用户名: 密码: 验证码:
精密磁悬浮陀螺全站仪特殊环境数据算法分析及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从陀螺仪的发展进程看,陀螺仪软硬件系统都在不断地发展和完善。国内外专家学者主要是集中在三个方面进行不懈的努力和探索,即仪器的硬件的改进和研制、观测方法的完善和观测数据处理公式和精度的研究以及仪器应用方面的拓展,通过这些研究来提高仪器的精度、稳定性和应用范围。
     多年来,长安大学测绘与空间信息研究所与中国航天科技集团第十六研究所经过联合技术攻关,研制的国内首台基于磁悬浮支承体系,数分钟内定向精度优于5″的高精度磁悬浮陀螺全站仪,先后应用于国内几十项重大工程,并取得满意的定向精度。该仪器系统借助磁悬浮技术使高速旋转的陀螺马达处于悬浮状态,消除了传统陀螺机械摩擦干扰力矩等不良影响,并通过力矩传感器和陀螺转子之间的相互作用,测量两个精寻盘位采集的4万组电流值,计算出测线的真北方位。但在某些实验和工程应用中,发现某些环境中的强风、振动或磁场对仪器采集的转子电流值产生影响,数据含有显著的噪声,离散度偏大,陀螺仪转子系统受测量环境的影响明显,影响了仪器的定向精度和稳定性。
     为了提高仪器的精度和稳定性,论文研究了磁悬浮陀螺全站仪系统误差问题,对其进行分类研究和分析,对仪器采集的转子电流数据运用时间序列分析、小波分析、自适应过滤法及自适应渐消滤波法进行滤波、预测和建模,以提高转子电流的数据精度,从而提高仪器定向精度和稳定性,为今后仪器的小型化、智能化、自动化发展提供改进的依据。论文研究的主要结论如下:
     1.仪器误差主要包括系统误差、偶然误差及起算数据误差的影响,仪器的转子圆度误差和质量不平衡等系统误差的影响可通过数理统计的方法加以检验判断,通过观测方法的改进、计算方法的改正和仪器的检校加以消除或减弱。而仪器电压的不稳定、频率的变化、外界振动及温度梯度变化使转子转速不均,从而产生干扰力矩导致力矩器的指向力矩突变而产生偶然误差可通过统计学的方法加以分析,用相应的数据处理方法加以剔除。
     2.利用时间序列分析法分析了用于计算定向角的转子电流数据统计特性,通过计算编程建立磁悬浮陀螺全站仪定向误差的线性、平稳的时间序列模型。根据建立的时间序列模型自主地修正转子电流数据,利用修正的转子电流数据计算定向角,提高了仪器的定向精度。
     3.基于磁悬浮支承体系的磁悬浮陀螺全站仪在定向测量过程中,由于受到仪器内部结构和外界观测环境多种因素的影响,其转子电流数据会产生非稳定性的波动,这种非稳定性可由残差序列的条件异方差特性所反映。通过对条件异方差模型(GARCH模型)的性质和建模过程的分析研究,经编程计算建立磁悬浮陀螺全站仪采集的转子电流数据的GARCH模型。通过所建模型分析不仅可得,产生转子电流数据非平稳波动的基本原因不是由于仪器内部结构所产生,而是由外界环境因素引起的。而且可以判断产生转子电流条件异方差数据具有时变性和簇集性两个特征,据此选择仪器采集数据的最佳时段,为转子电流数据特征分析和处理提供一种新方法。
     4.利用小波分析法,对仪器采集的转子电流观测数据的误差进行剔除,有效地从强噪声干扰的转子电流数据中提取用于计算定向角的数据,较好地改善仪器的定向结果,提高了仪器定向角的精度。
     5.利用自适应过滤法原理及计算方法,建立自适应过滤法模型动态地预测磁悬浮陀螺全站仪数据的变化趋势。这种模型适合于作周期性变化的磁悬浮陀螺全站仪观测数据的预报,此方法可以作为仪器观测数据自动监测的有效手段之一。
     6.将渐消因子引入到自适应滤波算法中,运用渐消自适应Kalman滤波算法原理处理磁悬浮陀螺全站仪系统采集的转子电流值,对仪器定向精度的提高有一定的作用,但是效果不明显。
From the development process of gyro, software and hardware of the gyroscope systemare in constant development and improvement. Domestic and foreign experts and scholars aremainly to make unremitting efforts and exploration in three aspects, namely the improvementof hardware and development, research on the observation method improved and the formulaof the observation data processing and the precision of the observation data, applicationdevelopment of the instrument, to improve the precision, stability and application range of theinstrument through these studies.
