用户名: 密码: 验证码:
三峡库区库岸滑坡涌浪灾害研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2011年三峡库区坝前水位首次蓄水达到175m,这标志着三峡水库已经达到预定的设计标准,开始正常的运营。三峡库区崩塌滑坡众多,据不完全统计,库区二、三期共监测崩塌滑坡3028处,在高水位及以后水库水位变动因素影响下,从宜昌到重庆600多公里的库岸滑坡活动性必然显著加强,潜在滑坡失稳概率大大增加,库区的地质灾害预警防治工作也需要进一步加强。滑坡涌浪作为水库库岸滑坡主要的次生灾害,造成人员伤亡、经济损失和环境破坏的例子屡见不鲜,如1961年中国柘溪水库的塘岩光大型滑坡、1963年意大利的瓦依昂水库滑坡、1985年三峡库区新滩滑坡等引起的涌浪均造成严重的后果。
     滑坡涌浪灾害研究是一个复杂的岩土工程和水利工程问题,影响水库库岸滑坡涌浪的因素也是十分复杂,有滑坡规模、形状、入水速度、滑动面倾角、水深、河道宽度、河道横断面形状、河道弯曲程度等。目前国内外学者在定量评价滑坡涌浪时,大大简化了涌浪的影响因素,忽略了滑坡涌浪灾害的库岸地质模型,河道多为平直的矩形河道,这样计算的涌浪值与实际值有很大的差距。因此,将滑坡运动过程与产生涌浪及传播衰减过程结合起来,通过力学分析研究涉水滑坡运动速度计算模型,同时结合物理模型试验研究三峡库区滑坡涌浪的形成过程及传播规律,开展水库滑坡涌浪灾害的预测研究对三峡库区安全航运、制定涌浪灾害应急预案和紧急避险方案具有重要的理论和实践意义。目前全国已建大型水库约500座,白鹤滩、溪洛渡等大型在建水电站也即将投入运行,滑坡及其次生涌浪灾害同样严重威胁着这些水库的安全运营,滑坡涌浪分析计算理论及技术方法的研究成果可以为类似水库滑坡灾害的预警工作提供有效的技术支撑,具有重大的推广应用价值。
     论文首先分析三峡库区新滩滑坡、千将坪滑坡和龚家方滑坡三个滑坡涌浪灾害实例的成因机理与涌浪特征,归纳总结滑坡涌浪灾害研究中典型的地质模型和河道模型。接着采用量纲分析方法得出了滑坡涌浪高度与不同影响因素的无量纲形式。然后统计分析三峡库区从库首到库尾一百多个潜在滑坡和古滑坡的地质资料,设计滑坡涌浪模型试验的正交试验方案和单因素试验方案。同时选取白水河滑坡河道为原型建立1:200的室内河道物理模型,研制了试验控制系统,合理布置试验量测系统,开展了滑坡涌浪三维物理模型试验。基于模型试验的量测数据和滑坡涌浪形成过程图片,结合波浪力学相关知识,分析了滑坡涌浪的形态特点,以国内外经典的Noda公式和潘家铮公式为基础,增加了滑坡规模函数和滑动面倾角函数,提出了三峡库区滑坡涌浪的经验公式。为了更准确滑坡涌浪计算中的速度参数,通过运动块体水阻力实验,分析了涉水滑坡运动过程中受到的水阻力大小,提出了涉水滑坡失稳后的速度计算模型。在此基础上,利用该滑坡速度计算模型分别对新滩滑坡、千将坪滑坡和龚家方滑坡进行了计算与反分析。在滑坡涌浪传播的理论分析方面,通过运用浅水波理论中的连续性方程和运动方程,借助分离变量法和线性渐进方法,对不同河道断面特征下滑坡涌浪急剧衰减阶段的涌浪特征进行了理论解析,最后结合缓慢衰减阶段考虑沿程水头损失的计算公式,以新滩滑坡为例对滑坡沿程传播浪进行了计算。通过上述围绕滑坡涌浪灾害的分析和研究,论文主要取得了以下一些成果和结论:
     (1)三峡库区典型库岸滑坡涌浪灾害实例分析
     通过对新滩滑坡、千将坪滑坡和龚家方滑坡这3个三峡库区涌浪灾害实例的地形地貌、滑体特征、成因机理、运动过程和涌浪特征等分析,归纳总结这三个滑坡实例代表的地质模型和河道模型。其中新滩滑坡代表的地质模型为堆积体沿基岩面滑动的滑坡,代表的河道模型为大然河道条件下滑坡体厚度接近于河道水深的宽广河道;千将坪滑坡代表的地质模型为堆积体后缘层间剪切前缘切层滑动的滑坡,代表的河道模型为河道蓄水条件下滑坡体厚度接近于河道水深;龚家方滑坡代表的地质模型为崩滑堆积体沿基岩面滑动的滑坡,代表的河道模型为河道蓄水条件下滑坡体厚度远小于河道水深。
     (2)研究了滑坡涌浪三维物理模型试验装置设备和方法
     通过对三峡库区已经开展勘探的潜在滑坡的地质资料进行统计分析,按照正交试验设计方法,制定了包含滑坡规模、入水速度、滑动面倾角、滑坡失事处最大水深、水下岸坡坡角和对岸岸坡坡角等滑坡涌浪影响因素的试验方案。选取三峡库区白水河滑坡的上下游河道地形为原型,在遵守几何相似、运动相似和动力相似条件的前提下,建立了1:200比例尺的河道物理模型,研究了包括滑动控制设备、载物滑车、吊车设备的实验控制系统,采用电容式波高仪、高速摄影仪组成了实验量测系统,开展了首浪、对岸爬坡浪和滑坡上下游传播浪的物理模犁试验。
     (3)滑坡涌浪形态分析及最大首浪的定义
