用户名: 密码: 验证码:
燃煤烟气CO_2化学吸收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应导致的极端灾害气候现象日益频繁。温室效应贡献最大的气体是CO2,减少人为CO2排放是应对气候变化的有效手段。目前,降低大型固定CO2排放源的碳排放量被认为是最为可行、最有成效的方案。化学吸收技术是当今燃煤电站最为成熟、最易商业化和工业放大的脱碳技术之一。然而,现阶段该技术的能耗和水耗相对偏大,难以满足工业生产的要求。本文由吸收剂改良和工艺优化整合角度出发,对改善脱碳效果、降低工艺能耗,减少工艺耗水的可行性进行探索。
     吸收剂研究方面,已知吸收剂普遍存在低再生能耗与高吸收性能难以并存的尴尬,将不同性能的胺类混合有望改善吸收剂的整体性能。探索研究针对少数典型混合胺在特定反应器、特定工况下进行对比意义不大,也未给出任何可遵循配比规律及评定。本文在经过反应器进行优化选择后,运用常压下半连续实验对29种混合吸收剂CO2吸收再生特性在相同实验工况下进行了系统地对比研究,引进了增强因子和交互系数来对吸收剂混合配比原则进行了剖析,并对混合吸收剂种类的筛选开展了详细地讨论。研究发现,20%MEA+10%DETA和25%MEA+5%PZ是MEA为基准的混合胺中吸收再生综合性能最好的两种试剂,15%MDEA+15%DETA是MDEA为基准的混合胺中综合性能最好的试剂。前两者可在保证再生性能与30%MEA溶液基本相似的情况下,将吸收性能评分提高54%~76%,而后者则可在保证吸收性能30%MEA溶液基本相似的情况下,再生能耗下降25%左右;氨水是近年吸收剂研究的一个热点。尽管人们对氨水脱碳技术已由反应动力学和吸收热及中试进行了研究,得出了许多有益的结论。氨水技术优化参数的选取及调整思路,氨水逃逸控制的改进仍有较大提高空间。本文对氨水吸收再生CO2及氨水逃逸控制的实验研究发现,0.4mol CO2/mol NH3为推荐循环工艺贫液CO2负荷值,随着氨水浓度和操作温度的提升,氨逃逸现象加剧,1%的AEPD和1%的AMP添加剂甚至能将30min内的氨逃逸量降低33%左右。
     工艺改进方面,本文分析了现有工艺优化改进研究领域的进展,基于目前化学吸收技术水平衡研究缺乏及技术耗水过多的现状,分别对燃煤电站水平衡及化学吸收脱碳工艺内部水平衡进行了详细分析,提出了双水罐水自平衡工艺,利用化学吸收工艺系统内各部分水的再组织解决工艺水耗过大问题。最后,对300MW燃煤电站化学吸收脱碳工艺改进进行了估算。
     在半连续实验对各项操作参数的优化研究基础上,并结合水平衡改进工艺,完成了200Nm3/h燃煤烟气脱碳化学吸收试验平台的设计及搭建工作。该试验平台设计脱除率90%,试验拟测试不同化学吸收剂,在对填料吸收塔水动力学特性深入研究的基础上,提出反应器的优化改造方案。
The disasters caused by the extreme weather turn to be more frequent due to the greenhouse effect, while CO2is the largest contributer to the greenhouse effect. To reduce the CO2emission by human is an effective mean for tackling with the climate change. The reduction of CO2emission by large-scale stationary emitter is considered to be the most feasible and effective solution. Chemical absorption method is one of the most mature and most likely commercial technologies for CO2capture in coal-fired power plants. However, high energy consumption and huge water withdrawal still hinder the application of chemical absorption method. In this paper, research has already been carried out into development of novel absorbents and process modification. The potential of improving absorption performance, cutting down the energy consumption and water withdrawal has been discussed.
