用户名: 密码: 验证码:
无吸收光栅X射线微分干涉相衬成像理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线相衬成像技术是近几年来X射线成像领域的研究热点之一,它可以对传统吸收成像无法探测的轻元素构成的物质成像,因此在医学、生物学、材料科学以及无损检测等领域具有重大的应用价值。光栅微分干涉相衬成像方法可以在常规X射线源的条件下进行成像,可以同时得到物体的吸收、相衬和散射多元化信息,但由于使用了两个吸收光栅,不仅使制造难度和成本大增,还使其性能的改进受到限制。
     为此,本论文作者所在课题组首次提出采用结构阳极的X射线源和具有分析光栅功能转换屏来代替两个吸收光栅获得相衬图像,我们称此种相衬成像方法为无吸收光栅的微分干涉相衬成像方法。本论文正是基于此种相衬成像方法而展开的,主要取得如下进展:
     1、首次实现了无吸收光栅微分干涉相衬成像方法,在实验上获得了视场为55mm×55mm的相衬图像。该方法克服了吸收光栅带来的缺点,为相衬成像在医疗、工业探伤、科研等领域的应用奠定了理论和技术基础。
     2、基于菲涅尔衍射原理,在理论上详细分析了结构阳极的轴向扩展分布对成像视场的影响。更进一步,采用改进型结构阳极X射线源的方法可以扩大相衬成像视场,理论分析表明,在相同的辐射强度下,改进后的结构阳极X射线源可扩大成像视场4倍以上。
     3、发展了两步相移新算法,并在理论和实验上分别验证了这种算法的可行性。与其它两步相移算法相比较,其优点是算法简单,容易实现,大大降低了X射线源不稳定性的影响,更能准确恢复物体的相位信息。
X-ray phase contrast imaging is an interesting technology in the field of X-rayimaging in recent years. It can detect the substance composed of light elements thatcan’t be detected by traditional X-ray absorption imaging. Thus, it has significantscientific value and wide application potential in the field of medicine, biology,materials science, and non-destructive testing. The approach based on gratinginterferometry can carry out at the traditional low-brilliance X-ray source and provideabsorption, differential phase contrast and dark-field signals simultaneously. However,because of using two absorption gratings, it not only makes the fabrication difficultyand high cost but also make the efficiency limited.
     To overcome this limitation, our research team firstly propose a method by usingmulti-line X-ray source and structured scintillator to replace two absorption grating inthe grating interferometry, which is called non-absorption grating approach for X-raydifferential phase contrast imaging. The thesis is based on such method to launchrelated research and mainly achieve the following progress:Firstly, we realize the non-absorption grating approach for X-ray differential phasecontrast imaging and acquire the large size of55mm×55mm phase contrast imagesexperimentally for the first time. The setup overcomes the limited of field of view bythe multi-line X-ray source and the limited of high photon-energy X-rays by theabsorption grating. It is more benefit for the future practical application in the field ofmedicine and industry, etc.
     Secondly, based on the Fresnel diffraction theory, we give a detailed analysis of thequantitative relation between the axis extension length and the imaging field of view.Furthermore, the field of view of phase contrast imaging can be widened by using animproved multi-line X-ray source. Compared with the multi-line X-ray source, it canexpand the imaging field of view of more than4times at the same radiation intensity.Thirdly, we have developed two-step phase-shifting algorithm to retrieve the objectphase information. According to the theoretical analysis and experimental verificationfor the feasibility of this algorithm, the advantage of the algorithm is simple and easyto implement, and it has a strong inhibition to the instability of X-ray source, and thusit can retrieve the phase information more accurately.