     通过分析滑坡入水后不同时刻的涌浪形态变化图片,将滑坡涌浪的形成、发展和消散过程分为三个阶段:第一个阶段是滑块沿着滑动面进入水体阶段。滑坡以一定规模和速度入水,通过能量传递给周围受推挤的水体,表层水体受到冲击作用呈现为舌状形态向前运动,直接溅落到水面或拍打到对岸岸坡。第二个阶段是滑坡涌浪的形成阶段。随着滑块沿着滑面持续下滑入水,滑块尾部形成的空腔内外水位差越来越大,周围水体由于快速进入空腔相互碰撞产生巨大的水花团,很快在附近的地方跌落。同时由于能量的持续传递,滑块周围形成涌浪,并向四周传播,其中涌浪高度以滑块滑动方向上最大,我们定义此涌浪高度为最大首浪。第三个阶段是滑坡涌浪传播与哀减阶段。滑坡涌浪形成后在固有河道特征影响下传播到周围的水体,一个是由本岸传播到对岸,然后形成了爬坡浪;另一个是沿着河道传播,受河道宽度和干支流影响逐渐衰减。
     (4)提出了适合三峡库区的滑坡涌浪计算模型
     采用敏感性分析方法对滑坡最大首浪高度的各个影响因素进行分析,发现滑坡入水速度对滑坡最大首浪高度的影响最为敏感,其次依次为:滑体长度、宽度、滑面倾角、滑体厚度、水深。以国内外经典的Noda和潘家铮提出的滑坡涌浪公式为基础,基于试验量测数据,采用量纲分析方法和多元非线性回归分析方法,提出了包括首浪、对岸爬坡浪和沿程传播浪的三峡库区滑坡涌浪计算模型。
     (5)基于水阻力试验的涉水滑坡速度计算模型
     为了确定滑坡涌浪计算中的速度参数,设计了运动块体水阻力实验,分析了不同面积和速度的块体迎水面受到的水阻力大小。应用条分法沿滑面方向和垂直滑面方向建立运动方程,采用浮重度计算涉水滑坡水下部分的重力,结合试验所得水阻力计算模型,得到涉水滑坡失稳后的速度计算模型。
     (6)典型滑坡涌浪灾害的计算与反分析
     典型滑坡涌浪灾害的计算与反分析要兼顾到滑坡速度、滑坡入江体积、滑坡发生处对岸的爬坡浪高度,因计算方法只是实际滑坡涌浪问题的一种求解手段,不可能用一个折减系数就能反应实际的动摩擦抗剪强度参数,因此,折减系数应该在一定范围内取值。
     以条分法的速度计算方法和依据物理模型试验修正后的三峡库区滑坡涌浪计算公式为计算依据,我们计算了新滩滑坡、千将坪滑坡和龚家方滑坡三峡库区典型滑坡灾害实例的最大首浪、对岸爬坡浪和沿程传播浪。结合实地调查资料可以看出,当A在0.8-0.95之间取值时,滑坡速度、对岸爬坡浪高度和沿程传播浪的计算结果是基本合理的,论文依据物理模型试验所修正的三峡库区滑坡涌浪计算公式可以为三峡库区滑坡涌浪的预警预报提供较为可靠的技术支撑。
     在滑坡速度及涌浪计算时,除了考虑折减系数外,还应该注意考虑具体滑坡的稳定性及变形情况,滑面的陡缓与起伏程度、滑坡重心离库水位的高低程度等因素。
     (7)考虑河道横断面形状系数的滑坡涌浪传播研究
     结合水动力学与流体力学的经典圣维南方程,对滑坡涌浪的河道横断面形状进行函数定义,推导出了包含河道形状系数的连续性方程和运动方程。
     依据物理模型试验得出滑坡沿程传播浪衰减过程呈先急剧后缓慢的变化规律,在急剧衰减阶段采用线性逼近摄动法对滑坡涌浪的连续性和运动方程进行零阶和一阶线性化,利用分离变量法得出沿程传播浪急剧衰减阶段的解析表达式。由滑坡沿程传播浪急剧衰减阶段的理论解析公式可知,在急剧衰减阶段,V形河道特征下滑坡涌浪衰减最快,U形河道其次,矩形河道衰减最慢。
     结合缓慢衰减阶段考虑沿程水头损失的计算公式,以新滩滑坡为例对滑坡沿程传播浪进行了计算分析,并将计算结果和实验公式进行对比分析,认为本文提出的考虑河道形状系数的急剧衰减理论公式适用于比较狭窄的河道。
The water level in Three Gorges Reservoir was firstly reached to175m in2011, which indicated that the operation of Reservoir is reached to the designed criterion. Landslides are largely distributed in Three Gorges Reservoir. According to the incomplete statistics, totally3028landslides are monitored in the Second and Third Stage of the Reservoir operation. Influenced by the fluctuation of the water level and high water pressure, many landslides become obviously active along the600miles river bank from Yichang to