用户名: 密码: 验证码:
从炎症的角度研究FLZ防治神经退行性疾病的作用机制及胞壁酰二肽衍生物MDP-C免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两部分内容,第一部分:从炎症的角度研究FLZ防治神经退行性疾病的作用机制。第二部分:胞壁酰二肽衍生物MDP-C免疫活性研究
     第一部分:从炎症的角度研究FLZ防治神经退行性疾病的作用机制
     FLZ是一种人工合成的番荔枝酰胺衍生物,以往研究显示具有很强的抗氧化、抗凋亡和神经保护作用,对多种实验性帕金森氏病动物模型的运动障碍和实验性痴呆小鼠的学习记忆障碍都具有改善作用。炎症在神经退行性疾病的发病过程中起重要的作用,可能是其诱发因素之一,控制疾病过程中的炎症反应,有益于神经退行性疾病的预防与治疗。因此,本研究从炎症的角度对FLZ防治神经退行性疾病的作用及作用机理进行了研究。
     一、FLZ对侧脑室注射LPS小鼠学习记忆能力的影响及相关抗炎作用研究
     脂多糖(Lipopolysaccharides,LPS)是革兰氏阴性细菌细胞膜的结构成分,是一种强的炎症刺激物,可引起动物学习记忆障碍,神经元发生损伤,可以较好的模拟阿尔茨海默病(Alzheimer's disease,AD)脑内炎症的改变。我们的研究结果显示,侧脑室注射LPS(2.5μg/只)小鼠在水迷宫实验中表现出了学习记忆能力的障碍,给予FLZ(150 mg/kg、75mg/kg)可明显改善动物的学习记忆能力。病理和尼氏染色结果显示FLZ对LPS引起的海马神经元的损伤具有明显的保护作用。生化检测结果显示,FLZ能降低海马内LPS诱导产生的肿瘤坏死因子-α(Tumor necrosisfactor-α,TNF-α)、白介素1β(Interleukin 1β,IL-1β),并降低LPS引起的诱导型一氧化氮合酶(Inducible nitric oxide synthase,iNOS)活性的升高。免疫组化实验结果发现FLZ能抑制LPS引起的小胶质细胞和星形胶质细胞的活化和增殖,对LPS诱导的iNOS、环氧合酶2(Cyclooxygenase-2,Cox-2)的表达有明显的抑制作用,实验还观察了炎症状态下与AD密切相关的β-淀粉样蛋白(β-amyloid,Aβ)和β-分泌酶(β-Secretase,BACE1)的变化,结果显示,LPS刺激可以促进BACE1的表达,并增加Aβ的产生,FLZ对此有明显的抑制作用。本部分实验结果提示FLZ能显著抑制LPS侧脑室注射引起的小胶质细胞和星形胶质细胞的活化,减少神经毒性炎症介质的产生,并显著改善炎症反应引起的学习记忆障碍和神经元损伤。
     二、FLZ对巨噬细胞炎症反应的抑制作用及相关机制研究
     上部分研究内容提示FLZ能通过抑制小胶质细胞和星形胶质细胞的活化、减少神经毒性炎症介质的分泌从而改善炎症反应引起的小鼠学习记忆障碍。为进一步探讨其作用机制,我们应用RAW264.7小鼠巨噬细胞株,检测了FLZ对LPS诱导的炎症介质一氧化氮(Nitric oxide,NO)的释放,TNF-α的产生,以及iNOS、TNF-α和Cox-2表达的影响。结果显示,FLZ在1、5、10μM剂量明显抑制LPS引起的NO的产生和iNOS、Cox-2 mRNA的转录与蛋白表达,在10gM剂量,显著减少TNF-α的分泌,对TNF-αmRNA的转录也有抑制,此外FLZ对LPS和聚集态Aβ_(1-40)诱导BV-2小鼠小胶质瘤细胞株释放的炎症介质NO和TNF-α也有明显的抑制作用。随后我们从核转录因子B(Nuclear factor-kappa B,NF-κB)和丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信号通路探讨了FLZ抗炎作用机制,FLZ对LPS引起的IκB激酶(IκB kinase,IKK)和抑制性κB(InhibitoryκB,IκB)的磷酸化、IBB的降解、NF-κB的转位入核及NF-κB与特异DNA序列的结合均有明显抑制作用。对转录因子(Activator protein 1,AP-1)与特异DNA序列的结合、c-Jun氨基末端激酶(c-Jun NH2-terminal kinase,JNK)与p38的磷酸化也有显著的抑制作用,但对细胞外信号调节激酶(Extracellular signal regulated kinase,ERK)的磷酸化没有明显的影响。TGF-β活化激酶1(Transforming growth factor-βactivatedkinase 1,TAK1)是IKK和JNK、p38的上游激酶,FLZ能剂量依赖性的抑制TAK1的磷酸化。此外,FLZ对LPS和H_2O_2诱导产生的活性氧(Reactive oxygen species,ROS)有明显的抑制作用。以上结果提示FLZ对LPS引起的炎症反应具有抑制作用,这种作用可能与其抑制LPS引起的TAK1-IKK-NF-κB信号通路和TAK1-JNK/p38MAPK/AP-1信号通路活化的抑制有关,此外,FLZ对ROS的抑制可能也是其抗炎作用的重要机制之一。
     综上所述,FLZ能显著抑制小鼠侧脑室注射LPS引起的炎症反应,对LPS引起的学习记忆障碍和神经元损伤有明显的改善作用。FLZ对LPS诱导的炎症反应的抑制作用可能与其抑制TAK1-IKK-NF-κB信号通路和TAK1-JNK/p38MAPK-AP-1信号通路有关,对ROS的抑制作用也参与其中。对炎症反应的抑制作用可能是FLZ防治神经退行性疾病的机制之一。
     第二部分:胞壁酰二肽衍生物MDP-C免疫活性研究
     N-乙酰胞壁酸-L-丙氨酸-D-异谷胺酰胺,简称胞壁酰二肽(Muramyl dipeptide,MDP),是分枝杆菌细胞壁中具有免疫佐剂活性的最小的结构单位,具有广泛的生物学活性,可以作为免疫调节剂在一定程度上增强机体对感染和肿瘤的非特异抵抗力。但是MDP难以穿透细胞膜,在体内迅速消除,以及体内实验可以引起发热、嗜睡、厌食和新陈代谢亢进等不良反应影响了其应用。因此,对MDP进行结构改造,合成活性好的结构类似物做为疫苗的佐剂或免疫调节剂用于感染和肿瘤的治疗成为药物研究领域内的一项重要课题。
     N~2-[a-O-苄基-N-(乙酰胞壁酰)-L-丙胺酰-D-异谷胺酰胺酰-N~6-反式-(间-硝基肉桂酰基)-L赖胺酸酰胺简称MDP-C,是一种新合成的MDP衍生物。以往的研究显示MDP-C是一个潜在的免疫增强剂,本研究进一步观察了MDP-C的免疫活性,并对其在肿瘤免疫治疗方面的应用价值进行了初步探讨。
     首先应用小鼠Lewis肺癌模型检测了MDP-C对肿瘤生长和转移有无抑制作用,结果显示MDP-C单独应用对小鼠Lewis肺癌原发瘤和肺转移都没有明显的影响,MDP-C 1.25 mg/kg、2.5 mg/kg剂量与低剂量(15 mg/kg)异环磷酰胺合用时,肺转移结节数减少,但是与正常对照组相比没有明显的差异。随后,应用酶联免疫斑点分析(Enzyme-linked immunospot assay,ELISPOT)方法检测了MDP-C对CTL表位多肽TRP-2_(180-188)诱导小鼠特异性细胞毒性T淋巴细胞(Cytotoxic Tlymphocyte,CTL)活化产生IFN-γ的佐剂作用,结果显示,MDP-C与TRP-2_(180-188)多肽合用,在一定程度上增强了TRP-2_(180-188)多肽诱导的CTL反应,但是作用较弱,统计学差异不显著。
     树突细胞(Dendritic cells,DCs)是重要的专职抗原提呈细胞,在启动机体特异性、非特异性免疫应答的过程中起着关键的作用。促使DCs成熟,增强其抗原提呈功能是佐剂作用的重要机制。本研究在体外应用人单核细胞来源的树突细胞(Monocyte derived dendritic cells,MoDCs)探讨了MDP-C对树突细胞成熟和功能的影响。经重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF,1000U/ml)和重组人白细胞介素-4(rhIL-4,500U/ml)诱导培养的方法得到了不成熟树突细胞(iDCs),iDCs在含有MDP-C的完全培养液中继续培养24h后,采用流式细胞仪检测MoDCs表型,ELISA法检测培养上清中细胞因子IL-6、IL-12(p40+70)浓度,以MoDCs为刺激细胞,异体同种T淋巴细胞为效应细胞观察MDP-C对MoDCs抗原提呈和淋巴细胞增殖的影响。结果显示,与溶剂对照组相比,10μM MDP-C能显著增加MoDCs细胞表面HLA-DR、CD80、CD86以及CD83的表达,并能够增强MoDCs刺激异体T淋巴细胞增殖的能力,但是MDP-C不能诱导细胞因子IL-6、IL-12(p40+70)的产生,而阳性对照药Romurtide 1μM剂量对上述表面分子和细胞因子均有明显的诱导作用。随后我们应用RAW264.7小鼠巨噬细胞系检测了MDP-C对TNF-α有无作用,结果显示,经1μM MDP刺激的RAW264.7巨噬细胞和小鼠腹腔巨噬细胞分泌TNF-α的能力明显增强,而MDP-C各剂量组对两种巨噬细胞均未表现出增强作用。
     综合本部分研究,MDP-C在体内对Lewis肺癌小鼠肿瘤生长和转移均未显示明显的治疗作用,对多肽引起的CTL活化也未显示明显的增强。体外实验中MDP-C能够促进MoDCs表面分子HLA-DR、CD80、CD86以及CD83的表达,增强抗原提呈功能,但是不能诱导MoDCs产生细胞因子IL-6、IL-12(p40+70),也不能诱导巨噬细胞产生TNF-α。提示,MDP-C有一定的免疫增强活性,但是作用较弱,其作用机制需进一步探讨。
