用户名: 密码: 验证码:
高海拔地区油池火燃烧和烟气特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地形复杂多样,高原地区约占到我国国土面积的1/3。在这些广阔的高原地区分布着众多的古建筑等历史文化遗产,尤其是位于青藏高原上的西藏自治区,更是拥有大量的寺庙等古建筑。这些古建筑大多年代久远并且多为木质结构,耐火等级低,且其内部存在这大量的可燃物以及点火源。同时由于高海拔地区特殊的低压低氧环境,对于现有的安全防治手段的适用性也有待考察。因而,高海拔地区的火灾安全防治就显得非常迫切。为了给高海拔地区的建筑消防安全设计及火灾防治提供科学依据和理论支持,有必要对高海拔地区低压低氧环境下可燃物的燃烧特性和烟气特性进行研究。
     高海拔地区的低压低氧环境将直接对可燃物的燃烧过程,烟气产生以及烟气蔓延产生影响。对于液体燃料的燃烧,高海拔的影响主要体现在燃烧速率的降低。燃烧速率的降低主要是由于气相燃烧强度、对未燃油面的热反馈及单位体积的氧气质量浓度不同造成的。由于燃烧速率的降低,进而会影响到空气的卷吸、火焰形状、火焰及烟气的温度、火焰辐射、烟气浓度等参数,从而造成高海拔地区的液体燃料燃烧的规律与内地有所不同。因而,本文开展正庚烷油池火的燃烧实验来揭示高海拔地区低压低氧环境下油池火的燃烧特性和烟气特性规律。
     首先在合肥和拉萨两地开展标准燃烧实验间的油池火燃烧对比实验,通过测量燃烧速率、火焰和烟气温度、火焰高度、烟气的发射率和光学密度、烟气组分浓度以及热辐射通量等参数,初步揭示高海拔地区低压低氧环境对于油池火燃烧特性和烟气特性的影响规律。结果表明,随着海拔高度的增加燃烧时间增长,燃烧速率降低,烟气浓度及烟气发射率降低,热辐射通量及单位面积热辐射损失降低,烟气中CO、CO2降低,并推断出油池火单位面积的燃烧速率与油池的燃烧面积以及环境压力有关。
     为了更深入的揭示高海拔地区油池火的燃烧特性规律,在合肥和拉萨地区搭建简易锥形量热仪实验平台开展两地油池火燃烧对比实验以及合肥地区的变烟道风速对比实验,通过测量燃烧速率、烟道排烟风速、烟气的组分浓度以及烟气温度等参数计算得到油池火的热释放速率及燃烧效率,进一步揭示高海拔地区油池火的燃烧特性。结果表明,热释放速率及燃烧效率均随着海拔高度的升高而降低,随着风速的增大热释放速率增大,而燃烧效率则是先降低再增加。通过对实验数据的处理分析得出了常压下有强制通风时油池直径在10-30cm的单位面积燃烧速率与油池直径的关系式,然后在前人研究成果(压力相似模型和辐射模型)的基础上,推导出了两种在强制通风条件下油池直径满足一定范围时单位面积燃烧速率与油池直径及大气压力的关系式,并使用实验数据对关系式进行了部分验证。但由于压力数据量比较少,因而这两种关系式在其它压力情形下的适用性仍需实验来进行验证。同时也对这两种关系式在适用范围内的预测结果进行了误差分析,结果发现两种关系式的预测结果基本一致。
     由于前面两部分的实验只在两个压力点开展了对比燃烧实验,数据量太少。因而本文也从两方面对前面得出的油池火燃烧特性和烟气特性规律进行验证。一部分是使用车载可移动实验装置在拉萨和当雄两地开展对比实验,进一步验证了本文得出的规律在更高海拔地区的适用性。另一部分是在合肥地区的低压实验舱通过调节低压实验舱内的大气压力开展小尺寸油池火的变压力燃烧实验,通过测量燃烧速率这一参数来研究其与大气压力的关系,对数据进行处理分析拟合得到了小尺寸油池火稳定燃烧阶段的平均燃烧速率与大气压强的关系式,即小尺寸油池火稳定燃烧阶段的平均燃烧速率与大气压力呈指数关系。
The terrain is highly complex in China, with the plateau region covering about one-third percent of land area. On this wide range of plateaus, especially the Tibet on the Qinghai-Tibet Plateau, are distributed a large number of ancient buildings and historical heritage. Most of these ancient buildings are wood--structured, having plenty of combustibles and ignition sources inside. Therefore, they are weakly resistant to any possible fire. At the same time, the applicability of the existing fire safety technology under low pressure and low oxygen concentration still needs to be further investigated. Thus, the fire prevention and treatment at the high altitudes is very urgent. In order to provide scientific basis and theoretical support to the fire safety design and fire prevention of building at high altitude, it is necessary to study the combustion and smoke characteristics under low pressure and low oxygen concentration.