     The semi-batch experiments have already been carried out to mixed amine solvents and aqueous ammonia in order to develop novel solvents. The experiment results show that,(1)20%MEA+10%DETA and25%MEA+5%PZ are two of best solvents for all the MEA based mixture solution, while15%MDEA+15%DETA is the best MDEA based mixed amine solvents. The former two solvents can increase the absorption score to54%~76%compared to30%MEA solution, meanwhile the regeneration performance of the two mixed amine solvents are almost apromiate to that of30%MEA solution.15%MDEA+15%DETA can reduce the energy consumption to25%compared to typical30%MEA solution.(2)12%is the most suitable mass concentration for aqueous ammonia solution during all the tested mass concentrations.15℃and35℃are two critical operation temperature values under which the CO2absorption of ammonia solution reaches the best mode.90℃is the best regeneration temperature during all the tested temperature values.0.4mol CO2mol NH3is the recommended CO2loading for cyclic lean ammonia solution. According to the study results on ammonia slippery and the control of ammonia slippery, the ammonia slippery increases with the temperature increase and intial ammonia mass concentration. AEPD and AMP of weight concentration1%added into13%aqueous ammonia solution can decreases the ammonia slippery during the30minutes to about33%. In addition, the screening parameters and evaluation method have been discussed in this paper. Enhancement factor and correlation factor have been introduced to analyze the appropriate blending ratio of mixed amine solutions.
     Water balance of CO2capture process is another focus of this paper. A review of process flow sheet modifications for energy efficient CO2capture from flue gases using chemical absorption has been given out. Suprisingly, most of the process modifications focus on saving energy for CO2capture, while seldom people pay enough attention to water issue caused by chemical absorption method. In fact, the water withdrawal is a rather huge rock for the application of chemical absorption.Based on this background, detail analysis of water withdraw and water consumption for the power plants and the CCS process have been presented in this paper. Some potential measures are also afforded. At last, an estimation of water consumption for300MW coal-fired power plants retrofitted with CCS has been given.
     The experimental study on the development of novel solvents and the theortical analysis on the process modification supply a large number of helpful parameters and method for cyclic experimental study. Based on the research background, a200Nm3/h test rig for CO2capture from coal-fired flue gas have been designed and built. The design CO2removal efficiency of this facility is90%. The aim of building such a test rig is to test different absorbents, to test hydraulic performance of pakced columns so as to achieveing the modification of absorbers.
引文
[1]A.C. Yeh, H. Bai. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions [J]. Sci.Tota.Environ.,1999,228:121-133
    [2]Anindo Dey, Adisorn Aroonwilas. CO2 absorption into MEA-AMP blend:mass transfer and absorber height index [J]. Energy Procedia,2009,1:211-215
    [3]Arunkumar Samanta, S.S. Bandyopadhyay. Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol [J]. Chemical Engineering Science,2009,64:1185--1194
    [4]B. P. Mandal et al.. Removal of carbon dioxide by absorption in mixed amines: modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions [J]. Chemical Engineering Science,2001,56:6217-6224
    [5]B.P. Mandala, S.S. Bandyopadhyayb. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-l-propanol and monoethanolamine [J]. Chemical Engineering Science,2006,61:5440-5447
    [6]Blauwhoff P.M.M., Versteeg G.F., Van Swaaij W.P.M., A study on the reaction between CO2 and alkanolamines in aqueous solutions [J]. Chem. Eng. Sci.,1984,39: 207-225.
    [7]Chakravarti S., Gupta A., Hunek B., Advanced technology for the capture of carbon dioxide from flue gases [C]. First National Conference on Carbon Sequestration, Washington, DC, May 15-17,2001.
    [8]Chen J.F., High-Gravity Technology and Application [M]. Beijing. Chemical Industry Press,2002.
    [9]Chen J.P., Chiang Y.P.. Surface modification of no-woven fabric by DC pulsed plasama treatment and graft polymerization with acrylic acid [J]. J. Membr. Sci.,2006, 270:212-220.