Chongqing, and old and potential landslides failure probabilities are greatly increased. Landslide generated waves is the most severe hazard chain of landslides, which can pose serious threat to the safety of navigation, docks, structures and residents. The occurrence of all such events as Tangyanguang landslide in Zhexi reservoir in1961, Italy Vajont landslide in1963and Xintan landslide in Three Goreges in1985roused severe consequence for the wave hazard.
     The research of landslide surge is a complicated geotechnical engineering and hydraulic engineering problems, also the factor of reservoir bank landslide surge complex, including landslide size,shape,speed of sliding into the water, dipping angle of the slide surface,water depth, width of river course,channel cross-sectional shape,river bend degree and so on.At present, domestic and foreign scholars simplified the factors influencing landslide surge and the shape of river course, also ignored the geological model of reservoir bank when they make assessment of landslide surge in the quantitative, thus there's a large gap between the actual value and the calculation value.So it makes sense to carry out research in the field of landslide surge prediction in reservior area, which will contribute to the navigation safety and strategies planing of disaster reducing and avoiding. The research needs the combination of landslide motion process, producing surge and propagation attenuation process, the study of wading landslide motion speed calculation model, Combination with the physical model test and study of landslide surge in the Three Gorges reservoir formation and propagation.
     There are500large built reserviors in china. Some like baihetan and xiluodu which building are going to be used, their safety of navigation are also threatened by the landslide and surge. The study result of landslide surge theoretical calculation and technology method which can provide some effective technical support for some large resevoirs has significiant application value.