     Low pressure and low oxygen concentration at high altitude will directly affect the combustion process, smoke generation and smoke spread. In the case of the liquid fuel, the impact of the high altitude is mainly reflected on the decrease in its burning rate. The decrease of the burning rate may be attributed to the difference in gas phase burning intensity, in radiation feedback to fuel surface and in oxygen mass concentration per unit volume. And the decrease in the burning rate will further affect such parameters as air entrainment, flame shape, flame and smoke temperature, flame radiation and smoke density, which finally makes combustion law of liquid fuel at high altitude quite different from that at sea level. Then this paper conducted the combustion experiments of n-heptane to reveal the combustion and smoke characteristics of circle-pan fire under low pressure and low oxygen concentration.
     Firstly, the fire experiments were conducted in standard rooms in Lhasa and Hefei. To initially reveal the effect of low pressure and low oxygen concentration at high altitude on the combustion and smoke characteristics of circle-pan fire, burning rate, flame and smoke temperature, flame height, emissivity, smoke concentration and radiation heat flux were measured. The experimental results show that burning rate, smoke concentration, emissivity, radiation heat flux and thermal radiation loss per unit area decreases when the altitude is increased. It's then revealed that the burning rate per unit area is related to the pressure and the pool area.
     In order to further reveal the combustion characteristics at high altitude, the experiments were conducted in the simple cone calorimeter platforms which were built in Lhasa and Hefei respectively. The heat release rate and combustion efficiency were calculated by measuring the burning rate, exhaust velocity and smoke concentration. The experimental results show that the heat release rate and combustion efficiency decreases when the altitude is increased. When the exhaust velocity is increased, the heat release rate increases while the combustion efficiency first decreases and then increases. The relationship between burning rate per unit area and pool diameter was obtained under the forced ventilation when the range of the pool's diameter is10-30cm at the sea level. Then on the basis of the results of previous studies(Pressure modeling and radiation modeling), two relationships of burning rate per unit area and pool diameter, atmospheric pressure were deduced and the relationships were partly verified by the experimental data. However, for the limit of the data under the other atmospheric pressure, the applicability of the relationships also needs to be validated. Error analysis between the two relationships was also carried out and the result shows the good consistency.
     As the previous experiments were only carried out at two altitudes, it is necessary to conduct more experiments to validate the combustion and smoke characteristics at high altitude. Therefore, the experiments were carried out in a portable rig which was loaded onto a truck in Lhasa and Dangxiong to confirm the finding of previous studies. And the fire experiments in the low pressure chamber in Hefei by changing the pressure in the chamber were also conducted. The results show that the average burning rate of the small pool during the steady period and atmospheric pressure is an exponent relationship.
引文
1. Fan, W. Fire safety research of historical buildings in china[C]. Proceedings of Fifth Asia-Oceania Symposium on Fire Safety and Technology. Newcastle, Australia,2001. p.83-96.
    2.范维澄,王清安,姜冯辉等.1995,火灾简明学教程[M].合肥:中国科学技术大学出版社.
    3.庄磊,王福亮,孙晓乾等.布达拉宫古建筑火灾危险性调查研究[J].消防科学与技术,2006.25(3):p.337-340.
