用户名: 密码: 验证码:
电梯导轨弯曲变形校直理论模型、仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电梯导轨质量的好坏将直接影响到电梯运行的平稳性与安全性。尤其是随着高层建筑的急剧增加,高速电梯的需求量越来越大,对导轨的平直度要求也越来越高。弯曲校直是保证电梯导轨平直度的不可或缺的工序,但目前还停留在粗放式凭经验校直的阶段,极大地影响了导轨的加工精度及效率。同时,由于对导轨校直的弹塑性变形机理、校直模型与控制方法等方面研究的缺失,致使发展电梯导轨的数字化、自动化校直尚有差距。为此,本文通过理论建模、有限元仿真及实验的方法,对电梯导轨的弯曲变形校直理论与方法进行了系统的研究,为进一步研发电梯导轨自动校直机奠定基础。全文共有七章:
     第1章从电梯导轨加工工艺流程出发,对电梯导轨加工技术现状进行了调研分析,阐述了电梯导轨弯曲变形的产生原因以及目前的变形预防措施的局限性,从而引出导轨弯曲变形校直的必要性,综述了电梯导轨弯曲变形校直的研究现状。
     第2章为探索导轨的弯曲变形特征,得出校直压力头、支撑点的位置及初始弯曲曲率等校直特征参数,研制了电梯导轨全自动弯曲变形测量系统。实现了对导轨的全长自动测量,从而得出导轨的弯曲变形量,提出基于导轨弯曲测量数据构建其弯曲变形特征曲线及表达式的方法,对导轨的弯曲变形特征进行了统计分析,进而给出导轨的弯曲校直判定准则以及校直压头、支点的位置确定方法,给出导轨弯曲变形的初始弯曲曲率的计算公式。围绕导轨何处、何种弯曲、弯曲量为多少、是否需要校直等问题提出了解决方案,为导轨弯曲校直理论模型的研究打下了基础。
     第3章针对电梯导轨的弯曲变形既有水平的侧弯变形,又有垂直方向的翘曲变形,为复杂的二维弯曲变形,两种变形模式的校直理论方程有着根本性的区别。为此,本章在利用弹塑性力学分析了弯曲变形校直过程中的材料模型、应力-应变关系、基本曲率关系及曲率弯矩关系的基础上,考虑到导轨具有无轨腰、有轨腰这两种结构形式,分别建立了它们的侧弯变形校直模型,给出各自的校直理论方程,并进一步得出其校直控制参数即校直行程的计算表达式,利用该表达式可直接计算初始弯曲挠度对应的校直行程,为侧弯变形校直实施带来方便;最后进行了模型的实例应用,并对模型的误差来进行了分析。
     第4章由于电梯导轨翘曲方向为非对称截面,且截面尺寸有突变,其弯曲变形校直相对其侧弯变形而言尤为复杂。为此,本章在分析带轨腰导轨翘曲截面特性及翘曲变形校直的特点的基础上,利用弹塑性力学分析了翘曲校直过程中的应力-应变关系,推导了其四种不同弯曲程度下的校直弯矩方程及校直一定初始翘曲的校直曲率方程,给出反弯曲率比与初始曲率比间的关系。为便于翘曲变形校直实践,进一步给出校直控制参数的表达式,有效的结合了翘曲校直模型与翘曲校直实践。并进行了模型的实例应用,验证了导轨翘曲校直模型的可行性,并对翘曲校直模型的误差进行了分析。最后给出了无轨腰导轨三种不同情况下的翘曲校直理论方程。
     第5章针对电梯导轨弯曲校直问题,利用ANSYS有限元软件分别建立了其侧弯与翘曲校直的有限元仿真模型,通过比较模型与仿真两种方式得到的导轨的侧弯、翘曲校直载荷与校直行程参数,验证了导轨侧弯、翘曲校直模型的可行性;并基于导轨弯曲校直仿真数据,进一步提出导轨侧弯、翘曲校直修正模型,即基于仿真数据的行程-挠度模型,给出该修正模型的表达式,通过修正模型可直接根据初始侧弯、翘曲挠度得出对应的校直行程,校直行程的计算速度与精度相对导轨侧弯、翘曲校直理论模型有所提高。
     第6章针对导轨的侧弯、翘曲变形校直问题,进行了大量的实验研究。在校直理论模型的有限元仿真验证后,进一步利用导轨校直实验数据验证了导轨侧弯、翘曲校直理论模型的可行性,对校直理论模型、有限元、实验三种方式下获得的导轨侧弯、翘曲校直控制参数进行了对比分析,进而提出基于校直实验数据的导轨侧弯、翘曲校直行程预测模型,给出模型表达式。
     第7章给出了本学位论文的研究结论,展望了本领域的进一步研究方向。
As a component-oriented, the guide rail straightness directly influences the stability and security of an elevator, especially on a high-speed elevator. With the rapid increase of high-rise buildings, the demand and the quality requirements for high-speed, high precision elevators are increasing. In order to improve the guide rail straightness, bend straightening is essential for processing operations. At present, bending straightening of elevator guide rail basically remains at a lower level, which mainly depends on workers'experiences, this state reduces the machining accuracy and efficiency of elevator guide rail greatly. So, the development of automatic straightener for elevator guide rail become an urgent issues, but the automation and digital straightening still lacks systematic theory support. This dissertation by coalescing the theoretical modeling, finite element simulation and experiment, theory and method for straightening the bending of elevator guide rail are researched.This dissertation is divided into 7 chapters:
     Chapter 1 gives a review of the current elevator guide rail machining technology based on the machining process. The origin and precaution of guide rail bending as well as the limits are clarified in this chapter. Then, the necessity of guide rail bending straightening is given. Based on the survey, present level of the research for guide rail bending straightening is brought up in chapter 1.
     In order to verify the bending deformation characteristics, chapter 2 obtains some characteristic parameters, such as the position of straightening pressure head and fulcrum as well as the initial bending curvature. It also focuss on the key problems in the guide rail straightening process, such as the bending point, the bending value and whether it needs to be straightened or not, which are mainly determined by human experiences. An automatic guide rail bending measurement system is developed in this chapter. The measurement system could provide a full length measurement and the bending value of the guide rail. The method for constructing