引文
[1] Momose A and Fukuda J. Phase-contrast radiographs of nonstained rat cerebellar specimen.Med. Phys.1995,22:375-380
    [2] Karssemeijer N, Frieling J T and Hendriks J H. Spatial Resolution in Digital Mammography.Invest. Radiol.1993,28:413-19
    [3] Pisano E, Johnston R, Chapman D, et al. Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation improved conspicuity of lesion detailcompared with digital radiography, Radiology2000,214:895-901
    [4] Ingal V N, Beliaevskaya E A, Brianskaya A P and Merkurieva R A. Phase mammography-anew technique for breast investigation. Phys. Med. Biol.1998,43:2555-2567
    [5] Wagner A, Aurich M, Stoessel M, et al. Chance and limit of imaging of articular cartilage invitro in healthy and arthritic joints-DEI (Diffraction Enhanced Imaging) in comparison withMRI, CT and ultrasound. Proceedings of SPIE2005,5746:542-549
    [6] Wernick M N, Wirjadi O, Chapman D, et al. Multiple-image radiography, Phys. Med.Biol.2003,48(23):3875-3895
    [7] Jun L, Zhong Z, Roy L, et al. Radiography of soft tissue of the foot and ankle withdiffraction enhanced imaging, J. Anat.2003,202:463-470
    [8] Momose A, Takeda T and Itai Y. Blood Vessels: Depiction at Phase-Contrast X-rayImaging without Contrast Agents in the Mouse and Rat—Feasibility Study, Radiology.2000,217:593-596
    [9] Yoneyama A, Takeda T, Tsuchiya Y, et al. A phase-contrast X-ray imaging system—with a60×30mm field of view—based on a skew-symmetric two-crystal X-ray interferometer,Nucl. Instrum. Methods Phys. Res., Sect. A2004,523:217–222
    [10] Hwu Y. Synchrotron micro-angiography with no contrast agent. Phys. Med. Biol.2004,49:501–508
    [11] Hwu Y, Tsai W L, Hsieh H H, et al. Collimation-enhanced micro-radiography in real-time.Nucl. Instrum. Methods Phys. Res., Sect. A2001,467-468:1294-1300
    [12] Hwu Y, Tsai W.L, Lai B, et al. Using photoelectron emission microscopy with hard x-raysSurf. Sci.2001,480:188~195
    [13]吕乃光著.傅里叶光学(第2版).北京:机械工业出版社.2008,310-314
    [14] Zernike F. Phase contrast, a new method for the microscopic observation of transparentobjects part I. Physica.1942,9(7):686–698
    [15] Zernike F. Phase contrast, a new method for the microscopic observation of transparentobjects part II. Physica.1942,9(10):974–980
    [16] Gabor D. Microscopy by recorded wavefronts. Proc. R. Soc. London.1949,197(1051):454–487
    [17] Niemann B, Rudolph, and Schmahl G. X-Ray Microscopy with Synchrotron Radiation.Appl.Opt.1976,15(8):1883-1884
    [18] Neuh usler U, Schneider G, Ludwig W, et al. X-ray microscopy in Zernike phase contrastmode at4keV photon energy with60nm resolution. J. Phys. D: Appl. Phys.2003,36:79-82
    [19] Tkachuk A, Feser M, Cui H T, et al. High-resolution X-ray tomography using laboratorysources. Proc. SPIE2006,6318: D3181-D3181
    [20] Sakdinawat A, Liu Y W. Phase contrast soft X-ray microscopy using Zernike zone pates.Opt. Express2008,16:1559-1564
    [21] von Hofsten O, Bertilson M, Lindblom M, et al. Theoretical development of ahigh-resolution differential-interference contrast optic for X-ray microscopy. Opt. Express,2008,16:1132-1141
    [22] Chen Y T, Chen T Y, Yi J, et al. Hard x-ray Zernike microscopy reaches30nm resolution.Opt. Lett.2011,36:1269-1271
    [23] Bonse U and Hart M. An x-ray interferometer with long separated interfering beam paths.Appl. Phys. Lett.1965,6:155-156
    [24] Hosoya S and Ando M. X-Ray Topographic Observation of Antiferromagnetic DomainBoundaries in Chromium. Phys. Rev. Lett.1971,26(6):321-323
    [25] Momose A, Takeda T, Itai Y, et al. Phase-contrast X-ray computed tomography forobserving biological soft tissues. Nat. Med.1996,2:473-475
    [26] Momose A, Takeda T, Itai Y. Blood Vessels: Depiction at phase-contrast x-ray imagingwithout contrast agents in the mouse and rat-feasibility study Radiology.2000,217:593~596.