    4.吴志强,西藏寺庙(文物古建筑)消防安全对策的思考与研究[J].中国消防,2005(9):p.33-35.
    5. Wieser, D., P. Jauch, and U. Willi, The influence of high altitude on fire detector test fires[J]. Fire Safety Journal,1997.29(2-3):p.195-204.
    6. Kanury, A.M. Modeling of pool fires with a variety of polymers, in Fifteenth International Symposium on Combustion[J]. The Combustion Institute. Pittsburg, PA,1975. p.193-202.
    7. Alpert, R.L. Pressure Modeling of Fires Controlled by Radiation[J]. in Sixteenth International Symposium on Combustion. The Combustion Institute. Cambridge, MA, USA,1976. p.1489-1500.
    8. Li, ZH., Y. He, H. Zhang, et al., Combustion characteristics of n-heptane and wood crib fires at different altitudes[J]. Proceedings of the Combustion Institute, 2009.32:p.2481-2488.
    9. Hu, X., Y. He, Z. Li, et al., Combustion characteristics of n-heptane at high altitudes[J]. Proceedings of the Combustion Institute,2011.33:p.2607-2615.
    10. Jomaas, G., X. Zheng, D. Zhu, et al., Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures [J]. Proceedings of the Combustion Institute, 2005.30(1):p.193-200.
    11. Yanfei, T., N. Yi, Y. Lei, et al., Experiment Studies on the Effect of Altitude on Jet A's Flash Point[J]. Fire and Materials,2012.已接受.
    12.孙晓乾,李元洲,霍然等,西藏古建筑常用木材的着火特性试验[J].中国科学技术大学学报,2006.36(1):p.77-80.
    13.李振华,杨满江,张辉等.低压低氧环境下油池火的对比实验与燃烧特性[J].中国科学技术大学学报,2009.39(2):p.215-219.
    14.安翠,魏东,胡小康等.低压(低氧)条件下古建筑装饰性织物燃烧特性的实验研究[J].热科学与技术,2010.9(004):p.369-376.
    15. Jun, F., C.Y. Yu, T. Ran, et al., The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires[J]. Journal of Hazardous Materials, 2008.154(1-3):p.476-483.
    16. Fang, J., R. Tu, J.-f. Guan, et al., Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires[J]. Fuel,2011.90(8): p.2760-2766.
    17.刘勇,高原环境对火灾早期燃烧特性及火灾探测影响的研究[D].2006,合肥:中国科学技术大学.
    18.于春雨,张永明,方俊,等.西藏高原环境下点式感烟火灾探测器的灵敏度[J].中国科学技术大学学报,2007.37(3):p.290-295.
    19. Yu, C.Y., Y.M. Zhang, and J. Fang,2007, The influence of low atmospheric pressure of tibet on the standard test fires and fire detectors[C], in 7th Aisa-Oceania Symposium on Fire Science and Technology 2007:Hongkong.
    20.于春雨,张永明,刘勇,et al.西藏高原环境下国家标准火SH4燃烧特性的实验研究[C].中国工程热物理学会2006年燃烧学学术会议.武汉,2006.p.28-34.
    21.蔡昕.高海拔低气压条件对细水雾灭火性能影响的实验研究[D].2009,合肥:中国科学技术大学.
    22.蔡昕,王喜世,李权威,等.低气压环境下正庚烷及汽油池火的燃烧特性[J].燃烧科学与技术,2010.16(4):p.341-346.
    23. Cai, X., X.S. Wang, T.S. Liang, et al., Experimental Study on the Effects of Low Ambient Pressure Conditions at High Altitude on Fire Suppression with Water Mist[J]. Journal of Fire Sciences,2010.28(5):p.441-458.
    24 ABCB, International Fire Engineering Guidelines[S]. Canberra:Australian Building Codes Board,2005.
    25.范维澄,刘乃安,中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006.36(1):p.1-8.
    26.霍然,建筑火灾安全工程导论[M].1999,合肥:中国科学技术大学出版社.