bending curve and its mathematical expression based on the bending measurement data is presented in chapter 2. The statistical analysis for bending deformation has been done. Furthermore, the bending judging criteria are clarified, as well as the method to determine the position of straightening pressure head and fulcrum is given. In this chapter, calculation formula of initial bending curvature is presented as well. Briefly, chapter 2 solves problems such as the bending point, bending value and whether it needs to be straightened or not, which provides a foundation for the guide rail bending straightening.
     There are two bending forms in guide rails:the lateral bending and warpage. Obviously, the guide rail bending is a complex two-dimensional bending, which makes each of their straightening formula completely different. Therefore, analysis of the material model, stress-strain relationship, basic curvature relationship and curvature moment relationship based on elastic-plastic mechanics are presented in chapter 3. Considering that there are two kinds of guide rails:the trackless waist and waist rail, both of their straightening models and recurvation curvature formula are provided respectively. Furthermore, the straightening control parameters (mainly straightening stroke calculation formula) are presented in this chapter. Based on straightening stroke calculation formula, the straightening stroke corresponding to certain initial bending deflection could be calculated directly, which make the implement of bending straightening much more convenient. At last, an application example is given, and the error source is analyzed.
     As the warpage direction is a non-symmetrical section, and section dimension has a sudden change, so the bending straightening is much more complicated compared with lateral bending. In view of this, based on the analysis of waist rail warpage section features and its straightening characteristics, chapter 4 derives the straightening moment formula and straightening curvature formula in certain initial warpage for 4 different bending degrees, using stress-strain relationships in elastic-plastic mechanics. The relationship between recurvation curvature and initial curvature is presented as well, which lays a foundation for the warpage bending straightening. In chapter 4, in order to make the straightening work be carried out much more conveniently, further expression of straightening control parameters combined with warpage straightening theory and practices is presented. At the end of this chapter, an application of presented model is brought up to validate its feasibility. Analysis on model's error source is provided as well. At last, warpage straightening theoretical formula for trackless waist is presented under three different circumstances.
     Chapter 5 focused on the elevator guide rail bending straightening issues. Finite element simulation models for lateral bending and warpage are constructed based on ANSYS. Then, simulation is taken to analyze the process of lateral bending and warpage based on the presented model. By exerting a series of loadings, the corresponding pressure stroke and residual deflection of lateral bending as well as warpage could be obtained. Lateral bending and warpage straightening load-stroke curves could be get as well. Furthermore, curves from the experiment and curves form the model are compared to validate the effectiveness of the presented model. A modified model is given based on the guide rail straightening simulation data. That is to say, based on the simulation data of the stroke-deflection model, a modified model expression is provided. Straightening stroke could be obtained directly from the modified model. The computing speed and accuracy improved compared with the former model.