The thesis is consist of two sections:"Mechanism of FLZ controlling neurodegenerative disease by modulation of inflammation" and "The immunocompetence of a synthetic muramyl dipeptide analogue MDP-C"
     Section 1.Mechanism of FLZ controlling neurodegenerative disease by modulation of inflammation
     Compound FLZ is a synthetic novel derivative of squamosamide.Previous studies in our laboratory demonstrated that FLZ not only had strong anti-oxidation, anti-apoptosis and neuroprotective effect,but also improved experimental learning and memory deficit and dyskinesia in animal models.This thesis first explored the ability of FLZ modulating inflammation and focused on mechanism studies controlling neurodegenerative disease.
     Part 1.FLZ improvement of learning and memory dysfunction that is caused by LPS-induced inflammation in hippocampus
     Lipopolysaccharide(LPS) is the major component of the outer surface of gram-negative bacteria and be considered as a potent inflammatory stimulator. Experimental evidences indicated that intracerebroventricular(i.c.v.) injection of LPS to rodents induced learning and memory impairments as well as neurodegeneration in brain areas related to cognitive function.In the present study,we explored the effects of FLZ on the LPS i.c.v.injected mice models.In water maze test,we found that i.c.v.injection of 2.5μg LPS induced learning and memory impairment.FLZ(150 mg/kg,75mg/kg) significantly improved the learning and memory ability and inhibited the damage of hippocampus neurons as assessed by histopathology method.To further investigate the mechanism of FLZ in improving the learning and memory impairments induced by LPS, biochemistry and immunohistochemistry methods were used.The results revealed that FLZ decreased the levels of TNF-αand IL-1βand inhibited the activity of inducible nitric oxide synthase(iNOS) which were induced by LPS.The immunohistochemistry results showed that the increased activation of microglia and astrocyte and the over expression of iNOS,cyclooxygenase-2(Cox-2) andβ-Secretase(BACE1) by LPS were all significantly inhibited by FLZ.Aβproduction induced by LPS was decreased either. In summary,FLZ significantly inhibited the inflammatory reaction in hippocampus caused by i.c.v.injection of LPS and improved the learning and memory impairment and neuron damage.
     2.Inhibition effect of FLZ on the inflammatory reaction in macrophages and the mechanism of action
     The above results indicated that FLZ inhibited the inflammatory reaction in hippocampus caused by i.c.v.injection of LPS.To further study the mechanism of FLZ, the RAW264.7 macrophages were used to detect the effects of FLZ on the production of inflammatory mediators-induced by LPS.The results showed that FLZ dose-dependently inhibited the LPS induced production of nitric oxide(NO) as well as the expression of iNOS,cyclooxygenase 2(Cox-2) and tumor necrosis factor(TNF)-αat both mRNA and protein levels.Furthermore,the production of NO and secretion of TNF-αinduced by LPS or aggregated Aβ_(1-40) in BV-2 microglias were also suppressed by FLZ.The anti-inflammatory mechanism of FLZ was investigated subsequently.In RAW264.7 cells, the LPS-induced DNA binding activation of Nuclear factor kappa-B(NF-κB) and activator protein 1(AP-1),the nuclear translocation of NF-κB p65,the degradation of inhibitoryκBαprotein(IκBα) and the phosphorylation of IκBα,IκB kinase(IKK)α/β, c-Jun NH_2-terminal kinase(JNK) and p38 mitogen-activated protein kinases(MAPKs) were all suppressed by FLZ.But the phosphorylation of extracellular signal-regulated kinase(ERK) was not impacted.Further study revealed that FLZ dose dependently inhibited the phosphorylation of transforming growth factor-β(TGF-β)-activated kinase 1(TAK1) which is the upstream signal of IKKα/β,JNK and p38 activation.In addition, reactive oxygen species(ROS) induced by LPS or H_2O_2 were suppressed by FLZ either. The results suggested that FLZ inhibited the production of inflammatory mediators at least partly via downregulation of TAK1-IKK-NF-κB and TAK1-JNK/p38MAPK/AP-1 pathways.In addition,the suppression of ROS was also one of the important mechanisms for the anti-inflammatory activity of FLZ.