    27. Drysdale, D., An Introduction to Fire Dynamics[M].1987, New York:A Wiley-Interscience Publication.
    28. Karlsson, B. and J.G. Quintiere, Enclosure fire dynamics[M].2000:CRC press, USA.
    29. Kim, C., A. El-Leathy, F. Xu, et al., Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1-1.0 atm[J]. Combustion and Flame,2004. 136(1):p.191-207.
    30. Lignell, D.O., J.H. Chen, P.J. Smith, et al., The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation[J]. Combustion and Flame,2007.151(1-2):p.2-28.
    31. McCrain, L. and W. Roberts, Measurements of the soot volume field in laminar diffusion flames at elevated pressures[J]. Combustion and Flame,2005.140(1): p.60-69.
    32. Bento, D.S., K.A. Thomson, and O.L. Gulder, Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures[J]. Combustion and Flame,2006.145(4):p.765-778.
    33. Most, J.M., P. Mandin, J. Chen, et al. Influence of gravity and pressure on pool fire-type diffusion flames[J]. Proceedings of the Combustion Institute,1996.26: p.1311-1317.
    34.. Hirsch, D., F.Y. Hshieh, H. Beeson, et al., Carbon dioxide Fire suppressant concentration needs for International Space Station environments [J]. Journal of Fire Sciences,2002.20(5):p.391-399.
    35. Komnik, Y.F., E. Bukhshtab, Y.V. Nikitin, et al., Features of Temperature Dependence of the Resistance of Thin Bismuth Films[J]. Soviet Journal of Experimental and Theoretical Physics,1971.33:p.364.
    36.李振华.西藏高原低压低氧条件下可燃物燃烧特性和烟气特性研究[D].2009,合肥:中国科学技术大学.
    37.胡小康,何亚平,李振华等,低压低氧环境下油盆火的燃烧特性和烟气特性[J].燃烧科学与技术,2011.17(2).
    38.杨满江.高原环境下压力影响气体燃烧特征和烟气特性的实验与模拟研究[D].2011,合肥:中国科学技术大学.
    39. Yafei, W., Y. Lizhong, Z. Xiaodong, et al., Experiment study of the altitude effects on spontaneous ignition characteristics of wood[J]. Fuel,2010.89(5):p. 1029-1034.
    40.王亚飞.热解气体流动特性对炭化可燃物热解着火特性影响规律研究[D].2011,中国科学技术大学.
    41. Dai, J.K., M.A. Delichatsios, and L.Z. Yang. Piloted Ignition of Solid Fuels at Low Ambient Pressure and Varying Igniter Location[C]. in The 34th International Symposium on Combustion, Accepted,2012.
    42. Dai, J., L. Yang, X. Zhou, et al., Experimental and Modeling Study of Atmospheric Pressure Effects on Ignition of Pine Wood at Different Altitudes[J]. Energy & Fuels,2009.24(1):p.609-615.
    43. Qie, J., L. Yang, Y. Wang, et al., Experimental Study of the Influences of Orientation and Altitude on Pyrolysis and Ignition of Wood[J]. Journal of Fire Sciences,2011.29(3):p.243-258.
    44.郄军芳.辐射方向和海拔高度对固体可燃物热解及着火特性影响的实验研究[D].2011,合肥:中国科学技术大学.
    45. Ran, T., Y. Chunyu, and F. Jun,2009, Response of ordinary point-type fire smoke detectors in ISO fire tests under different ambient pressures[C].2009, AUBE.
    46. Huang, X.J., J.H. Sun, J. Ji, et al., Flame spread over the surface of thermal insulation materials in different environments [J]. Chinese Science Bulletin,2011: p.1-6.
    47. Zhang, Y, J. Ji, X.J. Huang, et al., Experimental study of the effects of the inclination on flame spread over solid surfaces[J]. Chinese Science Bulletin, In press.
    48. Zhang, Y, J. Ji, X.J. Huang, et al., Effects of sample width on flame spread over horizontal charring solid surfaces on a plateau[J]. Chinese Science Bulletin,2011. 56(9):p.919-924.
    49.张英,孙金华,纪杰等,海拔高度和试样宽度耦合作用下木材表面水平蔓延特性的实验研究[J].燃烧科学与技术,2011.17(3):p.274-279.