     Taking Xintan landslide, Qianjiangping landslide and Gongjiafang landslide as examples, this paper summarized geological model and river channel model for typical landslide-surge disaster thoroughly analysising their causes and surge features. Then we captured nondimensional forms of landslide surge height by using dimensional analysis method. Combined with the existing geological data of potential landslides in the Three Gorges Reservoir area, the orthogonal text program and single-factor test program have been designed for landslide-surge experiment.Based on the1:200scale physical river channel model of Baishuihe landslide, precisely controling3D landslide-surge experiment have been conducted. The landslide surge calculation model considering landslide scale and sliding surface angle is presented in the paper after comparing the results got from Noda and Panjiazheng formula. Underwater block resistant force experiments have been done to calculate the landslide speed and hydraulic resistance. Incorporated this model into the study of Xintan landslide, Qianjiangping landslide and Gongjiafang landslide, the results are more reasonable. In analytical solutions for landslide propagation wave along the channel, we deduced the continuity equation and motion equation considering channel corss-section shape, then with the help of separation variable method and linear approximation, we obtain the attenuation law of surge considering different water channel shape in sharp attenuation stage. At last. Xintan landslide is taken as an example to calculate landslide propagation waves by combing the calculation formula considering frictional head loss in slow attenuation stage. Through the system study of landslide surge hazard, some research conclusions have been made in this paper as follow:
     (1) Typical landslide surge analysis in the Three Gorges Reservoir
     Taking Xintan landslide, Qianjiangping landslide and Gongjiafang landslide as examples, by analyzing their topography and geomorphology, genetic mechanism, motion process and surge feautres, we summarized geological model and river channel model of these three landslide surge hazaed examples. Xintan landslide stands for the geological model which landslide slides along the bed rock, and the channel model which landslide thickness is close to the river water depth under the condition of natural river. Qianjiangping landslide stands for the geological model which landslide has the characteristics of interlaminar shear in back and shear layers in front, and the channel model which landslide thickness is close to the river water depth under impoundment condition. Gongjiafang landslide stands for the geological model which slumping mass slides along the bed rock, and the channel model which landslide thickness is far less than the river water depth under impoundment condition.
     (2) Landslide surge physical model experiment equpiment and method are studied
     Through the statistical analysis of geological data about the potential landslides in TGRA, adopting the orthogonal experimental design method, we formulate the experiment scheme; it include landslide scale, speed entering into the water, sliding plane obliquity, water depth, and slope angle. According to the experiment program, taking the channel of Baishuihe landslide in TGRA as prototype, Based on the premise of geometric similar,dynamic similar, movement similar, we establishe the river physical model in map scale1:200, and thus develop experimental control system including the sliding control equipment, cargo block and crane equipment, then adopt capacitance wave probe, high-speed camera and other measuring instruments, forming experimental measurement system, at last we develope landslide surge three-dimensional physical model experiment.
     (3) morphological analysis of landslide surge and definition of the largest leading wave
     Through analyzing morphological changes of landslide surge when landslide entering into the water, the production process of landslide surge can be divided into three stages:the first stage is landslide entering into water stage. When landslide slide into the water along the sliding surface, water attaining surface pushes the water, making the the upper water body in semifloret shape jump to the water surface or the other side of the bank slope. The second stage is landslide surge formation stage. When landslide continuously downslide, the cavity forming in its tail is bigger and bigger, the water around the cavity quickly enter into the empty cavity and produce a great splash due to collisions, splash regiment fall in the near place very soon. At the same time, the energy which landslide carry continuously passed to the surrounding water, then forming surge around them. Among them the surge height is the biggest in landslide sliding direction, we define this is the largest leading wave. The third stage is surge propagation and attenuation stage. When landsldie surge propagate to the surrounding area, its height gradually decay. On one hand, it propagate to the opposite bank, then forming the climbing wave; On the other hand, it propagate along the river channel, and produce climbing waves along the bank.
     (4) Landslide surge calculation model in TGRA is put forward
     Based on the classical landslide surge formulas proposed by Noda and Pan Jiazheng, by analyzing the measured data, using the dimensional analysis method and multivariate nonlinear regression analysis method, we deduced the landslide surge calculation formulas in TGRA, including the largest leading wave height, the opposite bank climbing wave and the propagation wave along the channel. Besides, the sensitivity analysis of the largest leading wave's influencing factors were performed, and it is included that landslide speed is most sensitive to the leading wave height, the sensitivity order of other factors is landslide length,landslide width, sliding plane obliquity, landslide thickness and water depth.
     (5) Speed model of fording landslide baesd on water resistance experiment
     The experiment system of moving block's resistance in water is designed. We select area of and speed as the influencing factors to develop the pressure head experiment. Through the data analysis, we establish the the water resistance model of block's attaining surface in water. Adopting slice method, we establish motion equation along the sliding direction and the direction perpendicular to the sliding surface, combing with the water resistance model, we obtain the speed model of fording landslide.
     (6) Calculation and back analysis of typical landslide surge
     Calculation and back analysis to the typical landslide surge should consider landslide speed, landslide volume entering into the river and the opposite bank climbing wave. Due to the calculation method is one approach of sloving practical landslide surge problem, we can not just use one singule reduction factor, because it can't react the kinetic frictional shear strength parameters. Therefore, reduction factor should be within a certain range.