    [27] Yoneyama A, Takeda T, Tsuchiya Y, et al. A phase-contrast X-ray imaging system—with a60×30mm field of view—based on a skew-symmetric two-crystal X-ray interferometer,Nucl. Instrum. Methods Phys. Res., Sect. A2004,523:217–222
    [28] Davis T J, Gao D, Gureyev T E, et al. Phase-contrast imaging of weakly absorbing materialsusing hard X-rays. Nat.1995,373:595-597
    [29] Chapman D, Thomlinson W, Johnston R E, et al. Diffraction enhanced x-ray imaging. Phys.Med. Biol.1997,42:2015-2025
    [30] Oltulu O, Zhong Z, Hasnah M, et al. Extraction of extinction, refraction and absorptionproperties in diffraction enhanced imaging. J. Phys. D: Appl. Phys.2003,36:2152-2156
    [31] Min W, Pei-ping Z, Kai Z, et al. A new method to extract angle of refraction in diffractionenhanced imaging computed tomography. J. Phys. D: Appl. Phys.2007,40:6917-6921
    [32] Snigirev A, Snigireva I, Kohn V, et al. On the possibilities of x-ray phase contrastmicro-imaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum.199566(12):5486-5492
    [33] Cloetens P, Barrett R, Baruchel J, et al. Phase objects in synchrotron radiation hard X-rayimaging. J. Phys. D: Appl. Phys.1996,29(1):133-146
    [34] Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hardX-rays. Nat.1996,384:335-338
    [35] Pogany A, Gao D, Wilkins S W, et al. Contrast and resolution in imaging with a microfocusX-ray source. Rev. Sci. Instrum.1997,68(7):2774-2782
    [36] Wu X Z, Liu H and Yan A M. Optimization of x-ray phase-contrast imaging based on in-line holography. Nucl. Instrum. Meth., Sect. A2005,234:563-572
    [37] Nesterets Y I, Gureyev T E, Pavlov K M, et al. Combined analyzer-based and propagation-based phase–contrast imaging of weak objects. Opt. Commun.2006,259(1):19-31
    [38]胡小方,黄万霞,田玉莲,等.北京同步辐射装置上的位相衬度成像.物理学报,2002,51(5):1040-1044
    [39]肖体乔,徐洪杰,陈敏,等.一种新型X射线相衬成像实验室系统.核技术.2003,26(10):743-747
    [40]于斌,彭翔,田劲东,等.硬X射线同轴相衬成像的相位恢复.物理学报,2005,54(5):2034-2037
    [41] David C, N hammer B, Solak H H and Ziegler E. Differential x-ray phase contrast imagingusing a shearing interferometer. Appl. Phys. Lett.2002,81(17):3287-3289
    [42] Momose A, Kawamoto S, Koyama I, et al. Demonstration of X-Ray Talbot interferometry.Jpn. J. Appl. Phys. Part2-Lett.2003,42: L866-L868
    [43] Momose A. Phase-sensitive imaging and phase tomography using X-ray interferometers.Opt. Express.2003,11:2303-2314
    [44] Weitkamp T, Diaz A, David C, et al. X-ray phase imaging with a grating interferometer.Opt. Express.2005,13:6296-6304
    [45] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrastimaging with low-brilliance X-ray sources. Nat. Phys.2006,2:258-261
    [46] Pfeiffer F, Kotter C, Bunk O and David C. Hard X-Ray Phase Tomography withLow-Brilliance Sources. Phys. Rev. Lett.2007,98:108105
    [47] Kottler C, Pfeiffer F, Bunk O, Grünzweig C, Bruder J, Kaufmann R. Phase contrast X-rayimaging of large samples using an incoherent laboratory source. Phys. Stat. Sol.(a)2007,204:2728-2733
    [48] Pfeiffer F, Bech M, Bunk O, et al. Hard-X-ray dark-field imaging using a gratinginterferometer. Nat. Mat.2008,7:134-137