    50.张英,孙金华,纪杰等,利用图像处理技术实现固体表面逆流火蔓延的速度场测量[C],中国工程热物理学会2009燃烧学学术会议.2009,合肥.
    51.任彬彬,高原环境下木材着火特性及油池火羽流特性研究[D].2009,合肥:中国科学技术大学.
    52.任彬彬,李元洲,徐伯乐等,大气压力对于木材着火模型的影响研究[C],中国工程热物理学会2009年燃烧学学术会议.2009,合肥.
    53.徐伯乐,高原环境下油池火的火焰及羽流特性研究[D].2010,合肥:中国科学技术大学.
    54. Lockwood, R.W. and R.C. Corlett. Radiative and convective feedback heat flux in small turbulent pool fires with variable pressure and ambient oxygen[C]. in Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference. ASME. Honolulu, HI, USA,1987. p.421-426.
    55. Shinotake, A., S. Koda, and K. Akita, An experimental study of radiative properties of pool fires of an intermediate scale[J]. Combustion Science and Technology,1985.43(1-2):p.85-97.
    56. Blinov, V. and G. Khudyakov. Diffusion burning of liquids[M].1961, DTIC Document.
    57. Ris, J.D., A. Murty Kanury, M.C. Yuen. Pressure modeling of fires[J]. Symposium (International) on Combustion,1973.14(1):p.1033-1044.
    58. Alpert, R.L., Pressure modeling of transient crib fires [J]. Combustion Science and Technology,1977.15(1-2):p.11-20.
    59. Burgess, D. and M. Hertzberg, Radiation from pool flames[J]. Heat transfer in flames,1974.2:p.413-430.
    60. Rasbash, D. and B. Pratt. Estimation of the smoke produced in fires [J]. Fire Safety Journal,1980.2(1):p.23-37.
    61. Babrauskas, V., Heat release in fires[M].1990:Taylor & Francis.
    62. Apte, V., A. Green, J. Kent. Pool fire plume flow in a large-scale wind tunnel[C], in Third International Symposuim on Fire Safety Science,1991.
    63. De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling[J]. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    64. Chen, B., Q.S. Kang, C.H. Li, et al., Initial fuel temperature effects on burning rate of pool fire[J]. Journal of Hazardous Materials,2011.
    1.范维澄,王清安,姜冯辉等.火灾简明学教程[M].1995,合肥:中国科学技术大学出版社.
    2. Quintiere, J.G., Scaling applications in fire research[J]. Fire Safety Journal,1989. 15(1):p.3-29.
    3. CEN,1997, European Standard EN 54-2, Fire Detection and Fire Alarm Systerm, in Part 2:Control and Indicating Equipment.1997.
    4. Babrauskas, V. and R.D. Peacock, Heat release rate:The single most important variable in fire hazard[J]. Fire Safety Journal,1992.18(3):p.255-272.
    5.廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].2003,合肥:中国科学技术大学出版社.
    6. Huggett, C., Estimation of rate of heat release by means of oxygen consumption measurements[J]. Fire and Materials,1980.4(2):p.61-65.
    7.GT 16172-2007,建筑材料热释放速率试验方法[S].中华人民共和国国家标准,2007.
    8. Parker, W.J., Calculations of the Heat Release Rate by Oxygen Consumption for Various Applications [J]. Journal of Fire Sciences,1984.2(5):p.380-395.
    9. Janssens, M.L., Measuring rate of heat release by oxygen consumption [J]. Fire Technology,1991.27(3):p.234-249.
    10.表面材料的实体房间火试验方法[S].中华人民共和国国家标准,1995.
    11. International Standard-Fire tests, in Full scale room test for surface products[S]. 1993, International Orgnization for Standardization:Geneva.
    12. Drysdale, D., An Introduction to Fire Dynamics[M].1987, New York:A Wiley-Interscience Publication.
    13. D.J. Rasbash, Z.W.R., G.W.V. Stark, Properties of Fires of Liquids[J]. Fuel,1956. 35:p.94-107.
    14. De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling[J]. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    1. Blinov, V. and G. Khudyakov. Diffusion burning of liquids[M].1961, DTIC Document.