    [10]Chen Minggong, Chen Jingling, T. Takashima, A. Mizuno. Experiments of Liquid-Film Volume Ratio in Cross-Current Rotating Discs Packed Bed [J]. Journal of Chemical Engineering of Chinese Universities,2008,4 (22):569-573
    [11]Critchfield JE, G.T. Rochelle. CO2 desorption from DEA and DEA-promoted MDEA solution [J]. AlChE Spring meeting,1988.
    [12]Diao Yongfa, Zheng Xianyu, Chen Changhe. Study on removal mechanism of CO2 greenhouse gas by ammonia scrubbing [J]. ACTA scientiae circumstantiae,2003, 23 (6):753-757
    [13]Diao Yongfa, Wang Shujuan, Chen Changhe. Experimental study on the temperature impacts on the CO2 & SO2 removing efficiency by ammonia gas scrubbing [J]. ACTA scientiae circumstantiae,2004,24 (5):841-845
    [14]Dong Jianxun, Li Zhenzhong, Li Chenfei, Zhang Yue, Jia Yingguang, Feng Zhaoxing, Zhang Yun. An experimental research on removal of multi-pollutants from flue gas by hydrous ammonia absorbing [J]. Power system engineering,2007,23 (2):17-19
    [15]Dong Jianxun, Zhang Yue, Zhang Yun, Yingguang, Li Zhenzhong, Li Chenfei, Li Yinglun. Experimental study on absorption of CO2 in flue gas by hydrous ammonia [J]. Journal of power engineering,2007,27 (3):438-440
    [16]Dechen Zhu, Mengxiang Fang, Zhong Lv, Qunyang Xiang. Semi-batch reactor studies for CO2 capture by aqueous ammonia [J].2nd International Conference on Energy and Environment Technology,2010
    [17]E.L.King. How does the chemical reaction occur [M].1st ed., vol.1.Taiwan, 1979, pp.37-45
    [18]Falk-Pedersen O., Dannstrom H., Separation of carbon dioxide from offshore gas turbine exhaust [J]. Energ. Convers. Manage.,1997,38:S81-S86.
    [19]F.Liu. "Experimental study on CO2 capture from flue gas of coal-fired power plant by regenerated aqua ammonia"[D]. P.h.D dissertation,2009
    [20]Fisher K.S., Beitler C., Rueter C., et al. Integrating MEA Regeneration with CO2 compression and peaking to reduce CO2 capture costs [M]. DOE/NETL Report,2005, U.S.
    [21]Glasscock, D. A.. Critcheld, J. E., Rochelle, G. T. CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine [J]. Chemical Engineering Science,1991,46:2829-2845.
    [22]Hagewiesche, D. P., Ashour, S. S., Al-Ghawas, H. A., Sandall,O. C. Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine [J]. Chemical Engineering Science,1991,50:1071-1079.
    [23]H. Bai, A. C. Yeh. Removal of CO2 greenhouse gas by ammonia scrubbing [J]. Ind.End.Chem.Res.,1997,36:2490-2493
    [24]H. Dang, G.T. Rochelle. CO2 absorption rate and solubility in MEA/PZ/H2O [J]. Separation Science and Technology,2003,38(2):337-357.
    [25]H.F.Rase, Design of Chemical reactors [M].Beijing,1982,1:.132-137.
    [26]H.P. Huang, S.G. Chang. Method to Regenerate Ammonia for the Capture of Carbon Dioxide [J]. Energy Fuels.,2002,16:904-910
    [27]IPCC Special Report on Carbon Dioxide Capture and Storage,2005. Available at http://www.ipcc.ch.
    [28]IPCC Climate Change 2007:Synthesis Report,2007 b. http://www.ipcc.ch.
    [29]Jasmin Kemper*. Gunter Ewert, Marcus Grunewald. Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO2 capture [J]. Energy Procedia,2010,1:231-235
    [30]Jassim M.S., Rochelle G.T.. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine [J]. Ind. Eng. Res.2006,45:2465-2472.