     According to the speed model based on slice method and the landslide surge calculation formulas in TGRA based on physical model experiment, we calcluate the largest leading wave, the opposite bank climbing wave and the propagation wave along the channel of Xintan landslide, Qianjiangping landslide and Gongjiafang landslide in Three Gorges Reservoir Area. Combining with the field survey data, we obtain that when the kinetic frictional shear strength parameter's value is between0.8-0.95, the calculation results of landslide velocity, the opposite bank climbing wave and the propagation wave along the channel is basically reasonable. Landslide surge calculation formulas in TGRA based on physical model experiment can provide some scientific basis for prediction and early warning of landslide surge in Three Gorges Reservoir Area.
     When calculating landslide speed and its surge, in addition to consider the reduction factor, we also should pay attention to the stability and deformation of landslide, the steepness of sliding surface, The height between landslide center and water level, the distribution of the groundwater level, channel depth, etal..
     (7) Research on propagation height of landslide surge considering channel cross-section shape coefficient
     Combining the Saint-Venant equations in hydrodynamics and Fluid mechanics, we define the function of landslide's river channel cross sectional shape, deduce the continuity equation and movement equation including channel shape coefficient.
     Then, the decay rule of surge in sharp attenuation stage is gained by separation variable method.
     Based on physical model experiment, we concluded that the propagation wave along the channel haves a rule which first sharpe decay then slow deacy. In a sharp attenuation stage, by adopting the method of linear approximation perturbation, landslide surge equation including continuity equation and motion equation are inearized for the zero order and first order. At the same time,we acquired the analytic expression of propagation wave along the channel in steep attenuation phase using the method of separation of variables.
     From the decay rule of surge in sharp attenuation stage, we know landslide surge attenuation under V-shaped channel cross-section is the fastest, secondly, U-shaped channel, and the last is rectangular channel cross-section.
     Combing the calculation formula considering frictional head loss in slow attenuation stage, Xintan landslide is taken as an example to calculate landslide propagation waves. By analyzing the calculated results of theoretical formula and experimental formula, we think that the theoretical formula considering channel shape coefficient is suitable for narrow channel.
引文
[1]http://www.cigem.gov.cn/;
    [2]钟立勋.意大利瓦依昂水库滑坡事件的启示.中国地质灾害与防治学报,1993,5(2):77-84:
    [3]廖秋林,李晓,李守定,等.三峡库区千将坪滑坡的发生地质地貌特征成因及滑坡判据研究.岩石力学与工程学报,2005,24(17):3146-3153;
    [4]李会中,潘玉珍,王团乐,等.三峡库区千将坪滑坡成因与机制分析.人民长江,2006,37(7):12-14;
    [5]殷坤龙,杜娟,汪洋.清江水布垭库区大堰塘滑坡涌浪分析.岩土力学,2008,29(12):3266-3270:
    [6]代云霞,汪洋,殷坤龙,等.三峡库区巫山县某崩塌体涌浪调查及计算分析.武汉理工大学学报,2010,32(19):71-74,132;
    [7]郭崇元.超大型滑坡及其速度计算.见:李嘉,徐邦栋.滑坡文集(第三集).北京:中国铁道出版社,1982.195—201;
    [8]Scheidegger A E. On the prediction of the reach and velocity of catastrophic landslides. Rock Mech D C,1973, (5):231-236;
    [9]Sassa K. Geotechnical model for the motion of landslides. Special lecture of the 5th International Symposium on Landslides, Landslides,1988, (1):37-55;
    [10]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980,120-132;
    [11]汪洋.水库库岸滑坡速度及其涌浪灾害研究:[博士学位论文].武汉:中国地质大学,2005.
    [12]卢万年.用空气动力学分析坡体高速滑坡的滑行问题.西安地质学院学报,1991,13(4):77-85;
    []3]胡广韬,毛彦龙,杨建宏.论基岩滑坡的临床聚能与启程弹冲.西安地质学院学报,1992,14(4):50-57;
    [14]廖小平,徐峻龄,郑静,等.高速远程滑坡的动力特征和运动模拟.中国地质灾害与防治学报.1993,4(2):26-30;
    [15]程谦恭,彭建兵,胡广韬,等.高速岩质滑坡动力学.成都:西南交通大学出版社,1999.