     In summary,FLZ significantly inhibited the inflammatory reaction in hippocampus caused by i.c.v,injection of LPS and improved the learning and memory impairment and neuron damage.The production of inflammatory mediators induced by LPS was inhibited by FLZ at least partly via the downregulation of TAK1-IKK-NF-κB and TAK1-JNK/p38MAPK-AP-1 pathways and the inhibition of ROS.The protection against neurodegenerative diaseases of FLZ may be partially accounts for its anti-inflammation activity.
     Section 2.The immunocompetence of a synthetic muramyl dipeptide analogue MDP-C
     N-acetylmuramyl-L-alany-D-isoglutamin(muramyl dipeptide,MDP),which was identified as the minimal active component of mycobacterium cell wall,possesses extensive biological activities on host immune systems and improves the nonspecific resistance against infections and tumors.However,the characters of poor penetration of membranes and rapid elimination in vivo,as well as the induction of toxic responses, such as pyrogenicity,lethargy,anoresy and hypermetabolism limit the application of MDP.Therefore,structure modification and synthesis of MDP derivatives possess good activitie is extremely needed.MDP-C(N2-[R-Obenzyl-N-(acetylmuramyl) -L-alanyl -D-isoglutaminyl]-N6-trans-(m-nitrocinnamoyl)-L-lysine),a novel chemically modified MDP,has been reported to be an potential immunostimulator.In this study,we investigated the immunocompetence of MDP-C.
     First of all,we detected the effects of MDP-C on the growth and metastasis of tumors in a Lewis lung cancer mouse model.The results showed that MDP-C has no inhibitory activity on both the primarily tumor and pulmonary metastasis.Under tested condition,at the dose of 1.25 mg/kg and 2.5mg/kg,MDP-C combined with low dose isofosfamide(15 mg/kg) decreased the numbers of pulmonary metastasis nodes.But the data have no statistical significance compared with control group.In the experiment of ELISPOT,MDP-C slightly augmented the TRP-2_(180-188) peptide-specific cytotoxic T lymphocytes(CTLs) reaction in spleen cells of C57BL/6J mice immunized with the TRP-2_(180-188) peptide and MDP-C,but have no statistical significance compared with TRP-2_(180-188) peptide group.
     Dendritic cells(DCs) are highly specialized antigen-presenting cells(APC) that play a central role in the initiation of both innate and adaptive immune responses.The effects of MDP-C on the differentiation and activation of human monocyte derived dendritic cells(MoDCs) were investigated.The combined action of GM-CSF and IL-4 could direct monocytes to differentiate into DCs displaying features of immature DC(iDCs).After cultured with various concentration of MDP-C for 24h,the surface molecules human leucocyte antigen-DR(HLA-DR),CD80,CD86 and CD83 were detected by flow cytometry.The allogeneic mixed lymphocyte reaction and the levels of IL-6 and IL-12(p40+70) were investigated with ATP bioluminescent assay kit and ELISA kit, respectively.The results showed that MDP-C up-regulated the expression of HLA-DR, CD80,CD86 and CD83,as well as the allogeneic mixed lymphocyte reaction.But the secretion of IL-6 and IL-12(p40+70) were not affected.While the positive control compound romurtide induced the expression of surface molecules and cytokines strongly. Further study revealed that MDP-C has no effect on the secretion of TNF-αin both RAW264.7 and mouse peritoneal macrophages.
     In summary,MDP-C has no obvious inhibitory effect on the growth and metastasize of tumors in the Lewis lung cancer mouse model and has no obvious adjuvant activity on the TRP-2_(180-188) peptide induced cytotoxic T lymphocytes(CTLs) activition under tested condition.MDP-C increased the expression of surface molecules and enhanced the antigen presenting activity of MoDCs,but has no effect on the cytokine expression in both MoDCs and macrophages.The results indicated that MDP-C possesses immunocompetence to some extent.The mechanism of action needs further investigation.
引文
1.Van Broeck B,Van Broeckhoven C,Kumar-Singh S.Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches[J].Neurodegener Dis.2007,4(5):349-365.
    2.Heneka MT,O'Banion MK.Inflammatory processes in Alzheimer's disease[J].J Neuroimmunol.2007,184(1-2):69-91.
    3.盛树立.老年性痴呆及相关疾病[M].北京:科学技术文献出版社,2006.
    4.Moore AH,O'Banion MK.Neuroinflammation and anti-inflammatory therapy for Alzheimer's disease[J].Adv Drug Deliv Rev.2002,54(12):1627-1656.
    5.Pangalos MN,Schechter LE,Hurko O.Drug development for CNS disorders:strategies for balancing risk and reducing attrition[J].Nat Rev Drug Discov.2007,6(7):521-532.
    6.Blennow K,de Leon MJ,Zetterberg H.Alzheimer's disease[J].Lancet.2006,368(9533):387-403.
    7.Jenkinson ML,Bliss MR,Brain AT,et al.Rheumatoid arthritis and senile dementia of the Alzheimer's type[J].Br J Rheumatol.1989,28(1):86-88.
    8.Vlad SC,Miller DR,Kowall NW,et al.Protective effects of NSAIDs on the development of Alzheimer disease[J].Neurology.2008,70(19):1672-1677.
    9.AD2000 Collaborative Group,Bentham P,Gray R,Sellwood E,et al.Aspirin in Alzheimer's disease(AD2000):a randomised open-label trial[J].Lancet Neurol.2008,7(1):41-49.
    10.In t' Veld BA,Ruitenberg A,Hofman A,et al.Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease[J].N Engl J Med.2001,345(21):1515-1521.
    11.Szekely CA,Thorne JE,Zandi PP,et al.Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease:a systematic review[J].Neuroepidemiology.2004,23(4):159-169.
    12.Tschape JA,Hartmann T.Therapeutic perspectives in Alzheimer's disease[J].Recent Patents CNS Drug Discov.2006,1(1):119-127.
    13.Wyss-Coray T.Inflammation in Alzheimer disease:driving force,bystander or beneficial response[J]? Nat Med.2006,12(9):1005-1015.
    14.Gilgun-Sherki Y,Melamed E,Offen D.Anti-inflammatory drugs in the treatment of neurodegenerative diseases:current state[J].Curr Pharm Des.2006,12(27):3509-3519.
    15.Blennow K,de Leon MJ,Zetterberg H.Alzheimer's disease[J].Lancet.2006,368(9533):387-403
    16.White JA,Manelli AM,Holmberg KH,et al.Differential effects of oligomeric and fibrillar amyloidbeta 1-42 on astrocyte-mediated inflammation[J].Neurobiol Dis.2005,18(3):459-465.