    2. Ris, J.D., A. Murty Kanury, and M.C. Yuen, Pressure modeling of fires[J]. Symposium (International) on Combustion,1973.14(1):p.1033-1044.
    3. Burgess, D. and M. Hertzberg, Radiation from pool flames[J]. Heat transfer in flames,1974.2:p.413-430.
    4. Rasbash, D. and B. Pratt, Estimation of the smoke produced in fires[J]. Fire Safety Journal,1980.2(1):p.23-37.
    5. Babrauskas, V., Heat release in fires[M].1990:Taylor & Francis.
    6. Apte, V., A. Green, and J. Kent. Pool fire plume flow in a large-scale wind tunnel, 1991.
    7. De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling[J]. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    8. Chen, B., Q.S. Kang, C.H. Li, et al., Initial fuel temperature effects on burning rate of pool fire[J]. Journal of Hazardous Materials,2011.
    9. Lockwood, R.W. and R.C. Corlett. Radiative and convective feedback heat flux in small turbulent pool fires with variable pressure and ambient oxygen [C]. in Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference. ASME. Honolulu, HI, USA,1987. p.421-426.
    10. Shinotake, A., S. Koda, and K. Akita, An experimental study of radiative properties of pool fires of an intermediate scale[J]. Combustion Science and Technology,1985.43(1-2):p.85-97.
    11. Wieser, D., P. Jauch, U. Willi. The influence of high altitude on fire detector test fires[J]. Fire Safety Journal,1997.29(2-3):p.195-204.
    12. Li, Z.-h., Y. He, H. Zhang, et al., Combustion characteristics of n-heptane and wood crib fires at different altitudes[J]. Proceedings of the Combustion Institute, 2009.32:p.2481-2488.
    13. Hu, X., Y. He, Z. Li, et al., Combustion characteristics of n-heptane at high altitudes [J]. Proceedings of the Combustion Institute,2011.33:p.2607-2615.
    14. Fang, J., R. Tu, J.-f. Guan, et al., Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires[J]. Fuel,2011.90(8): p.2760-2766.
    15. Jun, F., C.Y. Yu, T. Ran, et al, The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires[J]. Journal of Hazardous Materials, 2008.154(1-3):p.476-483.
    16.胡小康,何亚平,李振华,等.低压低氧环境下油盆火的燃烧特性和烟气特性[J].燃烧科学与技术,2011.17(2).
    17. Janssens, M. and H.C. Tran, Data reduction of room tests for zone model validation[J]. Journal of Fire Sciences,1992.10(6):p.528-555.
    18. Luo, M., Y. He, and V. Beck, Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building[J]. Fire Safety Journal,1997.29(1):p.1-25.
    19. Chen, J., Y. He, and J. Wang, Multi-feature fusion based fast video flame detection[J]. Building and Environment,2010.45(5):p.1113-1122.
    20.陈娟.基于多特征融合的视频火焰探测方法研究[D].2009,合肥:中国科学技术大学.
    21. Hearn, D. and M.P. Baker, Computer Graphics with Open GL,3/E[M].2004, Beijing:Publishing House of Electronics Industry.
    22. Heskestad, G., Fire Plumes, flame height and air entrainment[M], in P.J. DiNenno(Ed.), SFPE Handbook of Fire Protection Engineering.2002:p. 216-232.
    23. Tewarson, A., ed. Generation of heat and chemical compounds in fires[M]. SFPE Handbook of Fire Protection Engineering. Vol.3.1995, third ed., Society of Fire Protection Engineers:Boston.83-161.
    24. Muholand, G.W., Smoke Production and Prosperities[M], SFPE Handbook of Fire Protection Engineering, third ed.,.2002:p.473-483 (Chapter 13, Section2).
    25. Drysdale, D., An Introduction to Fire Dynamics[M].1987, New York:A Wiley-Interscience Publication.
    26. Glassman, I, R. Yetter, Combustion[M].2001, Academic Press.
    27李振华,杨满江,张辉等.低压低氧环境下油盘火的对比实验与燃烧特性.中国科学技术大学学报,2009.39(2):p.215-219.