    [49] Z Huang, K Kang, L Zhang, et al. Alternative method for differential phase-contrastimaging with weakly coherent hard x rays. Phys. Rev. A2009,79(1):013815
    [50] Olivo. A, Ignatyev. K, Munro. P and Speller R. A coded-aperture based method allowingnon-interferometric phase contrast imaging with incoherent X-ray sources. Nucl. Instrum.Methods Phys. Res., Sect. A2011,648: S28-S31
    [51] Olivo. A, Ignatyev. K, Munro. P and Speller R. Non-interferometric phase-contrast imagesobtained with incoherent x-ray sources. Appl. Opt.2011,50(12):1765-1769
    [52]陈博,朱佩平,刘宜晋,等. X射线光栅相位成像的理论和方法.物理学报,2008,57:1576
    [53] Liu X, Guo J C and Niu H B. A new method of detecting interferogram in differentialphase-contrast imaging system based on special structured x-ray scintillator screen. Chin.Phys. B2010,19:070701
    [54] P. Zhu, K. Zhang, Z. Wang, et al. Low-dose, simple, and fast grating-based X-rayphase-contrast imaging. P. Natl. Acad. Sci. Usa.2010,107:13576-13581
    [55] Liu X, Guo J C, Lei Y H, Du Y and Niu H B. Two-step phase retrieval method withunknown phase shift on non-absorption grating X-ray differential phase contrast imagingsystem. Nucl. Instrum. Methods Phys. Res., Sect. A2013,691:86-89
    [56] Niu H B, Guo J C, Wang K G and Yang Q L. C.N. Patent2006, No.200610062487.1
    [57] Lei Y H, Liu X, Guo J C, Zhao Z G and Niu H B. Development of x-ray scintillatorfunctioning also as an analyzer grating used in grating-based x-ray differential phasecontrast imaging. Chin. Phys. B2010,20:042901
    [58] Niu H B, Guo J C and Liu X.2008, C.N. Patent2008, No.200810216469.3
    [59] Momose A, Yashiro W, Kuwabara H, et al. Grating-Based X-ray Phase Imaging UsingMultiline X-ray Source. Jpn. J. Appl. Phys.2009,48:076512
    [60] Huang J H, Du Y, Niu H B, et al. C.N. Patent2012, No.201210265909.0
    [61] Du Y, Huang J H, Lin D Y, Niu H B. Analysis of field of view limited by a multi-line X-raysource and its improvement for grating interferometry. Anal. Bioanal. Chem.2012,404:793-797
    [62] Rutishauser S, Zanette I, Donath T, et al. Structured scintillator for hard x-ray gratinginterferometry. Appl. Phys. Lett.2011,98:171107
    [63] Y Du, X Liu, Y Lei, J Guo and H Niu. Non-absorption grating approach for X-ray phasecontrast imaging. Opt. Express.2011,19(23):22669-22674
    [64]佩里.斯普罗斯著.医学成像的物理原理.北京:高等教育出版社.1993,93-96
    [65]王凯歌.微束斑X射线源的理论与实验研究.博士论文.中国科学院西安光学精密机械研究所.2002.6
    [66]马礼敦,杨福家著.同步辐射应用概论(第二版).上海:复旦大学出版社.2005,5-12
    [67]方守贤著.神通广大的射线装置-带电粒子加速器.北京:清华大学出版社.2001,115-116
    [68]杜昱平,张永顺.平板探测器DR与CCD探测器DR的基本结构与比较.医疗卫生装备,2006,27(8):60-62
    [69]聂聪.不同平板探测器DR的比较研究.医疗设备信息,2007,21(4):87-88
    [70]赵志刚.大面积高分辨率数字X射线探测器关键技术的研究.博士论文.华中科技大学.2010.5
    [71]佩里.斯普罗斯著.医学成像的物理原理.北京:高等教育出版社.1993,134-149
    [72] Jens Als-Nielson and Des McMorrow. Elements of Modern Physics(Second Edition). JohnWley&Sons, Ltd.2011
    [73] Bech M. X-ray imaging with a grating interferometer. Ph.D Thesis. University ofCopenhagen.2009.5
    [74] Henke B. L., Gullikson E. M. and Davis J. C. X-ray interactions: Photoabsorption,scattering, transmission and reflection at E=50-30000eV, Z=1-92. Atomic Data andNuclear Data Tables.1993,54(2):181-342