     Taking elevator guide rail as the object, chapter 6 conducted lots of experimental researched on lateral bending and warpage straightening problems. After the validation of finite element simulation on the straightening theoretical model, a feasibility verification of lateral bending and warpage straightening theoretical model is carried out based on the experiment data. Furthermore, a comparison of lateral bending and warpage straightening control parameters among the three manners such as theoretical model, FES and experiment are presented. At the end of this chapter, a prediction model and its expression of lateral bending and warpage are presented based on the experiment data.
     A conclusion of this paper is made and the prospect of further research in this area is presented in chapter 7.
引文
[1]张琦,张广明,诸小鹏.现代电梯构造与使用[M].北京:清华大学出版社,北京交通大学出版社,2004.
    [2]叶安丽.电梯技术基础[M].北京:中国电力出版社,2004.
    [3]《中国电梯》编辑部.2008年我国在用电梯数量统计报告[J].中国电梯,2009,20(10):27-43.
    [4]朱思中.电梯行业近10年的历程[J].中国电梯,2009,(16):31.
    [5]荆志国.中国电梯导轨市场浅析[J].中国电梯,2008,19(16):9-11.
    [6]李增建.电梯导轨生产技术研究[J].中国电梯,2008,19(23):31-37.
    [7]张有国.怎样解决电梯运行中的抖动问题[J].中国电梯,2009,20(17):61-62.
    [8]Jesus Sanz((著),曹卫东(译).电梯导轨对电梯的舒适性能和装配费用的影响[J].中国电梯,1998,9(8):46-49.
    [9]李醒飞,张晨阳,李立京,等.电梯导轨对轿厢振动的影响[J].中国机械工程,2005,16(2):115-122.
    [10]陈兴华.国内电梯导轨30年[J].中国电梯,2009,(16):08.
    [11]荆志国.电梯导轨行业研究与前景分析[J].中国电梯,2008,19(24):21-26.
    [12]张国桢.我国电梯导轨的发展和有关导轨质量的几个问题[J].中国电梯,2003,13(1).
    [13]吴海涛,黄运尧.电梯导轨加工工艺研究及对6m龙门刨床的改造设计[J].广东工业大学学报,1997,14(4):61-65.
    [14]中国国家标准化管理委员会.电梯T型导轨[S].
    [15]徐曼琼,蔺书田,汪北平,等.电梯导轨反弯矫直弹塑性变形分析[J].机械科学与技术,2007,26(8):1010-1013.
    [16]Volegov I F, Polyakov A P, Kolmogorov S V. Mathematical model of rail straightening and experimental estimation of its adequacy[J]. Journal of Materials Processing Technology,1994,40(1-2):213-218.
    [17]崔甫.矫直理论与矫直机械[M].北京:冶金工业出版社,2007.
    [18]孙杰.航空整体结构件数控加工变形校正理论和方法研究[D].杭州:浙江大学,2003.
    [19]国家机械工业委员会统编.初级工具钳工工艺学[M].北京:机械工业出版社,2009.
    [20]李俊,邹慧君,熊国良.压力校直工艺理论研究的现状与发展[J].机械设计与研究,2004,20(4):69-71.
    [21]曹爱文,熊国良.压力校直技术的发展[J].CMET.锻压装备与制造技术,2007(1):09-12.
    [22]谭伟.校直工艺的现状调查[J].渝州大学学报(自然科学版),1997,14(1):18-21.
    [23]王国君.轴类校直机[J].试验技术与试验机,1996,36(3-4):14-17.
    [24]翟华,韩春明,柯尊忠.罗拉轴校直工艺理论及实验研究[J].纺织学报,2002,23(4):316-317.
    [25]李繁荣.全自动液压校直机的研究[D].哈尔滨:哈尔滨工程大学,2002.
    [26]陈晋军.串励电机转轴全自动校直机的研制[D].浙江大学,2006.
    [27]合肥工业大学机械与汽车工程学院.精密校直技术研究[EB/OL].http://www.hfmiasp.com:8089/Newjqxy/Show/KY_FieldDetails.aspx?id=14
    [28]翟华.轴类零件校直工艺理论研究[D].合肥:合肥工业大学,2003.