     Over the years, the Chang'an University of Surveying and Spatial Information ResearchInstitute and the Study on the Sixteenth Institute of China Aerospace Science and technologygroup through joint technical research, developed the domestic first based on the magneticbearing system, high precision maglev gyro total station directional accuracy of better than5"in a few minutes, it has applied to several important domestic projects, and achievedsatisfactory precision of orientation. The instrument system using magnetic levitationtechnology makes high-speed rotation of the gyro motor in a suspended state, eliminates theadverse effects of traditional gyro mechanical friction torque, and the interaction between thetorque sensor and gyroscope rotor, measuring two fine for disc position acquisition of40000groups of current value to calculate the North range line. But in some experiments andengineering applications, we find the influence on the value of the rotor current by theinstrument collection for wind, vibration or magnetic field in some environment, data containssignificant noise, dispersion is too large, gyroscope rotor system affected by measurementenvironment, affects the orientation precision and stability of instrument.
     In order to improve the precision and stability of the instrument, the paper studies themaglev gyro system error problem, the classification research and Analysis on it, it studies thedata of the rotor current through the instrument colledted, using time series analysis, waveletanalysis, adaptive filtering method and the adaptive fading filter for filtering, prediction andmodeling of rotor current data collected, in order to improve the rotor current the precision ofthe data, so as to improve the instrument orientation precision and stability, these are providedan improved basis for future miniaturization, intelligent, automation instrument. The mainconclusions are as follows:
     1The instrument error mainly includes the system error, random error and the influenceof initial data errors, instrument rotor roundness error and mass unbalance of system error canbe judged by the method of mathematical statistics, observation method, the error is to eliminate or weaken by improving the calculation method and the instrument calibration.These make the rotor speed is not uniform for the voltage instability, the frequency changes,external vibration and temperature gradient changes, it caused moment to point mutation ofactuators by resulting in disturbing torque and accidental error can be analyzed by thestatistical method, using the corresponding data processing method to eliminate.
     2It is used to analysis the statistical characteristics of the the rotor current data by timeseries analysis which is calculated the directional angle, the orientation error model of themaglev gyro total station about time series of linear and stationary established by computingprogramming. It independently modified rotor current data according to the time sequencemodel built, it can improve orientation precision instrument by using rotor current datacorrection calculation orientation angle.
     3Due to the influence of the internal structure of the instrument and the externalenvironment, rotor current data of maglev gyro total station will produce unstable fluctuationsduring the directional measurement processes, this instability can be reflected by the residualsequence of conditional heteroscedasticity characteristics. Through the model of conditionalheteroskedasticity (GARCH model) analysis to study the nature and the process of modeling,then it depends on the rotor current data to build a conditional heteroskedasticity model,through the model analysis can not only have basic reason, rotor current data non-stationaryfluctuation is generated from external environmental factors, rather than resulting from theinternal structure of instrument. And can judge the rotor current conditional heteroscedasticdata of the time-varying and clustering of the two characteristics, the best time of instrumentto collect data selection accordingly, and provides a new method for rotor current dataanalysis.
     4By using wavelet analysis, the error is rejected in the current observation data collected,the effective rotor current data from the strong noise is extracted for calculation of directionalangle data, it effectively improves the directional results of the instrument and the precision oforientation angle.
     5By the principle and calculation method of using adaptive filtering method, it isestablished the dynamic adaptive filtering method to predict the trend of data model ofmaglev gyro. Prediction of maglev gyro total station observation data of this model is suitablefor periodic variations, this method can be used as the effective means of observation data ofthe automatic monitoring instrument.
     6The fading factor is introduced into the adaptive filtering algorithm, by using the evanescent adaptive Kalman filtering algorithm to process maglev gyro system acquisitionrotor current value, it has a certain effect on the instrument orientation precision improved,but the effect is not obvious.