    [16]程谦恭,胡厚田.剧冲式高速滑坡全程动力学机理分析.水文地质工程地质,1999,(4):19-23.
    [17]刘忠玉,马崇武,苗天德,慕青松.高速滑坡远程预测的块体运动模型.岩石力学与工程学报,2000,19(6):742-746.
    [18]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理.工程地质学报,2001, 9(3):241-246.
    [19]刘涌江,胡厚田,白志勇.大型高速滑坡体运动的空气动力学研究.西南交通大学学报.2002,37(1):6-9.
    [20]邢爱国,陈龙珠,陈明中.岩石力学特性分析与高速滑坡启动速度预测.岩石力学与工程学报,2004,23(8):1654-1657.
    [21]O.Hungr, J.C., E.Eherhardt. Estimating landslide motion mechanism, travel distance and velocity. In The Intemationai Conference on Landslide Risk Management,2005. Vancouver, Canada:A.A.Balkema Publishers.
    [22]谷天峰,王家鼎,梁辉.均质土体滑坡运动规律分析.西北大学学报(自然科学版)2006,36(3):437-441.
    [23]代云霞,殷坤龙,汪洋.滑坡速度计算及涌浪预测方法探讨.岩土力学,2008,29(增刊):407-411.
    [24]李先华,陈晓清,胡凯衡等.GIS支持下的滑坡运动过程数字仿真,岩石力学与工程学报,2001,20(2):175-179.
    [25]李先华,林珲,龚建华.数字滑坡与数字仿真应用研究.地球信息科学,2003,9(3):36-41.
    [26]欧敏,张永兴,胡居义等.基于GeoCA和GIS的滑坡滑动面演化规律研究.水文地质工程地质,2005,(1):22-25.
    [27]殷坤龙,姜清辉,汪洋.新滩滑坡运动全过程的非连续变形分析与仿真模拟.岩石力学与工程学报,2002,21(7):959-962.
    [28]Y H Hatzor, A A Arzi, Y Zaslavsky, et al. Dynamic stability analysis of jointed rock slopes using the DDA method:King Herod' SPalace, Masada, Israel, International Journal of Rock Mechanics&Mining Sciences,2004,41:813-832.
    [29]N Sitar, M M MacLaughlin, D M Doolin. Influence of kinematicson landslide mobility and failure mode, Journal of Geotechnical and Geoenvironmental Engineering,2005, 131(6):716-728.
    [30]邬爱清,丁秀丽,李会中等.非连续变形分析方法模拟千将坪滑坡启动与滑坡全过程.岩石力学与工程学报.2006,25(7):1297-1303.
    [31]黄润秋.灾害性崩滑地质过程的全过程模拟.中国地质灾害与防治学报,1994,5(增):11-17.
    [32]邓辉,黄润秋.岩口滑坡的发育特征及运动过程研究.成都理工学院学报,1999,26(3):283-286.
    [33]程谦恭,胡厚田.剧冲式高速岩质滑坡全过程运动学数值模拟.西南交通大学学报,2000,35(1):18-22.
    [34]柴贺军,王士天,许强,等.西藏易贡滑坡物质运动全过程数值模拟研究.地质灾害与环境保护.2001,12(2):1-3,82.
    [35]郑书彦,李占斌.公路滑坡侵蚀运动过程的仿真分析.长安大学学报(自然科学版),2007,27(2):21-25.
    [36]刘朋辉,魏迎奇,杨昭冬.贵州印江岩口滑坡过程的数值模拟分析.中国水利水电科学研究院学报,2007,5(2):115-120.
    [37]刘高,邓建丽,梁昌玉.有限体积法在滑坡滑动过程模拟中的应用.地球科学进展,2007,22(11):1129-1133.
    [38]钟登华,安娜,李明超.库岸滑坡失稳三维动态模拟与分析研究.岩石力学与工程学报,2007,26(2):360-367.
    [39]谢攀.强震诱发滑坡运动过程的SPH模拟:[硕士学位论文].上海:同济大学,2009.
    [40]Chia-Ming Lo, Ming-Lang Lin, Chao-Lung Tangc, et al.. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geology,2011,123:22-39.
    [41]胡炜,张茂省,朱立峰等.黑方台灌溉渗透型黄土滑坡的运动学模拟研究.工程地质学报,2012,20(2):183-188.