    [31]Jia Jiangxia, Chen Minggong, Zhang Jun, Gong Maoli, Chen Jingling. Study on the influence of the structure of super-gravity bed with disks on scrubbing CO2 in flue gas [J]. Journal of Anhui University of Science and Technology,2006,26 (3):70-72
    [32]J. T. Yeh, K. P. Resnik, K. Rygle, H. W. Pennline. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia[J]. Fuel Process. Technol,2005,86:1533-1546
    [33]Kim, I., Svendsen, H. F.. Comparative study of the heats of absorption of post-combustion CO2 absorbents [J]. Int. J. Greenhouse Gas Control,2010 doi:10.1016/j.ijggc.2010.05.003
    [34]K. P. Resnik, J. T. Yeh, H. W. Pennline. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx [J]. Int. J. Environment Technology and Management, 2004,4:89-103
    [35]Li J.L., Chen B.H., Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Sep. Purif. Technol.,2005,41:109-122.
    [36]Lin, S.-H., Chiang, P.-C., Hsieh, C.-F., Li, M.-H., Tung, K.-L.. Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-1-propanol in PVDF membrane contactor [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39:13-21.
    [37]Liu Fang, Wang Shujuan, Chen Changhe, Xu Xuchang. Research Progress on CO2 Capture by Using Ammonia from Flue Gas of Power Plant [J]. CIESC Journal, 2009,60 (2):269-278
    [38]L.Y. Meng, S. Burris, H. Bui, W.P. Pan, Development of an analytical method for distinguishing ammonium bicarbonate from the products of an aqueous ammonia CO2 scrubber [J], Anal. Chem.,2005,77:5947-5952
    [39]Manjula Nainar, Amornvadee Veawab, Corrosion in CO2 capture unit using MEA-piperazine blends [J], Energy Procedia,2009,1:231-235
    [40]Met office, http://www.metoffice.gov.uk/climatechange/science/monitoring/, 2008.
    [41]Mshewa MM, G.T. Rochelle. CO2 absorption/desorption in mixtures of aqueous MDEA and DEA at 313-393K [J]. AlChE Spring meeting,1995.
    [42]Mohamed Edali, Ahmed Aboudheir, Raphael Idem. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model [J]. International Journal of Greenhouse Gas Control,2009,3:550-560
    [43]M.Zhang, H.P.Chen, Q.He, S.H.Zhang, C.G.Zheng, Experimental study on CO2 absorption into aqua ammonia from flue gas [J]. Energy and Environment,2007,4: 81-83,
    [44]N. Daneshvar, M.T. Zaafarani Moattar, M. Abedinzadegan Abdi, S. Aber, Carbon dioxide equilibrium absorption in the multi-component systems of CO2+TIPA+ MEA+H2O, CO2+TIPA+Pz+H2O and CO2+TIPA+H2O at low CO2 partial pressures:experimental solubility data, corrosion study and modeling with artificial neural network[J]. Separation and Purification Technology,2004,37:135-147
    [45]Pacheco MA,S Kaganoi, G.T. Rochelle.CO2 absorption into aqueous mixtures of Diglycolamine and MDEA. Chem Eng Sci.,2000,55:5125-5140
    [46]Petit J.R., Jouzel J., Raynaud D. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature,1999, 399(6735):429-436.
    [47]Ramshaw, C.; Mallinson, R. H. Mass Transfer Process [M]. U.S. Patent 4,283,255, 1981.
    [48]Rangawala, H. A., Morrell, B. R., Mather, A. E., Otto, F. D. Absorption of CO2 into aqueous tertiary amine/MEA solutions [J]. Canadian Journal of Chemical Engineering,1992,70:482-490.
