaludin Z, Van Brussel H, Swevers J. Friction Compensation of an XY Feed Table UsingFriction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer[J]. IndustrialElectronics, IEEE Transactions on,2009,56(10):3848-3853.
    [126]肖庆清;李俊田,检测永磁同步电机转子磁极初始位置的方法和系统:中国,200710075788.2[P/OL].2007-20070817[20090218].
    [127]吴志敢;胡亚山,一种精确测量同步马达初始磁极角的检测方法:中国,200910200901.4[P/OL].2009-20091225[20100630].
    [128]秦峰,贺益康,刘毅等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(05):118-123.
    [129] Jianmin W, Jianwei G. Influence of speed EMF on position estimation error in carrier signal injectionbased sensorless control of PMSM[C]. Electrical Machines and Systems (ICEMS),201215thInternational Conference on, Sapporo,2012:1-6.
    [130] Wang J, Tian S. Analysis of stator resistance effects in carrier signal injection based sensorless controlof permanent magnet synchronous machine[C].2011International Conference on ManufacturingScience and Technology, ICMST2011, September16,2011-September18,2011, Singapore,Singapore,2012.
    [131]万山明,吴芳,黄声华.基于高频电压信号注入的永磁同步电机转子初始位置估计[J].中国电机工程学报,2008,28(33):82-86.
    [132] Tesch T R, Lorenz R D. Disturbance Torque and Motion State Estimation With Low-ResolutionPosition Interfaces Using Heterodyning Observers[J]. Industry Applications, IEEE Transactions on,2008,44(1):124-134.
    [133] Harke M C, De Donato G, Capponi F G, et al. Implementation Issues and Performance Evaluation ofSinusoidal, Surface-Mounted PM Machine Drives With Hall-Effect Position Sensors and aVector-Tracking Observer[J]. Industry Applications, IEEE Transactions on,2008,44(1):161-173.
    [134] De Donato G, Harke M C, Giulii Capponi F, et al. Sinusoidal surface-mounted pm machine driveusing a minimal resolution position encoder[C]. Applied Power Electronics Conference andExposition,2008APEC2008Twenty-Third Annual IEEE, Austin, TX,2008:104-110.
    [135] Dalala Z M, Younghoon C, Jih-Sheng L. Enhanced vector tracking observer for rotor positionestimation for PMSM drives with low resolution Hall-Effect position sensors[C]. Electric Machines&Drives Conference (IEMDC),2013IEEE International, Chicago, IL,2013:484-491.
    [136] Kuang-Yao C, Chih-Tsung Y, Ying-Yu T. Adaptive target positioning control for permanent magnetsynchronous motors with low-resolution shaft encoders[C]. Power Electronics and Drive Systems,2003PEDS2003The Fifth International Conference on,2003(1):716-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700