    [29]A. El Megharbel, G.A. El Nasser, Aly El Domiaty. Bending of tube and section made of strain-hardening materials [J]. Journal of Materials Processing Technology, 2008,203(1-3):372-380.
    [30]H.A. Al-Qureshi. Elastic-plastic analysis of tube bending[J]. International Journal of Machine Tools and Manufacture,1999,39(1):87-104.
    [31]Yun-Jae Kim, Young-Il Kim, Tae-Kwang Song.Finite element plastic loads for circumferential cracked pipe bends under in-plane bending [J]. Engineering Fracture Mechanics,2007,74 (5):643-668.
    [32]Z. Tan, B. Persson, C. Magnusson. Plastic bending of anisotropic sheet metals [J]. International Journal of Mechanical Sciences,1995,37(4):405-421.
    [33]J.Chakrabarty, W.B.Lee, K.C.Chan. An exact solution for the elastic/plastic bending of anisotropic sheet metal under conditions of plane strain [J. International Journal of Mechanical Sciences,2001,43(8):1871-1880.
    [34]M. Hua, K. Baines, LM. Cole. Continuous four-roll plate bending:a production for the manufacture of single seamed tubes of large and medium diameters. International Journal of Machine Tools&Manufacture 39(1999):905-935.
    [35]K.M. Zhao, J.K. Lee. Finite element analysis of the three-point bending of sheet metals. Journal of Materials Processing Technology 122(2002):6-11.
    [36]杨海波,王卫平.重轨多辊矫直过程σ-ε关系的试验研究[J].冶金设备,1999(4):10-12,21.
    [37]王卫平.U74重轨材料力学性能的试验分析[J].包钢科技,1998(1):70-77.
    [38]翟华.轴类零件校直工艺理论研究[D].合肥工业大学,2003.
    [39]唐啸波.轴类零件校直工艺理论研究[D].合肥工业大学,1997.
    [40]N.K.Das Talukder, A.N.Singh. Mechanics of bar straightening, PartⅠ:General analysis of straightening process[J]. Journal of Engineering for Industry,1991,113(2): 224-227.
    [41]N.K.Das Talukder, A.N.Singly. Mechanics of bar straightening, PartⅡ: Straightening in cross-roll straighteners [J]. Journal of Engineering for Industry,1991, 113(2):228-232.
    [42]B.J.Wu, L.C.Chan, T.C. Lee, e tal. A study on the precision modeling of the bars produced in two cross-roll straightening [J]. Journal of Materials Processing Technology,2000,99(2000):202-206.
    [43]Seung-Cheol Kim, Sung-Chong Chung. Synthesis of the multi-step straightness control system for shaft straightening processes [J]. Mechatronics,2002, 12(1):139-156.
    [44]Abenhaim Acher-Igal. Shaft straightness and concentricity in process correction[D]. Montreal:Ecole Polytechnique,2006.
    [45]钦明浩,吴焱明,蒋守仁,徐业宜.轴类零件校直的有限元解法[J].合肥工业大学学报(自然科学版),1996,19(2):24-29.
    [46]钦明浩,张向军,蒋守仁,徐业宜.轴类零件校直理论分析[J].合肥工业大学学报(自然科学版),1996,19(4):22-28.
    [47]钦明浩,柯尊忠,张向军,蒋守仁,徐业宜.精密矫直机中轴类零件矫直工 艺理论研究[J].机械工程学报,1997,33(2):48-53.
    [48]张向军,钦明浩,蒋守仁.轴类零件校直工艺的实验研究[J].合肥工业大学学报(自然科学版),1997,20(03):11-15.
    [49]翟华,韩春明,蒋守仁等.轴类零件精密校直行程算法[J].重型机械,2001,30(3):.23-26
    [50]Zhai H. Research on straightenning technology CAM system[J].Chinese Journal of mechanical Engineering,2003,16(2):175-177.
    [51]翟华.J积分移动理论的单边径向裂纹轴校直行程算法[J].农业机械学报,2008,39(8):169-172.
    [52]李骏,邹慧君,熊国良.压力校直过程的理论模型研究及其实验验证[[J].机械强度,2005,27(5):636-639.