引文
[1]杨志强.GAT高精度磁悬浮陀螺全站仪系统研制及应用[R].西安:长安大学测绘与空间信息研究所与中国航天科技集团公司第十六研究所,2008,3.
    [2]沈志明,张则宇,刘智超.Gryomat-2000陀螺陀螺经纬仪的应用[J].海洋测绘,2006(5):68-70.
    [3]白云超,刘思伟,田育民.自动陀螺经纬仪阻尼力矩器的设计[J].西安科技大学学报,2009,29(6):752-755.
    [4]于来法.陀螺定向测量[M].北京:解放军出版社,1988.
    [5]范俊智.陀螺经纬仪的阻尼法稳定测量[J].矿山测量,1995(2):8-10.
    [6]范俊智.陀螺经纬仪三点测时快速定向法[J].测绘学报,1988(1):65-69.
    [7]石震等.基于度盘配置法的陀螺定向新方法及相关问题研究[J].测绘通报,2011,2:87-89.
    [8]周志易,杨志强,彭福凯.精密磁悬浮陀螺全站仪定向误差分析与建模研究[J].大地测量与地球动力学,2013,33(2):155-158.
    [9]周志易,杨志强.自适应过滤法在磁悬浮陀螺全站仪观测数据预测中的应用研究[J].测绘通报,2012,10:107-108.
    [10]夏桂锁,林明春,林玉池.1/4周期积分法的陀螺智能寻北[J].传感器技术学报,2007(2):1926-1929.
    [11]张则宇,沈志明,罗巍.高精度陀螺全站仪在阵地定向测量中的应用[J].中国惯性技术学报,2008(5):548-552.
    [12]李青岳,陈永奇.工程测量学[M].第三版.北京:测绘出版社,2008.
    [13]杨志强,石震,李志刚.基于磁悬浮陀螺进动力矩监测地球自转参数变化的理论探究.现代空间定位技术与应用论文集,中国测绘学会工程测量分会,深圳,2010,12.
    [14] Shi Zhen, Yang Zhiqiang, Yang Jianhua, Yang Shuai, Huang Dabing. The Method ofSurveying ITRF Coordinate Indirectly Based on Gyro Orientation. Navigation andLocation Services:Emerging Industry and International Exchanges. CPGPS2010.
    [15] Janet Stobart.Rail passengers spend a cold,dark night stranded in chunnel[J].L.A.Times.20December2009[27June2010].
    [16] The channel Tunnel.Raileurope.com [19July2009].
    [17] Turkey Building the World’s Deepest Immerded Tube Tunnel.Popular Mechanics [19July2009].
    [18]刘小生.陀螺经纬仪定向精度及稳定性[M].北京:冶金工业出版社,2011,8.
    [19] Chang H L, Xue L, Qin W, et al. An integrated mems gyros-cope array with higheraccuracy output [J]. Sensor.2008,8(2):2886-2899.
    [20]卜继军,魏贵玲,李勇建.陀螺寻北仪二位置寻北方案[J].中国惯性技术学报,2002,10(3):46-49.
    [21]袁彦红,耿云海,陈雪芹.利用高精度陀螺对星敏感器在轨标定算法研究[J].系统工程与电子技术,2008,30(1):120-123.
    [22]高宁,周跃庆,杨哗,汤巍.抗野值自适应卡尔曼滤波方法研究[J].中国惯性技术学报,2003,11(3):25-28.
    [23]高茂林,赵忠,张钧.二位置寻北方仪及转位误差分析[J].计算机测量与控制,2006,14(1):70-71.
    [24]谭峰,段广仁,孙德波.单自由度磁悬浮陀螺寻北仪的控制及分析[J].中国惯性技术学报,2005,13(5):67-72.
    [25]王毅,赵忠,卫育新.带误差补偿的二位置寻北仪设计[J].测控技术,2005,24(4):56-58.
    [26]杨建华.GAT磁悬浮陀螺全站仪自动化与陀螺仪观测数据分析[D].西安:长安大学,2010,12.
    [27]高钟毓.静电陀螺仪技术[M].北京:清华大学出版社,2004,8.