    [75] Donnelly E. Development and evaluation a polychromatic phase contrast radiographyimaging system. Ph.D Thesis. Vanderbilt University.2003.8
    [76]吕乃光著.傅里叶光学(第2版).北京:机械工业出版社.2008,182-186
    [77]吕乃光著.傅里叶光学(第2版).北京:机械工业出版社.2008,90-93
    [78] Winthrop J. T. and Worthington C. R. Theory of Fresnel Images I: Plane Perodic Objects inMonochromatic Light. J. Opt. Soc. Am.1965,55(4):373-381
    [79] Testorf M, Arrizon V, and Ojeda-Castaneda J. Numerical optimization of phase-onlyelements based on the fractional Talbot effect. J. Opt. Soc. Am. A,1999,16(1):97-105
    [80] Lohmann A. W., Knuppertz H and Jahns J. Fractional Montgomery effect: a self-imagingphenomenon. J. Opt. Soc. Am. A,2005,22(8):1500-1507
    [81]刘鑫.同轴和微分相衬成像理论与数值分析研究.博士论文.华中科技大学.2007.7
    [82]刘鑫,雷耀虎,赵志刚,郭金川,牛憨笨.硬X射线相位光栅的设计与研制.物理学报.2010,59(10):6927-6932
    [83] Weitkamp T, David C, Kottler C. Bunk O and Pfeiffer F. Tomography with gratinginterferometers at low-brilliance sources. Proc. SPIE2006,6318:63180S1-63180S10
    [84] Nakano Y and Murata K. Measurements of phase objects using the Talbot effect and moirétechniques. Appl. Opt.1984,23(14):2296-2299
    [85]佩里.斯普罗斯著.医学成像的物理原理.北京:高等教育出版社.1993,98-102
    [86] Wang Z L, Liu X S, Zhu P P, et al. Analysis of partial coherence in grating-basedphase-contrast X-ray imaging. Nucl. Instrum. Meth., Sect. A2010,619:319-322
    [87] Wang Z L, Zhu P P, Huang W X, et al. Analysis of polychromaticity effects in X-ray Talbotinterferometer. Anal. Bioanal. Chem.397(6):2137-2141
    [88] David C, Bruder J, Rohbeck T, et al. Fabrication of diffraction gratings for hard X-ray phasecontrast imaging. Microelectron. Eng.2009,84:1172-1177
    [89] Noda D, Tsujii H, Takahashi N and Hattori T. Fabrication of high precision X-ray mask forX-ray grating of X-ray Talbot interferometer. Microsyst. Technol.2010,16:1309-1313
    [90] Turner D R. Electropolishing Silicon in Hydrofluoric Acid Solutions. J. Electrochem. Soc.1958,105(7):402-408
    [91] Lehmann V, Foll H. Minority Carrier Diffusion Length Mapping in Silicon Wafers Using aSi-Electrolyte-Contact. J. Electrochem. Soc.1988,135(11):2831-2835
    [92] Lehmann V, FoII H. Formation Mechanism and Properties of Electrochemically EtchedTrenches in n-Type Silicon. J. Electrochem. Soc.1990,137(2):653-659
    [93] Lehmann V, R nnebeck S. MEMS techniques applied to the fabrication of anti-scatter gridsfor X-ray imaging. Sens. Actuators, A2002,95(2-3):202-207
    [94] Foll H, Christophersen M, Carstensen J, et al. Formation and application of porous silicon.Mater. Sci. Eng., R2002,39(4):93-141
    [95] Zhang X G. Morphology and Formation Mechanisms of Porous Silicon. J. Electrochem. Soc.2004,151(1): C69-C80
    [96]雷耀虎,郭金川,赵志刚,牛憨笨. Si深刻蚀光助电化学方法的研究.半导体技术.2010,35(6):517-521
    [97] Kinnstaetter K,Lhmann A W, Schwider J, et al. Accuracy of phase shifting interferometry.Appl. Opt.1988,27(24):5082-5090
    [98] Takeda M, Ina H and Kobayashi S. Fourier-transform method of method of fringe patternanalysis for computer-based topography and interferometry. J. Opt. Soc. Am.1982,72(1):156-160