    [49]Resnik K. P., Garber W., Hreha D. C., Yeh J. T., Pennline H.W. A parametric scan for regenerative ammonia-based scrubbing for the capture of CO2 [C]. In:Proceedings of the 23rd Annual International Pittsburgh Coal Conference, Pittsburgh, PA,2004
    [50]R.G.Eckert, R.M. Drake. Analysis on heat transfer and mass transfer [M],1st ed., vol.1. Beijing,1983, pp.723-735
    [51]Roongrat Sakwattanapong, Adisorn Aroonwilas, Amornvadee Veawab. Reaction rate of CO2 in aqueous MEA-AMP solution:Experiment and modeling [J]. Energy Procedia,2009,1:217-224
    [52]R.Steeneveldt, B.Berger, T.A.Torp. CO2 capture and storage-closing the knowing-doing gap [J]. Chem. Eng. Res. Design,2006,84(A9):739-763.
    [53]Schafer, B., Mather, A.E., Marsh, K.N., Enthalpies of solution of carbon dioxide in mixed solvents [J]. Fluid Phase Equilib,2002,929-935.
    [54]Shuiping Yan, Mengxiang Fang, Zhongyang Luo, Kefa Cen. Regeneration of CO2 from CO2-rich alkanolamines solution by using reduced thickness and vacuum technology:Regeneration feasibility and characteristic of thin-layer solvent [J]. Chemical Engineering and Processing,2009,48:515-523
    [55]Sun, W.-C., Yong, C.-B., Li, M.-H.. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine [J]. Chemical Engineering Science,2005,60:503-516.
    [56]T. Yamamoto, M. Okubo, T. Nagaoka, K. Hayakawa. Simultaneous removal of NOx, SOx and CO2 at elevated temperature using a plasma-chemical hybrid process [J]. IEEE Transactions on Industry Applications,2002,38(5):1168-1173
    [57]Wang R, Zhang H.Y., Feron P.H.. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors [J]. Sep. Purif. Technol.,2005,46: 33-40.
    [58]Won-Joon Choi, Jong-Beom Seo, Sang-Yong Jang, Jong-Hyeon Jung, Kwang-Joong Oh. Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process [J]. Journal of Environmental Sciences,2009,21:907-913
    [59]Xiao, J., Li, C.W., Li, M.H.. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol+monoethanolamine [J]. Chemical Engineering Science,2000,55:161-175.
    [60]Xing Yinquan, Liu Youzhi, Cui Leijun. Experimental Study onintensification absorption of carbon dioxide from simulation flue gas by high-gravity rotary packed bed [J]. Modern Chemical Industry,2007,27 (App2):470-473
    [61]Yanwen Gong, Zhi Wang, Shichang Wang. Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module [J]. Chemical Engineering and Processing,2006,45:652-660
    [62]Yeh J. T., Resnik K. P., Rygle K., Pennline H.W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia [J]. Fuel Process Technol, 2005,86(14-15):1533-1546
    [63]Yeon S.H., Lee K.S., Sea B.. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas [J]. J. Membr. Sci.,2005, 257:156-160.
    [64]Y.F. Diao, X.Y. Zheng, B.S. He, C.H. Chen, X.C Xu, Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing [J]. Energy Conv. Manag., 2004,45:2283-2296
    [65]Y.J. Kim, J.K. You, W.H. Hong, K.B. Yi, C.H. Ko, J.N. Kim, Characteristics of CO2 absorption into aqueous ammonia [J]. Sep. Sci. Technol.,2008,43:766-777
    [66]Yudy Halim Tan.Study of CO2 absorption into thermomorphic lipophilic amine solvents [D]. Dortmund,2010. Pp.7-8
    [67]Zhang Hongliu, Chen Minggong. Study of scrubbing CO2 from flue gas with aqueous ammonia intensified by rotating cross-flow disks packed bed[J], Journal of China coal society,2007,32 (7):748-752
    [68]Zhang Jun, Gong Maoli, Jia Mingxia, Chen Minggong. Study on removal of low concentration CO2 from flue gas by aqueous ammonia under HIGEE at normal atmosphere [J]. Journal of Anhui University of Science and Technology,2006,26 (1):48-51
    [69]Zhang Mao, Sai Juncong, Wu Shaohua, Li Zhenzhong. Experimental study of the removal of CO2 from coal-fired flue gas by using ammonia [J]. Journal of engineering for thermal energy&power,2008,23 (2):191-194
    [70]Zhang Mo, Chen Hanping, He Qiao, Zhang Shihong, Zheng Chuguang. Experimental study on CO2 capture from flue gas by aqueous ammonia [J]. Energy and Environment,2007,4:81-83
    [71]白冰,李小春,刘延峰,等.中国CO2集中排放源调查及其分布特征[J].岩石力学与工程学报,2006,25:2918-2923
    [72].[德]莱恩哈特·毕力特著,天津大学化工分离与新型填料开发中心,天津大学化学工程研究所译,填料塔分析与设计[M],北京:化学工业出版社,1993年11月
    [73][德]莱恩哈特·毕力特著,魏建华等译,填料塔[M],北京:化学工业出版社,1998年5月
    [74]刘彦丰,阎维平,宋之平.炭/碳粒在CO2/O2气氛中燃烧速率的研究[J].工程热物理学报,1999,20(11):769-772.