    [28]许江宁等.陀螺原理及应用[M].北京:国防工业出版社,2009.
    [29]董景新,Yu G Martynenko,C E Gubarenko.静电陀螺寻北仪的力学原理[J].清华大学学报(自然科学版),1998,38(8):15-18.
    [30]王卫.GAT陀螺全站仪误差分析与贯通测量模拟系统设计研究[D].西安:长安大学,2011,6.
    [31] Ren B, Zhang D M, Li H. MEMS gyroscope random error modeling and filtering [J].Applied Mechanics and Materials,2010,29-32:829-834.
    [32]杨志强,石震,田永瑞.一种陀螺定向测量的新方法[P].中国专利:200810018268.2,2008-10-15.
    [33]杨志强,石震.一种陀螺全站仪的集成连接装置[P].中国专利:200820029217.5,2008-05-28.
    [34]杨志强,杨建华,石震,杨帅.新型磁悬浮陀螺全站仪[P].中国专利:201020110125.7,2010-10-06.
    [35]杨志强,田永瑞,石震.测绘工程类陀螺全站仪精度评定方法[P].发明专利.中国.ZL200810018048.X.
    [36]杨志强,杨建华,石震,杨帅.一种磁悬浮陀螺全站仪[P].发明专利.中国.ZL.201010107217.4.
    [37] Nassar S, Schwarz K P, El-Sheimy N, et al. Modeling inertial sensor errors usingautoregressive(AR) model [J]. Navigation.2004,51(4):259-268.
    [38] Yang Zhiqiang,Shi Zhen, Yang Jianhua, Yang Shuai, Huang Dabing. The Research ofKey Technology and Superiority in Magnetic Suspension Gyro Station andApplication in Underground Engineering.2010The International Conference onMultimedia Technology1627-1629,IEEE,EI.
    [39]王振龙.应用时间序列分析[M].北京:中国统计出版社2010.5.
    [40]陈果.基于遗传算法的ARMA模型定阶新技术[J].机械工程学报,2005,41(1):40-45.
    [41] George E.P. Box, et al. Time SeriesAnalysis: Forecasting and Control, John Wiley.2008.
    [42]韩路跃,杜行检.基于MATLAB的时间序列建模与预测[J].计算机仿真,2005,22(4):105-107.
    [43]武伟,等.时间序列分析方法及ARMA,GARCH两种常用模型[J].计算机技术与发展,2010,20(1):247-249.
    [44]朱明英. ARMA模型的几种定阶方法[D].吉林:东北师范大学理学院,2007,5.
    [45]王正宇,王红玲.基于ARIMA模型的我国GDP分析预测[J].对外经贸,2011,12:107-108.
    [47]秦前清,杨宗凯. P实用小波分析[M].西安:西安电子科技大学出版社,2001,5.
    [48]彭玉华.小波变换与工程应用[M].北京:科学出版社,2006,12.
    [49]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,2001,2.
    [50]黄声享,刘经南. GPS变形监测系统中消除噪声的一种有效方法[J].2002,31(2):104-107.
    [51] DONOHO D L. De-Noising by soft-Thresholding[J]. IEEE Transactions on informationTheory,1995,41(3):613-627.
    [52]尹晖.时空变形分析与预报的理论和方法[M].测绘出版社,2002:1-5.
    [53]赵敏,贾惠敏.自适应过滤法在火灾发展趋势预测中的应用[J].武警学院学报,2007,(6):44-45.
    [54]姚奇富,马华林,张国清.一个网络管理软件中基于自适应的流量预测[J].计算机测量与控制,2006,14(1):45-46.
    [55]郝小员,郝小红.自适应过滤法在边坡变形破坏时间预报中的应用[J].华北水利水电学院学报,1998,19(1):53-55.
    [56]周雄鹏.一种近代时间序列预测模型—自适应过滤法[J].外国经济与管理,1986,(2):37-39.
    [57] Park M, Gao Y. Error analysis and stochastic modeling of low cost MEMS accelerometer[J]. Journal of Intelligent Robotic Systems.2006,46(1):27-41.
    [58]甘仞初.动态数据的统计分析[M].北京:北京理工大学出版社,1991.