    17.Lindberg C,Selenica ML,Westlind-Danielsson A,et al.Beta-amyloid protein structure determines the nature of cytokine release from rat microglia[J].J Mol Neurosci.2005,27(1):1-12.
    18.Guo JT,Yu J,Grass D,de Beer FC,Kindy MS.Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis[J].J Neurosci.2002,22(14):5900-5909.
    19.Finch CE,Morgan TE.Systemic inflammation,infection,ApoE alleles,and Alzheimer disease:a position paper[J].Curr Alzheimer Res.2007,4(2):185-189.
    20.Tan ZS,Beiser AS,Vasan RS,et al.Inflammatory markers and the risk of Alzheimer disease:the Framingham Study[J].Neurology.2007,68(22):1902-1908.
    21.Arai K,Matsuki N,Ikegaya Y,et al.Deterioration of spatial learning performances in lipopolysaccharide-treated mice[J].Jpn J Pharmacol.2001,87(3):195-201.
    22.Hauss-Wegrzyniak B,Dobrzanski P,Stoehr JD,et al.Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease[J].Brain Res.1998,780(2):294-303.
    23.Hauss-Wegrzyniak B,Vraniak PD,Wenk GL.LPS-induced neuroinflammatory effects do not recover with time[J].Neuroreport.2000,11(8):1759-1763
    24.Liu WC,Ding WL,Gu HY,et al.Lipopolysaccharide-induced cerebral inflammatory damage and the therapeutic effect of platelet activating factor receptor antagonist[J].Neurosci Bull.2007,23(5):271-276.
    25.Xie P,Jiao XZ,Liang XT,et al.Synthesis and antioxiactivity of squamosamide cyclic analogs[J].Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2004,26:372-378.
    26.刘耕陶.中药药理研究与药物创新[M].北京:中国协和医科大学出版社,2006.
    27.Fang F,Liu GT.Novel squamosamide derivative(compound FLZ) attenuates Abeta(25-35)-induced toxicity in SH-SY5Y cells[J].Acta Pharmacol Sin.2008,29:152-160.
    28.Zhang D,Zhang JJ,Liu GT.The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells[J].Eur J Pharmacol.2007,561:1-6.
    29.Zhang D,Zhang JJ,Liu GT.The novel squamosamide derivative(compound FLZ)attenuated 1-methyl,4-phenyl-pyridinium ion(MPP+)-induced apoptosis and alternations of related signal transduction in SH-SY5Y cells[J].Neuropharmacology, 2007,52:423-429.
    30.Feng W,Wei H,Liu GT.Pharmacological study of the novel compound FLZ against experimental Parkinson's models and its active mechanism[J].Mol Neurobiol.2005,31:295-300.
    31.Fang F,Liu G A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2[J].Basic Clin Pharmacol Toxicol.2007,101(6):447-454.
    32.Fang F,Liu GT.Protective effects of compound FLZ on beta-amyloid peptide-(25-35)-induced mouse hippocampal injury and learning and memory impairment[J].Acta Pharmacol Sin.2006,27:651-658.
    1.张丹,张建军.长苞凹舌兰提取物对亚急性衰老小鼠学习记忆和凋亡相关蛋白表达的影响[J].中国药理学与毒理学杂志,2005,19(4):259-262.
    2.张丹,王亚芳,张建军.藏药旺拉提取物CE对亚急性衰老小鼠学习记忆及抗氧化能力的影响[J].中国新药杂志,2005,14(11):1301-1304.
    3.张均田,张庆柱.神经药理学研究技术与方法[M].北京:人民卫生出版社.
    4.王辉,李林,张兰.参乌胶囊对β-淀粉样肽大鼠模型脑内炎症反应的影响[J].中国新药杂志,2004,13(1):38-41.
    5.Arai K,Matsuki N,Ikegaya Y,et al.Deterioration of spatial learning performances in lipopolysaccharide-treated mice[J].Jpn J Pharmacol.2001,87(3):195-201.
    6.Sparkman NL,Kohman RA,Scott VJ,et al.Bacterial endotoxin-induced behavioral alterations in two variations of the Morris water maze[J].Physiol Behav.2005,86(1-2):244-51.
    7.Liu WC,Ding WL,Gu HY,et al.Lipopolysaccharide-induced cerebral inflammatory damage and the therapeutic effect of platelet activating factor receptor antagonist[J].Neurosci Bull.2007,23(5):271-276.
    8.王辉,李林.与阿尔茨海默病有关的中枢神经系统免疫炎症动物模型[J].国外医学 老年医学分册.2003,24(6):254-256.
    9.Heneka MT,O'Banion MK.Inflammatory processes in Alzheimer's disease[J].J Neuroimmunol.2007,184(1-2):69-91.
    10.Dheen ST,Kaur C,Ling EA.Microglial activation and its implications in the brain diseases[J].Curr Med Chem.2007,14(11):1189-1197.
    11.Nagatsu T,Sawada M.Inflammatory process in Parkinson's disease:Role for cytokines[J].Curr Pharm Des.2005,11(8):999-1016.
    12.Goodwin JL,Kehrli ME Jr,Uemura E.Integrin Mac-1 and beta-amyloid in microglial release of nitric oxide[J].Brain Res.1997,768(1-2):279-286.
    13.Eng LF,Ghirnikar RS.GFAP and astrogliosis[J].Brain Pathol.1994,4(3):229-237.
    14.Ross GW,O'Callaghan JP,Sharp DS,et al.Quantification of regional glial fibrillary acidic protein levels in Alzheimer's disease[J].Acta Neurol Scand.2003,107(5):318-323.
    15.O'Banion MK,Chang JW,Coleman PD.Decreased expression of prostaglandin G/H synthase-2 PGHS-2 in Alzheimer's disease brain[J].Adv Exp Med Biol.1997,407:171-177.
    16.Griffith OW,Stuehr DJ.Nitric oxide synthases:properties and catalytic mechanism[J].Annu Rev Physiol.1995,57:707-736.
    17.Iadecola C,Zhang F,Xu S,et al.Inducible nitric oxide synthase gene expression in brain following cerebral ischemia[J].J Cereb Blood Flow Metab.1995,15(3):378-384.
    18.Malinski T.Nitric oxide and nitroxidative stress in Alzheimer's disease[J].J Alzheimers Dis.2007,11(2):207-218.
    19.Zamora R,Vodovotz Y,Billiar TR.Inducible nitric oxide synthase and inflammatory diseases[J].Mol Med.2000,6(5):347-373.
    20.罗穗,徐云根,朱东亚.一氧化氮与Alzheimer's病[J].广东药学院学报,2000,16(2):127-130.
    21.李国军,周春艺.一氧化氮神经毒性作用与神经退行性疾病[J].国外医学卫生学分册,2001,28(6):330-332.
    22.Mori K,Togashi H,Ueno K,et al.Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia[J].Behav Brain Res.2001,120(2):159-168.
    23.Wang Q,Rowan MJ.,Anwyl R.Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide[J].J Neurosci,2004,24(27):6049-6056.