    28. Tien, C.L., K.Y. Lee, A.J. Stretton, Radiation Heat Transfer. SFPE Handbook of Fire Protection Engineering[M], third ed.,2002:p.1.73-1.89(Chapter 5, Sectionl).
    29. Bento, D.S., K.A. Thomson, and O.L. Gulder, Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures[J]. Combustion and Flame,2006.145(4):p.765-778.
    1. Janssens, M.L., Measuring rate of heat release by oxygen consumption[J]. Fire Technology,1991.27(3):p.234-249.
    2. Huggett, C., Estimation of rate of heat release by means of oxygen consumption measurements [J]. Fire and Materials,1980.4(2):p.61-65.
    3. D.J. Rasbash, Z.W.R., G.W.V. Stark, Properties of Fires of Liquids[J]. Fuel,1956. 35:p.94-107.
    4. De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling[J]. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    5. International Standard-Fire tests, in Full scale room test for surface products [S]. 1993, International Orgnization for Standardization:Geneva.
    6.表面材料的实体房间火试验方法[S].中华人民共和国国家标准,1995.
    7. Heskestad, G., Fire Plumes, flame height and air entrainment[M], in P.J. DiNenno(Ed.), SFPE Handbook of Fire Protection Engineering.2002:p. 216-232.
    8. Wieser, D., P. Jauch, and U. Willi, The influence of high altitude on fire detector test fires[J]. Fire Safety Journal,1997.29(2-3):p.195-204.
    9.廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].2003,合肥:中国科学技术大学出版社.
    10.范维澄,王清安,姜冯辉,等.火灾简明学教程[M].1995,合肥:中国科学技术大学出版社.
    11. Ris, J.D., A. Murty Kanury, and M.C. Yuen, Pressure modeling of fires[J]. Symposium (International) on Combustion,1973.14(1):p.1033-1044.
    12. Alpert, R.L. Pressure Modeling of Fires Controlled by Radiation[J]. Sixteenth International Symposium on Combustion. The Combustion Institute. Cambridge, MA, USA,1976. p.1489-1500.
    13. Blinov, V. and G. Khudyakov, Diffusion burning of liquids[M].1961, DTIC Document.
    14. F.P.Incropera, D.P.DeWitt, T.L.Bergman, et al.,传热和传质基本原理[M].第6版,葛新石,叶宏,译.2007,北京:化学工业出版社.
    15. Drysdale, D., An Introduction to Fire Dynamics[M].1987, New York:A Wiley-Interscience Publication.
    1. Wieser, D., P. Jauch, and U. Willi, The influence of high altitude on fire detector test fires[J]. Fire Safety Journal,1997.29(2-3):p.195-204.
    2. Li, Z.-h., Y. He, H. Zhang, et al., Combustion characteristics of n-heptane and wood crib fires at different altitudes[J]. Proceedings of the Combustion Institute, 2009.32:p.2481-2488.
    3.李振华,杨满江,张辉等.低压低氧环境下油盘火的对比实验与燃烧特性.中国科学技术大学学报,2009.39(2):p.215-219.
    4.陈娟.基于多特征融合的视频火焰探测方法研究[D].2009,合肥:中国科学技术大学.
    5 Chen, J., Y. He, and J. Wang, Multi-feature fusion based fast video flame detection[J]. Building and Environment,2010.45(5):p.1113-1122.
    6. Muholand, G.W., Smoke Production and Prosperities[M], SFPE Handbook of Fire Protection Engineering, third ed.,2002:p.473-483 (Chapter 13, Section2).
    7. Bento, D.S., K.A. Thomson, and O.L. Gulder, Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures[J]. Combustion and Flame,2006.145(4):p.765-778.
    8. Ris, J.D., A. Murty Kanury, and M.C. Yuen, Pressure modeling of fires[J]. Symposium (International) on Combustion,1973.14(1):p.1033-1044.
    9. De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling[J]. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700