    [59]黎昵,岳建平,段鹏.改进模糊神经网络模型及其在大坝监测中的应用[J].水电自动化与大坝监测,2007(2):74-76.
    [60]刘一武.惯性敏感器与星敏感器之间在轨标定比较研究[J].航天控制,2005,23(2):59-63.
    [61] Sage A P,Husa G W.Adaptive filtering with unknow prior statistics[J].JACC,1969:769-773.
    [62]沈云峰,朱海,莫军.简化的Sage-Husa自适应滤波算法在组合导航中的应用及仿真[J].青岛大学学报,2001,16(1):44-48.
    [63]苏建峰,吴海涛,边玉敬.自适应滤波技术研究[J],飞行器学报,2006,25(2):71-74.
    [64] Krishna B. Misra. New trends in system reliability evaluation[M]. New York,Elsevier,1993.
    [65] Sheldon M. Ross,Stochastic Processes [M]. John Wiley&Sons,1983.
    [66]张波.应用随机过程[M].北京:中国人民大学出版社,2002.
    [67] Ruey S.Tsay.金融时间序列分析(中文版)[M].北京:机械工业出版社,2006.
    [68] S.P. Meyn and R.L.Tweedie. Markov Chains and Stochastic Stability [J].Springer—Verlag,1993.
    [69]陆付民.顾及时间和水位因子的Kalman滤波法在大坝变形分析中的应用[J].三峡大学学报,2004.
    [70]刘大杰,于正林.动态测量系统与卡尔曼滤波[J].测绘学报,1988,17(4):254-262.
    [71]梅连友.卡尔曼滤波在滑坡监测中的应用[J].测回工程,2004,13(3):13.15.
    [71] Grewal M S and Andrews AP.Kalman Filtering:Theory and Practice [M].NewJersey:Prentice Hall,1993:1~10.
    [72] Parkum J E,Poulsen N K.and Holst J. Recursive forgetting algorithms [j].InternationalJournal of Control,1992,55(1):109~128.
    [73]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版补2003:1~87.
    [74]马攀,文鸿雁.离散卡尔曼滤波用于GPS动态变形数据处理[J].桂林工学院学报,2002,22(3):234.
    [75] G.Kreisselmeier. Adaptive control via Adaptive Observer and Asymptotic FeedbackMatrix Synthesis[J]. IEEE Trans,1980,AC-25:717~722.
    [76]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [77]林士谔等.动力调谐陀螺仪[M].北京:国防工业出版社,1982.
    [78]郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社,1996.
    [79]杨培根等.光电惯性技术[M].北京:兵器工业出版社,1999.
    [80]刘延柱.静电陀螺仪动力学[M].国防工业出版社,1979.
    [81] Jun Won Choi, Nam Ik Cho. Suppression of narrow-band interference in DS-spreadspectrum systems using adaptive IIR notch filter,Signal Processing.82(2002)2003~2013.
    [82] N.I. Cho, S.U. Lee, On the adaptive lattice notch filter for the detection of sinusoids,IEEE Trans. Circuits System.1993,40(7):405~416.
    [83]李兴绪,崔建福.MATLAB在金融时间序列分析及建模中的应用[J].计算机工程与科学,2004,26(7):100-104.
    [84]崔先强,杨元喜.分类因子自适应抗差滤波[J].自然科学进展,2006,16(4):490-494.
    [85]姚奇富,马华林,张国清.一个网络管理软件中基于自适应的流量预测[J].计算机测量与控制,2006,14(1):45-46.
    [86]崔先强,杨元喜,高为广.多种有色噪声自适应过滤法算法的比较[J].武汉大学学报(自然科学版),2006,31(8):731-735.
    [87]赵敏,贾惠敏.自适应过滤法火灾发展趋势中的应用[J].武警学院学报,2007,(6):44-45.
    [88]曹力,黄圣国.GPS误差的时间序列分析建模研究[J].计算机工程与应用,2005,35(12):213-216.
    [89]姜宇,金晶,张迎春.基于异方差分析的多MEMS陀螺随机误差补偿方法[J].宇航学报,2012,33(6):776-780.
    [90]周志易,杨志强,高飞,李晓莉.基于小波变换理论的精密磁悬浮陀螺全站仪定向系统中噪声剔除方法研究[J].大地测量与地球动力学,2013,33(5):154-156.