    [75]国家医院管理局上海医药设计院编,化工工艺设计手册[M],北京:化学工业出版社,1996年1月
    [76]北京市环境保护科学研究所编,大气污染防治手册[M],上海科学技术出 版社,1987
    [77]季学李编,大气污染控制工程[M],同济大学出版社
    [78][日]尾花英朗著,徐中权译,热交换设计手册[M],北京:石油工业出版社,1982年9月
    [79]赵振国著,冷却塔[M],北京:中国水利水电出版社,1997年6月
    [80]张正瑞,邵洪福等编,换热器及其计算基础知识[M],北京:化学工业出版社,1980年5月
    [81]天津大学,浙江化工学院,浙江大学等合编,塔器(国外化工与炼油设备发展概况之三)[M],兰州:兰州石油机械研究所,1973年
    [82]化工设备设计全书编辑委员会,塔设备设计[M],上海:上海科学技术出版社,1988年11月
    [83]大连理工大学,青岛化工学院,南京化工学院合编,贺匡国主编,化工容器及设备简明设计手册,北京:化学工业出版社,1989年12月
    [84]路秀林,王者相等编,塔设备[M],北京:化学工业出版社,2004年1月
    [85]费维扬等,萃取塔设备强化的研究和应用[J],化工进展,2004,23(1):12-16.
    [86]晏水平.膜吸收和化学吸收分离C02特性的研究[D].博士,杭州:浙江大学.2009
    [87]刘芳.再生氨法脱碳技术的基础研究[D].博士,北京:清华大学.2009
    [88]翁扬.活化氨基酸盐溶液吸收烟道气中C02的研究[D].硕士,杭州:浙江大学.2011
    [89]赵伟.氨基酸盐SG溶液吸收烟道气中二氧化碳的研究[D].硕士,杭州:浙江大学.2008
    [90]秦锋.氨水吸收二氧化碳的化学反应动力学与吸收热研究[D].博士,北京:清华大学.2010
    [91]盖群英.醇胺溶液富集C02的研究[D].硕士,大连:大连理工大学.2008
    [92]曾荣树,孙枢,陈代钊,段振豪.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J].中国科学基金,2004,4:196-200.
    [93]毛玉如,方梦祥,王勤辉,吴学成,骆仲泱,倪明江,岑可法.02/C02气氛下循环流化床燃煤燃烧污染物排放的试验研究[J].动力工程,2004,21(3): 411-415.
    [94]毛玉如,方梦祥,骆仲泱,岑可法.富氧气氛下循环流化床煤燃烧试验研究[J].燃烧科学与技术,2005,11(2):188-191.
    [95]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下SO2生成特性的研究[J].华中科技大学学报(自然科学版),2002,30(1):100-102.
    [96]骆仲泱,毛玉如,吴学成,方梦祥,王勤辉,倪明江,岑可法.O2/CO2气氛下煤燃烧特性试验研究与分析[J].热力发电,2004,(6):14-18.
    [97]周泽兴.火电厂排放CO2的分离回收和固定技术的研究开发现状[J].环境科学进展.1993,9(3):19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700