    [53]LI Jun, XIONG Guo-liang. Study on calculation method of press straightening stroke based on straightening process model [J]. Key Engineering Materials, 340-341(2)1345-1350.
    [54]李骏,熊国良,邹慧君.轴类零件几力矫直过程的数学模型与行程计算[J].重型机械,200433(6):4144.
    [55]Katoh T, Urata E. Measureanent and control of a straightening process for seamless pipes [J]. Journal of Engineering for Industry.1993,115 (3):347-351.
    [56]Maskileison A.M, Moskalev V.A, Levitskii D.S, e tal. Machines for accurate tube straightening[J]. Steel in the USSR,1989,19(5):224-226.
    [57]李强.矫直状态下钢管弹塑性变形区的研究[J].钢管,1995,(4):34-37.
    [58]高展,刘春旭,朱世忠,等.钢管压力矫直行程计算公式的理论研究[J].宝钢技术,2009,(1):52-55.
    [59]李艳辉.斜辊钢管矫直过程数值模拟及残余应力的研究[D].辽宁科技大学,2008.
    [60]Sheppard T, Roberts J M. On the mechanics of the tension-leveling process[J]. Journal of the Institute of Metal,1971,99:293.
    [61]Yoshisulce MISAKA. Shape correction of steel strip by tension leveler[J]. Journal of Japan Society for Technology of plasticity,1976,17:968-974.
    [62]曾田长一朗.最新的板带材矫正法[J].塑性加工,1967 10:853-862.
    [63]肖林,杨成仁,邹家祥.金属带材拉伸弯曲矫直过程简化解析分析(1)—带材延伸率计算方法的探讨[J].北京科技大学学报,1999,21(6):563-564.
    [64]肖林,苏逢荃,邹家祥.金属带材拉伸弯曲矫直过程简化解析分析(2)—理想弹塑性带材在第一个弯曲辊上的拉弯过程分析[J].北京科技大学学报,2000,22(1):75-79.
    [65]肖林,邹家祥,苏逢荃,等.金属带材拉伸弯曲矫直过程简化解析分析(3)—、弯矩卸载阶段及弯矩再加载过程分析[J].北京科技大学学报,2000,22(3):271-273.
    [66]张清东,刘天浩,朱简如.宽带钢拉伸弯曲矫直变形过程的有限元仿真[J].机械工程学报,2008,44(9):236-240.
    [67]王文广,张清东,李忠富.宽带材拉伸弯曲变形的理论模型[J].北京科技大学学报,2009,31(1):98-102.
    [68]G.Schleinzer, F.D.Fishcher.Residual stress in new rails [J]. Materials Science and Engineering A,2000,288 (2):280-283.
    [69]G Schleinzer, F. D. Fishcher. Residual stress formation during the roller straightening of railway rails.International Journal of Mechanical Sciences,2001, 43(10):2281-2295.
    [70]C. Betegon Biempica, J.J. del Coz Diaz, P.J. Garcia Nieto,et al. Nonlinear analysis of residual stresses in a rail manufacturing process by FEM[J]. Applied Mathematical Modelling,2009,33(1):34-53.
    [71]Yinyan Wang, Xiaofeng Shen, Fu-Pen Chiang. New experimental approach for studying residual stresses in rails[J]. Wear,1996,191(1-2):90-94.
    [72]O.Orringer, W.R. Paxton, D. E. Gray. Residual stress and its consequences on both sides of the wheel-rail interface[J]. Wear,1996,191(1-2):25-34.
    [73]臧勇,王会刚,崔福龙.型钢辊式矫直压弯挠度的弹塑性解析[J].机械工程学报,41(11):47-52.
    [74]王会刚,臧勇,崔丽红,等.H型钢矫直压下挠度的理论解析及压下过程数值模拟[J].机械设计与制造,2007(3):78-80.
    [75]于凤琴,于辉,杜凤山.复合重轨矫直机的矫直力计算[J].燕山大学学报,2005,29(5):447-450.
    [76]李秀琳.重轨立式矫正数值模拟及残余应力的研究[D].鞍山科技大学,2005.
    [77]杨彦宏.重轨水平矫直数值模拟及残余应力的研究[D].鞍山科技大学,2005.
    [78]李骏.基于校直过程模型的校直工艺理论及实验研究[D].上海交通大学,2005.
    [79]赵永.压力校直过程中材料参数的在线识别[D].华东交通大学,2006.