    [91] Box G E P,Jenkins G M,Reinsel G C.时间序列分析——预测与控制[M].北京:人民邮电出版社,2005.
    [92] Hylleberg S,Engle R F,Granger C W J,Yoo B S.Seasonal integration andcointegration[J].Journal of Econometics,1990,44:215-238.
    [93] John Y Campbell,Andrew W Lo,Craig Mackinlay A.The Econometrics of FinancialMarkets[M].Princeton University Press,Princeton New Jersey,1997.
    [94] Pandit S M,Wu S M. Time Series and Analysis with Applications[M].John Wiley&Sons,INC,1983.
    [95] Enders W.Applied Econometric Time Series[M].John Wiley&Sons,1995.
    [96] Hansen B E.Efficient Estimation and Testing of Cointegrating Vectors in the Presence ofDeterministic Trends[J].Journal of Econometrics,1992,53:87-121.
    [97] Johansen. Estimation and Hypothesis Testing of Cointegration Vectors in GaussianVectorAutoregressive Models[J].Econometrica,1991,59:1551-1580.
    [98] Johansen. Statistical Analysis of Cointegration Vectors[J]. Journal of EconomicDynamics and Control,1998,12:231-254.
    [99] Phillip S.O. Asymptotic Properties of Residual Based Tests for Cointegration[J].Econometrica,1990,58:165-193.
    [100] Tsay R S.Analysis of Financial Time Series[M].John Wiley and Sens,Inc,2002.
    [101]庞浩.计量经济学[M].北京:科学出版社,2010.
    [102]成礼智,王红霞,罗永.小波理论与应用[M].北京:科学出版社,2004.
    [103]段晨东,姜洪开,何正嘉.一种基于信号相关性检测的自适应小波变换及应用[J].西安交通大学学报,2004,38(7):674-770.
    [104]樊计昌,李松林,刘明军.利用小波包变换提取地震波高频信息[J].石油地球物理勘探,2006,41(2):144-149.
    [105]葛永,陈建安.基于改进小波包算法的水声信号消噪与重构研究[J].声学与电子工程,2004,(2):5-9.
    [106]郭际明.GPS与GLONASS组合测量及变形监测数据处理研究[D].武汉:武汉大学,2001.
    [107]黄声享,刘经南,柳响林.小波分析在高层建筑动态监测中的应用[J].测绘学报,2002,32(2):104-107.
    [108]柳林涛.小波基本理论及其在大地测量等领域中的应用[D].北京:中国科学院,1999.
    [109]宁津生,汪海洪,罗志才.小波分析在大地测量中的应用及进展[J].武汉大学学报(自然科学版),2004,29(8):659-663.
    [110]赵玉宝.小波变换在地震信号去噪中的应用[D].湖南:中南大学,2005.
    [111]郑建国,石智,权豫西.非平稳信号的小波包阈值去噪方法[J].信息技术,2007,3:16-19.
    [112] DAUAN J,OWEISB I S.Dyadic wavelet analysis of PDA signals[J].Soil Dynamicsand Earthquake Engineering,2005,25:661-677.
    [113] KHALED A,Yousef A. Features extraction and analysis for classifying causablepatterns in control charts[J].Computer&Industrial Engineering,2005,(49):168-161.
    [114] LI Li,PENG Yuhua,YANG Mingqiang,et al.Anew de-noising method based on3-bandwavelet and nonparametric and adaptive estimation[J]. Journal of Electronics,2007,24(3):358-361.
    [115] LIU Lintao,HSU H T, Grafarend E W.Wavelet coherence analysis of length of lengthof day variation and EI nino-southern oscillation[J]. Journal of Geodynamics,2005,25:267-275.
    [116]崔少君,沈晓蓉,柳贵福.动力调谐陀螺静态漂移的非线性时间序列建模[J].中国惯性技术学报,2010,18(3):343-346.
    [117]田铮,吴芳琴,王红军.非线性时间序列建模的混合GARCH方法[J].系统仿真学报,2005,17(8):1867-1871.
    [118]王红军,田铮,韩四儿.非线性时间序列建模的均值异方差混合转移分布模型[J].控制理论与应用,2008,25(3):511-516.