    24.Davis S,Laroche S.What can rodent models tell us about cognitive decline in Alzheimer's disease[J].Mol Neurobiol.2003,27(3):249-276.
    25.Moore AH,Olschowka JA.,Williams JP,et al.Regulation of prostaglandin E-2synthesis after brain irradiation[J].Int J Radiat Oncol Biol Phys.2005,62(1):267-272.
    26.Hoozemans JJ,Rozemuller AJ,Janssen I,et al.Cyclooxygenase expression in microglia and neurons in Alzheimer's disease and control brain[J].Acta Neuropathol.2001,101(1):2-8.
    27.Yermakova AV,O'Banion MK.Downregulation of neuronal cyclooxygenase-2expression in end stage Alzheimer's disease[J].Neurobiol Aging.2001,22(6):823-836.
    28.Sriram K,O'Callaghan JP.Divergent roles for tumor necrosis factor-alpha in the brain[J].J Neuroimmune Pharmacol.2007,2(2):140-153.
    29.Tweedie D,Sambamurti K,Greig NH.TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders:new drug candidates and targets[J].Curr Alzheimer Res.2007,4(4):378-385.
    30.Cacquevel M,Lebeurrier N,Cheenne S,et al.Cytokines in neuroinflammation and Alzheimer's disease[J].Curr Drug Targets.2004,5(6):529-534.
    31.Sheng JG,Zhu SG,Jones RA,et al.Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo[J].Exp Neurol.2000,163(2):388-391.
    32.Oddo S,Caccamo A,Shepherd JD,et al.Triple-transgenic model of Alzheimer's disease with plaques and tangles:intracellular A beta and synaptic dysfunction[J].Neuron.2003,39(3):409-421.
    33.Oddo S,Caccamo A,Tran L,et al.Temporal profile of amyloid-beta A beta oligomerization in an in vivo model of Alzheimer disease-a link between A beta and tau pathology[J].J Biol Chem.2006,281(3):1599-1604.
    34.Kitazawa M,Oddo S,Yamasaki TR,et al.Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease[J].J Neurosci.2005,25(39):8843-8853.
    35.Tancredi V,D'Antuono M,Cafe C,et al.The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK[J].J Neurochem.2000,75(2):634-643.
    36.Murray CA,Lynch MA.Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age-and stress-induced impairments in long-term potentiation[J].J Neurosci.1998,18(8):2974-2981.
    37.Shaftel SS,Griffin WS,O'Banion MK.The role of interleukin-1 in neuroinflammation and Alzheimer disease:an evolving perspective[J].J Neuroinflammation.2008,5:7.
    38.Moynagh PN.The interleukin-1 signalling pathway in astrocytes:a key contributor to inflammation in the brain[J].J Anat.2005,207(3):265-269.
    39.Guo JT,Yu J,Grass D,et al.Inflammationdependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis[J].J Neurosci.2002,22(14):5900-5909.
    40.Amara FM,Junaid A,Clough RR,et al.TGF-betal,regulation of Alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line:mRNA stabilization[J].Mol Brain Res.1999,71(1):42-49.
    41.Rogers JT,Leiter LM,McPhee J,et al.Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences[J].J Biol Chem.1999,274(10):6421-6431.
    42.Walter J,Fluhrer R,Hartung B,et al.Phosphorylation regulates intracellular trafficking of beta-secretase[J].J Biol Chem.2001,276(18):14634-14641.
    43.Griffin WS,Sheng JG,Royston MC,et al.Glial-neuronal interactions in Alzheimer's disease:the potential role of a“cytokine cycle”in disease progression[J].Brain Pathol.1998,8(1):65-72.
    44.Sastre M,Dewachter I,Landreth GE,et al.Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase[J].J Neurosci.2003,23(30):9796-9804.
    1.Perry VH,Newman TA,Cunningham C.The impact of systemic infection on the progression of neurodegenerative disease[J].Nat Rev Neurosci.2003,4(2):103-112.
    2.Block ML,Zecca L,Hong JS.Microglia-mediated neurotoxicity:uncovering the molecular mechanisms[J].Nat Rev Neurosci.2007,8(1):57-69.
    3.Heneka MT,O'Banion MK.Inflammatory processes in Alzheimer's disease[J].J Neuroimmunol.2007,184(1-2):69-91.
    4.Li Q,Verma IM.NF-kappaB regulation in the immune system[J].Nat Rev Immunol.2002,2(10):725-734.
    5.Kaminska B.MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits[J].Biochim Biophys Acta.2005,1754(1-2):253-262.
    6.Shin HM,Byung Hak Kim,Eun Yong Chung,et al.Suppressive effect of novel aromatic diamine compound on nuclear factor-kappaB-dependent expression of inducible nitric oxide synthase in macrophages[J].Eur J Pharmacol.2005,521(1-3):1-8.
    7.Sumanont Y,Murakami Y,Tohda M,et al.Evaluation of the Nitric Oxide Radical Scavenging Activity of Manganese Complexes of Curcumin and Its Derivative[J].Biol Pharm Bull.2004,27(2):170-173.
    8.Kang JS,Jeon YJ,Kim HM,et al.Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages[J].J Pharmacol Exp Ther.2002,302(1):138-144.
    9.Kim BC,Choi JW,Hong HY,et al.Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages[J].J Ethnopharmacol.2006,106(3):364-371.
    10.Sieuwerts AM,Klijn JG,Peters HA,et al.The MTT tetrazolium salt assay scrutinized:how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics,IC50-values and cell survival[J].Eur J Clin Chem Clin Biochem.1995,33(11):813-823.
    11.Nathan C.Nitric oxide as a secretory product of mammalian cells[J].FASEB J.1992, 6(12):3051-3064.
    12.Griffith OW,Stuehr DJ.Nitric oxide synthases:properties and catalytic mechanism[J].Annu Rev Physiol.1995,57:707-736.
    13.Iadecola C,Zhang F,Xu S,et al.Inducible nitric oxide synthase gene expression in brain following cerebral ischemia[J].J Cereb Blood Flow Metab.1995,15(3):378-384.
    14.Alderton WK,Cooper CE,Knowles RG.Nitric oxide synthases:structure,function and inhibition[J].Biochem J.2001,357(Pt 3):593-615.
    15.MacMicking J,Xie QW,Nathan C.Nitric oxide and macrophage function[J].Annu Rev Immunol.1997;15:323-350.
    16.Malinski T.Nitric oxide and nitroxidative stress in Alzheimer's disease[J].J Alzheimers Dis.2007,11(2):207-218.
    17.Zamora R,Vodovotz Y,Billiar TR.Inducible nitric oxide synthase and inflammatory diseases[J].Mol Med.2000,6(5):347-373.
    18.Jang SI,Kim HJ,Kim YJ,et al.Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells:possible involvement of the NIK-IKK,ERK1/2,p38 and JNK pathways[J].Eur J Pharmacol,2006,542(1-3):1-7.
    19.Minghetti L.Role of COX-2 in inflammatory and degenerative brain diseases[J].Subcell Biochem.2007,42:127-141.