    [99] Wen H, Bennett E E, Hegedus M M and Rapacchi S. Fourier X-ray scattering radiographyyields bone structural information. Radiology.2009,251(3):910-8
    [100] Bennett E E, Kopace R, Stein A F and Wen H. A grating-based single-shot x-ray phasecontrast and diffraction method for in vivo imaging. Med. Phys.2010,37(11):6047-6054
    [101] Bevins N, Zambelli J, Li K, Qi Z H and Chen G H. Multicontrast x-ray computedtomography imaging using Talbot-Lau interferometry without phase stepping. Med. Phys.2012,39(1):424-428
    [102] Momose A, Yashiro W, Maikusa H and Takeda Y. High-speed X-ray phase imaging andX-ray phase tomography with Talbot interferometer and white synchrotron radiation. Opt.Express2009,17(15):12540-12545
    [103] Carré P. Installation et utilisation du comparateur photoélectrique et interférentiel duBureau International des Poids et Mesures. Metrologia.1966,2(1):13-23
    [104] Bruning J H, Herriott D R, Gallagher J E, et al. Digital Wavefront MeasuringInterferometer for Testing Optical Surfaces and Lenses. Appl. Opt.1974,13(11):2693-2703
    [105] Schwider J, Burow R, Elssner K E, Graznna J, Spolaczyk R and Merkel K. Digitalwave-front measuring interferometry: some systematic error sources. Appl. Opt.1983,22(21):3421-3432
    [106] Stoilov G and Dragostinov T. Phase-stepping interferometry: five-frame algorithm with anarbitrary step. Opt. Lasers Eng.1997,28(1):61-69
    [107] Schwider J, Falkenstoerfer O R, Schreiber H, Zoeller and Streibl N. New compensatingfour-phase algorithm for phase-shift interferometry. Opt. Eng.1993,2(8):1883-1885
    [108] Bruning J H. Fringe scanning interferometers. In: Optical Shop Testing, ed. Malacara D.New York: Wiley,1978
    [109]黎永前.纳米精度测量与校准系统关键技术研究.西北工业大学博士论文
    [110]惠梅,王东生,邓年茂等.对相移误差不敏感的四帧相位算法.清华大学学报(自然科学版).2003,43(8):1017-1019
    [111]惠梅.表面微观形貌测量中相移干涉术的算法与实验研究.中国科学院西安光学精密机械研究所.2001
    [112] In-Bok Kong, Kim Scung-Woo. Portable inspection of precision surfaces by phase-shiftinginterferometry with automatic suppression of phase-shift errors. Opt. Eng.1995,34(5):1400-1404
    [113] In-Bok Kong, Kim Scung-Woo. General algorithm of phase-shifting interferometry byiterative least-squares fitting. Opt. Eng.1995,34(1):183-187
    [114]王立无,苏显渝,周利兵.位相测量轮廓术中随机相移误差的校正算法.光学学报.2004,24(5):614-618
    [115]钱克矛,伍小平.用待定系数法设计误差补偿相移算法.光子学报.2000,29(9):848-853
    [116] Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, et al. Two-step phase-shiftinginterferometry and its application in image encryption. Opt. Lett.2006,31(10):1414-1416
    [117]孟祥锋,蔡履中,王玉荣,彭翔.两步广义相移干涉术的光学实验验证.物理学报.2009,58(3):1668-1674
    [118] Meng X F, Peng X, Cai L Z, Li A M, Guo J P and Wang Y R. Wavefront reconstructionand three-dimensional shape measurement by two-step dc-term-suppressed phase-shiftedintensities. Opt. Lett.2009,34(8):1210-1212
    [119] Wu Z, Gao K, Wang Z L, Ge X, Chen J, et al. A new method to retrieve phase informationfor equiangular fan beam differential phase contrast computedtomography. Med. Phys.2013,40(3):031911
    [120]杜杨,雷耀虎,刘鑫,郭金川,牛憨笨.硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究.物理学报.2013,62(6):068702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700