    [80]孙杰.航空整体结构件数控加工变形校正理论和方法研究[D].浙江大学,2003.
    [81]张翼明,两种T型电梯导轨冷加工技术的研究[J].首钢科技,1992,(3):11-15.
    [82]郭丽峰,张国雄,郭敬滨,等.基于虚拟仪器的电梯导轨多参数测量系统[J].天津大学学报,2005,38(4):347-350.
    [83]李醒飞,张晨阳,郭丽峰,等.电梯导轨表面轮廓的在线监测与分析系统[J].光电工程,2004,31(2):37-39,47.
    [84]Antoine N. Gergess, Rajan Sen. Cambering structural steel I-girders using cold bending[J]. Journal of Constructional Steel Research,2008,64(4):407-417.
    [85]A. A. Elsharkawy, A. A. El-Domiaty. Determination of stretch-bendability limits and springback for T-section beams [J]. Journal of Materials Processing Technology, 2001,110(3):265-276.
    [86]盛艳明.钢轨端部弯曲的压力矫直计算研究[D].华东交通大学,2008.
    [87]宁延平,刘战锋.国内外高精度直线度测量技术的研究现状[J].现代制造工程,2005(6):82-84.
    [88]Tanaka H, Sato H. Extensive analysis and development of straightness measurement by sequential-two-point method[J]. Transaction of ASME,1986, (108):176.
    [89]洪迈生,魏元雷,李自军,等.形状误差分离技术的统一理论——同源、统一的各种直线度误差分离法评述[J].宇航计侧技术,2001,21(6):1-12.
    [90]李圣怡,尹自强.超精密工件在线直线度多传感器测量方法[J].纳米技术与精密工程,2004,3(1):71-75.
    [91]贾立德,郑子文,李圣怡,等.使用短基准的超精密长导轨直线度误差测量方法[J].机械工程学报,2008,44(9):141-147.
    [92]Huang S T, Fan K C, Wu J H, A new minimum zone method for evaluating straightness errors[J]. Precision Engineering,1993,55(2):63-65.
    [93]程飞月,李清.直线度误差的几种评定方法[J].上海计量测试,2006,33(2):30-31.
    [94]黄富贵,崔长彩.任意方向上直线度误差的评定新方法[J].机械工程学报,2008,44(7):221-224.
    [95]JG/T 5072.1-1996.电梯T型导轨[S].中华人民共和国建筑工业行业标准.1996.
    [96]JG/T 5072.2-1996.电梯T型导轨检验规则[S].中华人民共和国建筑工业行业标准.1996.
    [97]弋景刚,王泽河,么永强,等.基于在线测量系统的轴类零件精密矫直工艺[J].农业机械学报,2005,36(1):127-129.
    [98]吴其江.校直多级离心泵泵轴时轴端弯点的确定[J].石油机械,1997,25(3):25-26,33.
    [99]弓海霞,闫通海,王进礼.钻具校直的理论研究[J].哈尔滨工程大学学报,2002,23(03):116-119.
    [100]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [101]余同希,章亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992.
    [102]崔甫.论弹塑性弯曲与曲率关系[J].重型机械,1994,(3):23-28.
    [103]夏志皋.塑性力学[M].上海:同济大学出版社,1999.
    [104]杜平安,甘娥忠,于亚婷.有限元法-原理、建模及应用[M].北京:国防工业出版社,2004.
    [105]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [106]刘士光,张涛.弹塑性力学基础[M].武汉:华中科技大学出版社,2008.
    [107]陈慧,熊国良,李俊.基于F-δ模型的校直压下量确定方法及其应用[J].机械设计与研究,2005,21(4):70-72.
    [108]李俊,邹慧君,熊国良,等.压力校直过程的理论模型研究及其实验验证 [J].机械强度,2005,27(5):636-639.
    [109]张潇.精密直线导轨的校直行程预测与建模研究[D].武汉理工大学,2009.
    [110]John B. Modem straightening machines for pipe,tubes,bars and sections. Iron and Steel Eng,1997, (11):38-45.
    [111]Michael G, Boyarshinov, Michael B, et al. A method of solution for the cyclic bending problem. International Journal of Mechanical Sciences,1992,134(11): 881-889.
    [112]王中秋,李剑峰,孙杰,等.基于回弹曲线的航空整体结构件三点压弯校正分析[J].山东大学学报(工学版),2009,39(2):78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700