    20.Hempel SL,Monick MM,Hunninghake GW.Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes[J].J Clin Invest.1994,93(1):391-396.
    21.Hla T,Ristimaki A,Appleby S,et al.Cyclooxygenase gene expression in inflammation and angiogenesis[J].Ann NY Acad Sci.1993,696:197-204.
    22.Nomura Y.NF-kappaB activation and IkappaB alpha dynamism involved in iNOS and chemokine induction in astroglial cells[J].Life Sci.2001,68(15):1695-1701.
    23.Guha M,Mackman N.LPS induction of gene expression in human monocytes[J].Cell Signal.2001,13(2):85-94.
    24.Mercurio F,Zhu H,Murray BW,et al.IKK-1 and IKK-2:cytokine-activated IkappaB kinases essential for NF-kappaB activation[J].Science.1997,278(5339):860-866.
    25.Regnier CH,Song HY,Gao X,et al.Identification and characterization of an IkappaB kinase[J].Cell.1997,90(2):373-383.
    26.Xiao W.Advances in NF-kappaB signaling transduction and transcription[J].Cell Mol Immunol.2004,1(16):425-435.
    27.Xie QW,Kashiwabara Y,Nathan C.Role of transcription factor NFkappa B/Rel in induction of nitric oxide synthase[J].J Biol Chem.1994,269(7):4705-4708.
    28.Liu Y,Shepherd EG,Nelin LD.MAPK phosphatases--regulating the immune response[J].Nat Rev Immunol.2007,7(3):202-212.
    29.Kumar S,Boehm J,Lee JC.p38 MAP kinases:key signalling molecules as therapeutic targets for inflammatory diseases[J].Nat Rev Drug Discov.2003,2(9):717-726.
    30.Chen C,Chen YH,Lin WW.Involvement of p38 mitogen activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages[J].Immunology.1999,97(1):124-129.
    31.Shaulian E,Karin M.AP-1 as a regulator of cell life and death[J].Nat Cell Biol.2002,4(5):E131-E136.
    32.Janssens S,Beyaert R.Functional diversity and regulation of different interleukin-1 receptor-associated kinase(IRAK) family members[J].Mol Cell.2003,11(2):293-302.
    33.Stein B,Baldwin AS Jr,Ballard DW,et al.Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function[J].EMBO J.1993,12(10):3879-3891.
    34.Fujioka S,Niu J,Schmidt C,et al.NF-kappaB and AP-1 connection:mechanism of NF-kappaB-dependent regulation of AP-1 activity[J].Mol Cell Biol.2004,24(17):7806-7819.
    35.Karin M.Inflammation-activated protein kinases as targets for drug development[J].Proc Am Thorac Soc.2005,2(4):386-390.
    36.Doyle SL,O'Neill LA.Toll-like receptors:from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity[J].Biochem Pharmacol.2006,72(9):1102-1113.
    37.Kim YM,Lee BS,Yi KY,et al.Upstream NF-kappaB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-gamma plus lipopolysaccharide-induced RAW 264.7 macrophages[J].Biochem Biophys Res Commun.1997,236(3):655-660.
    38.Wang C,Deng L,Hong M,et al.TAK1 is a ubiquitin-dependent kinase of MKK and IKK[J].Nature.2001,412(6844):346-351.
    39.Chen ZJ,Bhoj V,Seth RB.Ubiquitin,TAK1 and IKK:is there a connection[J]? Cell Death Differ.2006,13(5):687-692.
    40.Watts C.Location,location,location:identifying the neighborhoods of LPS signaling[J].Nat Immunol.2008,9(4):343-345.
    41.Sato S,Sanjo H,Takeda K,et al.Essential function for the kinase TAK1 in innate and adaptive immune responses[J].Nat Immunol.2005,6(11):1087-1095.
    42.Cuevas BD,Abell AN,Johnson GL.Role of mitogen-activated protein kinase kinase kinases in signal integration[J].Oncogene.2007,26(22):3159-3171.
    43.Dumitru CD,Ceci JD,Tsatsanis C,et al.TNF-alpha induction by LPS is regulated posttranscriptionally via a Tp12/ERK-dependent pathway[J].Cell.2000,103(7):1071-1083.
    44.Matsuzawa A,Saegusa K,Noguchi T,et al.ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity[J].Nat Immunol.2005,6(6):587-592.
    45.Su B.Linking stress to immunity[J]? Nat Immunol.2005,6(6):541-542.
    46.刘耕陶.中药药理研究与药物创新[M].北京:中国协和医科大学出版社,2006.
    47.Eikelenboom P,Veerhuis R,Familian A,et al.Neuroinflammation in plaque and vascular beta-amyloid disorders:clinical and therapeutic implications[J].Neurodegener Dis.2008,5(3-4):190-193.
    48.Zheng LT,Ryu GM,Kwon BM,et al.Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells:Inhibition of microglial neurotoxicity[J].Eur J Pharmacol.2008,588(1):106-113.
    1.Ellouz F,Adam A,Ciorbaru R,et al.Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives[J].Biochem Biophys Res Commuri.1974,59(4):1317-1325.
    2.Baecher-Allan C,Anderson DE.Immune regulation in tumor-beating hosts[J].Curr Opin Immunol.2006;18(2):214-219.
    3.Banchereau J,Steinman RM.Dendritic cells and the control of immunity[J].Nature,1998,392(6673):245-252.
    4.Azuma I.Synthetic immunoadjuvants:application to non-specific host stimulation and potentiation of vaccine immunogenicity[J].Vaccine.1992,10(14):1000-1006.
    5.Asano T,McWatters A,An T,et al.Liposomal muramyl tripeptide up-regulates interleukin-1 alpha,interleukin-1 beta,tumor necrosis factor-alpha,interleukin-6 and interleukin-8 gene expression in human monocytes[J].J Pharmacol Exp Ther.1994,268(2):1032-1039.
    6.Nardin A,Lefebvre ML,Labroquere K,et al.Liposomal muramyl tripeptide phosphatidylethanolamine:Targeting and activating macrophages for adjuvant treatment of osteosarcoma[J].Curr Cancer Drug Targets.2006,6(2):123-133.
    7.Kleinerman ES.Biologic therapy for osteosarcoma using liposome-encapsulated muramyl tripeptide[J].Hematol Oncol Clin North Am.1995,9(4):927-938.
    8.Liebes L,Walsh CM,Chachoua A,et al.Modulation of monocyte functions by muramyl tripeptide phosphatidylethanolamine in a phase Ⅱ study in patients with metastatic melanoma[J].J Natl Cancer Inst.1992,84(9):694-699.
    9.Yang HZ,Xu S,Liao XY,et al.A novel immunostimulator,N-[alpha-O-benzyl-N-(acetylmuramyl)-L-alanyl-D-isoglutaminyl]-N6-trans-(m-nitro cinnamoyl)-L-lysine,and its adjuvancy on the hepatitis B surface antigen[J].J Med Chem,2005,48(16):5112-5122.