    [119]周志易,杨志强,李晓莉.精密磁悬浮陀螺全站仪误差的时间序列分析建模研究[J].测绘科学,2013,38(6):16-18.
    [120]聂建亮,吴富梅.Kalman滤波的几种检验方法[J].地球科学与环境学报,2008,30(2):204-208.
    [121]聂建亮.采用自适应Unscented Kalman粒子滤波[J].大地测量与地球动力学,2008,28(3):87-91.
    [122] Comaniciu D, Meer P. Mean shift analysis and applications[C]. ICCV,1999:1197~1203.
    [123] Comaniciu D, Ramesh V, et al.Mean shift and optimal prediction for efficient objecttracking[C].ICIP,2000:70~73.
    [124] Julier S J., Uhlmann J K..Unscentedfiltering and nonlinear estimation [J].Proceedingsof the IEEE,2004,92(3):401~422.
    [125] Maggio E, Cavallaro A. Hybrid particle filter and Mean Shift tracker with adaptivetransition model[C]. In Acoustics, Speech, and Signal Processing2005.
    [126] Napolitano M R, Window D A II, Casanova J L.Kalman Filters and Neural NetworkSchemes for Sensor Validation in Flight Control Systems[J]. IEEE Transactions onControl Systems Technology,1998,6(5):596~611.
    [127] Nummiaro K, Koller Meier E, et al.An adaptive color-based particle filter[J].Imageand Vision Computing,2002,21(1):99~110.
    [128] Oliver Payne, Alan Marrs. An unsnscented particle filter for GMTI tracking [J]. IEEEAerospace Conference Proceedings,2004:1869~1875.
    [129] Salzmann M, Teunissen.Detection and modeling of colored noise for Kalman filterapplications[A].Kinematic systems in geodesy, surveying and remote sensing[C], NewYork: Springer-Verlag,1991:251~260.
    [130] Shan Chuh Hsieh, Luke K Wang, et al. Airborne attitude/ground target locationdeterminations using unscented Kalman filter[J]. IEEE Aerospace ConferenceProceedings,2004:1561~1568.
    [131] Simen D, Chia T L. Kalman filtering with state equality constraints[J]. IEEE,Transactions onAerospace and Electronic Systems,2002,39(1):128~136.
    [132] Xu P, Shen Y, Fukuda Yoichi. Variance Component Estimation in Linear InverseIll-posed models [J]. Journal of Geodesy,2006,80:69~81.
    [133] Xu P, Liu Y, Shen Y. Estimability Analysis of Variance and Covariance Components [J].Journal of Geodesy,2007,81:593~602.
    [134] Yang Y, Cui X.Adaptively robust filter with multi-adaptive factors[J]. Survey review,40,2008,309:260-270.
    [135] Yang Y, Gao W.An optimal adaptive Kalman filter[J].Journal of Geodesy,2006,80:177-183.
    [136] DAUBECHIES I. The wavelet transform, time-frequency localization and signalanalysis[J].IEEE Transaction on Information Theory,1990,36(3):961-1005.
    [137] DAUBECHIES I.Ten Lectures on wavelets[M].Philadelphia,PA: SIAM.
    [138] GARDNER W A.A unifying view of coherence in signal processing[J].SignalProcessing,1992,29:113-140.
    [139] GABOR D.Theory of communication[M].J.Inst. Wlect. Wngng,1946,93:429-457.
    [140]曲国庆,党亚民,张传银.非线性大地测量信号小波分析理论与方法[M].北京:测绘出版社,2011.
    [141]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006.
    [142]陶本藻.卡尔曼滤波模型误差的识别[J].地壳形变与地震,1999,19:15-20.
    [143]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298.
    [144]杨元喜,徐天河.基于移动开窗法协方差估计和方差分量估计的自适应滤波[J].武汉大学学报,信息科学版,2003,28(6):714-718.
    [145]周雄鹏.自适应过滤法的原理、程序和应用[J].计算机与预测,1985,(2):36-41.
    [146]尤勤,庄少泉.自适应过滤法及其在预测邮电业务中的应用[J].长春邮电学院学报,1992,10(2):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700