    10.韩锐.肿瘤化学预防及药物治疗[M].北京:北京医科大学中国协和医科大学联合出版社,1991.
    11.B.P.korin.A Two-sample test for independent samples.Mann-Whitney U-test.Introduction to statistical methods[M].Cambridge Massachusetts:Winthrop Publishers Inc.1977.
    12.Elkord E,Williams PE,Kynaston H,et al.Human monocyte isolation methods influence cytokine production from in vitro generated dendritic cells[J].Immunology.2005,114(2):204-212.
    13.Tang LL,Zhang Z,Zheng JS,et al.Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes[J].J Zhejiang Univ Sci B.2005,6(12):1176-1181.
    14.Pedersen AE,Thorn M,Gad M,et al.Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination[J].Scand J Immunol.2005,61(2):147-156.
    15.Cao X,Zhang W,He L,et al.Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity[J].J Immunol.1998,161(11):6238-6244.
    16.王欲,陈慰峰.利用肿瘤抗原多肽疫苗进行肿瘤的免疫治疗[J].自然科学进展,2002,12(9):903-907.
    17.Scheibenbogen C,Lee KH,Mayer S,et al.A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for HLA class I-binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients[J].Clin Cancer Res.1997,3(2):221-226.
    18.Asai T,Storkus WJ,Whiteside TL.Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines[J].Clin Diagn Lab Immunol.2000,7(2):145-154.
    19.Bloom MB,Perry-Lalley D,Robbins PF,et al.Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma[J].J Exp Med.1997,185(3):453-459.
    20.Bellone M,Cantarella D,Castiglioni P,et al.Dellabona P.Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma[J].J Immunol.2000,165(5):2651-2666.
    21.Dannull J,Su Z,Rizzieri D,et al.Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells[J].J Clin Invest.2005,115(12):3623-3633.
    22.Clezardin P.Anti-tumour activity of zoledronic acid[J].Cancer Treat Rev.2005;31 Suppl 3:1-8.
    23.Liu JY,Wu Y,Zhang XS,et al.Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine[J].Cancer Immunol Immunother.2007,56(10):1597-1604.
    24.Salem ML,Kadima AN,El-Naggar SA,Rubinstein MP et al.Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination:creation of a beneficial host microenvironment involving type I IFNs and myeloid cells[J].J Immunother.2007,30(1):40-53.
    25.Jiang ZH,Koganty RR.Synthetic vaccines:the role of adjuvants in immune targeting[J].Cur Med Chem.2003,10(15):1423-1439.
    26.Pashine A,Valiante NM,Ulmer JB.Targeting the innate immune response with improved vaccine adjuvants[J].Nat Med.2005,11(4 Suppl):S63-68.
    27.Jiang ZH,Koganty RR.Synthetic vaccines:the role of adjuvants in immune targeting[J].Curr Med Chem.2003,10(15):1423-1439.
    28.Vidal V,Dewulf J,Bahr GM.Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulator Murabutide[J].Immunology.2001,103(4):479-487.
    29.Todate A,Suda T,Kuwata H,et al.Muramyl dipeptide-Lys stimulates the function of human dendritic cells[J].J Leukoc Biol.2001,70(5):723-729.
    30.Lenschow DJ,Walunas TL,Bluestone JA.CD28/B7 system of T cell costimulation[J].Annu Rev Immunol.1996,14:233-258.
    31.Osugi Y,Vuckovic S,Hart DN.Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes[J].Blood.2002,100(8):2858-2866.
    32.Ebner S,Ratzinger G,Krosbacher B,et al.Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation,and is further enhanced by IL-4[J].J Immunol.2001,166(1):633-641.
    33.Pasare C,Medzhitov R.Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells[J].Science.2003,299(5609):1033-1036.
    34.Fritz JH,Ferrero RL,Philpott DJ,et al.Nod-like proteins in immunity,inflammation and disease[J].Nat Immunol.2006,7(12):1250-1257.
    35.Uehori J,Fukase K,Akazawa T,et al.Dendritic cell maturation induced by muramyl dipeptide(MDP) derivatives:monoacylated MDP confers TLR2/TLR4 activation[J].J Immunol.2005,174(11):7096-7103.
    36.REZAEI N.Therapeutic targeting of pattern-recognition receptors[J].International Immunopharmacology.2006,6(6):863-869.
    37.Kaisho T,Takeuchi O,Kawai T,et al.Endotoxin-induced maturation of MyD88-deficient dendritic cells[J].J Immunol.2001,166(9):5688-5694.
    38.Akazawa T,Masuda H,Saeki Y,et al.Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice[J].Cancer Res.2004,64(2):757-764.
    1.Medzhitov R,Janeway CA Jr.Innate immunity:the virtues of a nonclonal system of recognition[J].Cell,1997,91(3):295-258.
    2.Medzhitov R,Janeway CA Jr.Innate immunity:impact on the adaptive immune response[J].Curr Opin Immunol.1997,9(1):4-9.
    3.Hashimoto C,Hudson KL,Anderson KV.The Toll gene of Drosophila,required for dorsal-ventral embryonic polarity,appears to encode a transmembrane protein[J].Cell.1988,52(2),269-279.
    4.Lemaitre B,Nicolas E,Michaut L et al.The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults[J].Cell.1996,86(6):973-983.
    5.Medzhitov R,Preston Hurlburt P,Janeway CA Jr.A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J].Nature.1997,388(6640):394-397.
    6.Akira S,Takeda K.Toll-like receptor signalling.Nat.Rev.Immunol.2004,4(7):499-511.
    7.Rezaei N.Therapeutic targeting of pattern-recognition receptors[J].International Immunopharmacology.2006,6(6):863-869.
    8.Satoshi Uematsu,Ken J.Ishii,Shizuo Akira.Therapeutic targeting of Toll-like Receptors[J].Drug Discovery Today:Therapeutic Strategies.2004;1(3):299-304.
    9.Wallin RP,Lundqvist A,More SH et al.Heat-shock proteins as activators of the innate immune system[J].Trends Immunol.2002,23(3):130-135.
    10.Tsan MF,Gao B.Cytokine function of heat shock proteins[J].Am J Physiol Cell Physiol.2004,286(4):C739-744.
    11.Tsan MF,Gao B.Endogenous ligands of Toll-like receptors[J].J Leukoc Biol.2004,76(3):514-519.
    12.Gao B,Tsan MF.Endotoxin contamination in recombinant human heat shock protein 70(Hsp70) preparation is responsible for the induction of tumor necrosis factor release by murine macrophages[J].J Biol Chem.2003,278(1):174-179.
    13.Hofmann K,Bucher P,Tschopp J.The CARD domain:a new apoptotic signaling motif[J].Trends Biochem Sci.1997,22(5):155-156.
    14.Berlin K,DiStefano PS.The PYRIN domain:a novel motif found in apoptosis and inflammation proteins[J].Cell Death Differ.2000,7(12):1273-1274.
    15.McInturff JE,Modlin RL,Kim J.The role of toll-like receptors in the pathogenesis and treatment of dermatological disease[J].J Invest Dermatol.2005,125(1):1-8.
    16.Mclnturff JE,Kim J.The role of toll-like receptors in the pathophysiology of acne[J].Semin Cutan Med Surg.2005,24(2):73-78.
    17.Hemmi H,Kaisho T,Takeuchi O et al.Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway[J].Nat Immunol.2002, 3(2)196-200.
    18.Zuany-Amorim C,Hastewell J,Walker C.Toll-like receptors as potential therapeutic targets for multiple diseases[J].Nat.Rev.Drug Discov.2002,1(10):797-807.
    19.Cario E.Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and NOD2[J].Gut.2005,54(8):1182-1193.
    20.Eisenbarth SC,Cassel S,Bottomly K.Understanding asthma pathogenesis:linking innate and adaptive immunity[J].Curr Opin Pediatr.2004,16(6):659-666.
    21.Anders HJ,Zecher D,Pawar RD et al.Molecular mechanisms of autoimmunity triggered by microbial infection[J].Arthritis Res Ther.2005,7(5):215-224.
    22.Seya T,Akazawa T,Uehori J et al.Role of Toll-like receptors and their adaptors in adjuvant immunotherapy for cancer[J].Anticancer Res.2003,23(6a):4369-4376.
    23.Okamoto M,Sato M.Toll-like receptor signaling in anti-cancer Immunity[J].J Med Invest.2003,50(1-2):9-24.
    24.Spaner DE,Masellis A.Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia[J].Leukemia.2007,21(1):53-60.
    25.Tsan MF.Toll-like receptors,inflammation and cancer.Semin Cancer Biol.2006,16(1):32-7.
    26.Killeen SD,Wang JH,Andrews EJ et al.Exploitation of the Toll-like receptor system in cancer:a doubled-edged sword[J]? Br J Cancer.2006,95(3):247-252.
    27.Bsibsi M,Ravid R,Gveric D et al.Broad Expression of Toll-Like Receptors in the Human Central Nervous System[J].J Neuropathol Exp Neurol.2002,61(11):1013-1021.
    28.Olson JK,Miller SD.Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs[J].J Immunol.2004,173(6):3916-3924.
    29.Seya T,Akazawa T,Tsujita T.Role of Toll-like Receptors in Adjuvant-Augmented.Immune Therapies[J].Evid Based Complement Alternat Med.2006,3(1):31-38.
    30.Palena C,Abrams SI,Schlom J.Cancer Vaccines:Preclinical Studies and Novel Strategies[J].Adv Cancer Res.2006,95:115-145.
    31.O'Neill LA.Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases[J].Curr Opin Pharmacol.2003,3(4):396-403.
    32.Vermorken JB,Claessen AM,van Tinteren H et al.Active specific immunotherapy for stage Ⅱ and stage Ⅲ human colon cancer:a randomised trial[J].Lancet.1999,353(9150):345-350.
    33.Uyl-de Groot CA,Vermorken JB,Hanna MG Jr.Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer:a prospective study of medical and economic benefits[J].Vaccine.2005,23(17-18):2379-2387.
    34.Ellouz F,Adam A,Ciorbaru R et al.Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives[J].Biochem Biophys Res Commun.1974,59(4):1317-1325.
    35.Tamura M,Yoo Y C,Yoshimatsu K et al.Effects of muramyl dipeptide derivatives as adjuvants on the induction of antibody response to recombinant hepatitis B surface antigen[J].Vaccine.1995,13(1):77-82.
    36.Yoo Y C,Yoshimatsu K,Koike Y,et al.Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine[J].Vaccine.1998,16(2-3):216-224.
    37.Nardin A,Lefebvre ML,Labroquere K et al.Liposomal Muramyl Tripeptide Phosphatidylethanolamine:Targeting and Activating Macrophages for Adjuvant Treatment of Osteosarcoma[J].Current Cancer Drug Targets.2006,6(2):123-133.
    38.Bahr GM,De La Tribonniere X,Darcissac E et al.Clinical and immunological effects of a 6 week immunotherapy cycle with murabutide in HIV-1 patients with unsuccessful long-term antiretroviral treatment[J].J Antimicrob Chemother.2003,51(6):1377-1388.
    39.Bahr GM.Non-specific immunotherapy of HIV-1 infection:potential use of the synthetic immunodulator murabutide[J].Journal of Antimicrobial Chemotherapy.2003,51(1):5-8.
    1.Ellouz F,Adam A,Ciorbaru R,et al.Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives[J].Biochem Biophys Res Commun.1974,59(4):1317-1325.
    2.Girardin SE,Boneca IG,Carneiro LA,et al.Nodl detects a unique muropeptide from gram-negative bacterial peptidoglycan[J].Science.2003,300(5625):1584-1587.
    3.Hofmann K,Bucher P,Tschopp J.The CARD domain:a new apoptotic signaling motif[J].Trends Biochem Sci.1997,22(5):155-156.
    4.Bertin K,DiStefano PS.The PYRIN domain:a novel motif found in apoptosis and inflammation proteins[J].Cell Death Differ.2000,7(12):1273-1274.
    5.Stephanie Traub,Sonja von Aulock,Thomas Hartung,et al.MDP and other muropeptides direct and synergistic effects on the immune system[J].Journal of Endotoxin Research.2006,12(2):69-85.
    6.Yang S,Tamai R,Akashi S,et al.Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture[J].Infect Immun.2001,69(4):2045-2053.
    7.Vidal V,Dewulf J,Bahr GM.Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulator Murabutide[J].Immunology.2001,103(4):479-487.
    8.Akihito Todate,Takafumi Suda,Hiroshi Kuwata,et al.Muramyl dipeptide-Lys stimulates the function of human dendritic cells[J].Journal of Leukocyte Biology.2001,70(5):723-729.
    9.Tamura M.,Yoo Y C,Yoshimatsu K,et al.Effects of muramyl dipeptide derivatives as adjuvants on the induction of antibody response to recombinant hepatitis B surface antigen[J].Vaccine.1995,13(1):77-82.
    10.Yoo Y C,Yoshimatsu K.,Koike Y,et al.Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine[J].Vaccine.1998,16(2-3):216-224.
    11.A Nardin,M L Lefebvre,K Labroquere,et al.Liposomal Muramyl Tripeptide Phosphatidylethanolamine:Targeting and Activating Macrophages for Adjuvant Treatment of Osteosarcoma[J].Current Cancer Drug Targets.2006,6(2):123-133.
    12.George M.Bahrl,Xavier De La Tribonnierel,Edith Darcissacl,et al.Clinical and immunological effects of a 6 week immunotherapy cycle with murabutide in HIV-1 patients with unsuccessful long-term antiretroviral treatment[J].Journal of Antimicrobial Chemotherapy.2003,51(6):1377-1388.
    13.George M.Bahr.Non-specific immunotherapy of HIV-1 infection:potential use of the synthetic immunodulator murabutide[J].Journal of Antimicrobial Chemotherapy.2003,51(1):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700