    [42]E H Kennard. Generation of Surface Waves by a Moving Partition.Quarterly of Applied Mathematics,1949,7(3):303-312.
    [43]Edward Noda. Water Waves Generated by Landslides. Journal of the Waterways, Harbors and Coastal Engineering Division,1970, Vol.96, No.4, pp.835-855.
    [44]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.83-95;
    [45]陈学德.水库滑坡涌浪的经验算法及程序设计.长沙:水利电力部中南勘测设计研究所,1984.
    [46]哈秋聆,胡维德.水库滑坡涌浪计算.人民黄河,1980,18(2):30-36.
    [47]E Pelinovsky, A Poplavsky. Simplified model of tsunami geneneration by sbumarine landslides. Physics and Chemistry of the Earth,1996,21(12):13-17.
    [48]Stefano Tinti, Elisabetta Bortolucci. Analytical investigation of tsunamis generated by submarine slides, Annali Di Geofisica,2000,43(3):519-536.
    [49]Emile A Okal, Costas E Synolakis. A theoretical comparison of tsunamis from dislocations and slides, Pure and Applied Geophysics,2003,160,2177-2188.
    [50]Philip L F Liu, Patrick Lynett, Costas E Synolakis. Analytical solutions for forced long waves on a sloping beach, Journal of Fluid Mechanics,2003,478,101-109.
    [51]李未,干如云,刘向阳.滑坡涌浪的产生与传播波形分析.浙江水利水电专科学校学报,2003,15(1):1-3.
    [52]李末,王如云,张长宽.滑坡涌浪的产生与传播波形分析与计算.水科学进展,2004,15(1):45-49.
    [53]汪洋,殷坤龙.水库库岸滑坡的运动过程分析及初始涌浪计算.中国地质大学学报,2003,28(5):579-582.
    [54]汪洋,殷坤龙.水库库岸滑坡初始涌浪叠加的摄动方法.岩石力学与工程学报,2004,23(5):717-720.
    [55]汪洋,殷坤龙.水库库岸滑坡涌浪的传播与爬高研究.岩土力学,2008,29(4): 1031-1034.
    [56]Marcello Di Risio, Paolo Sammarco. Analytical Modeling of Landslide-Generated Waves, Journal of Waterway, Port, Coastal, and Ocean Engineering,2008,134(1),53-60.
    [57]P Sammarco, and E Renzi. Landslide tsunamis propagating along a plane beach, Journal of Fluid Mechanics,2008,598,107-119.
    [58]Didenkulova, I Nikolkina, E Pelinovsky, et al.. Tsunami waves generated by submarine landslides of variable volume:analytical solutions for a basin of variable depth, Natural Hazards and Earth System Sciences,2010,10,2407-2419.
    [59]Yang Wang, Philip L F Liu, Chiang C Mei. Solid landslide generated waves, Journal of Fluid Mechanics,2011,675,529-539.
    [60]E Renzi, P Sammarco. The influence of landslide shape and continental shelf on landslide generated tsunamis along a plane beach, Natural Hazards and Earth System Sciences,2012, 12,1503-1520.
    [61]R L Wiegel. Labotatory Studies of gravity waves generated by movement of submarine body. Transactions, American Geophysical Union,1955,36(5):759-744.
    [62]叶耀琪.黄河小浪底水库滑坡涌浪试验介绍.人民黄河,1982,4:20-24.
    [63]Edward Noda. Water waves generated by landslides. Journal of the Waterways, Harbors and Coastal Engineering Division,1970,96(4):835-855.
    [64]J W Kamphis, R J Bowering. Impulse waves generated by landslides. ASCE, Proceedings of the 12th Coastal Engineering Conference,1971,1:575-588。
    [65]黄种为,董兴林.水库库岸滑坡激起涌浪的试验研究.见:水利水电科学研究院科学研究论文集第13集(水力学).北京:水利出版社,1983,157-170.
    [66]庞昌俊.二维斜滑坡涌浪的试验研究.水利学报,1985,(11):54-59.
    [67]袁银忠,陈青生.滑坡涌浪的数值计算及试验研究.河海大学学报学报:自然科学版,1990,18(5):46-53.
    [68]中国水利水电科学研究院.滑坡涌浪模型试验规SL165-95[S].
    [69]陶孝铨.李家峡水库正常运行期的滑坡涌浪试验研究.西北水电,1994,47(1):42-45.
    [70]余仁福.黄河龙羊峡工程近坝库岸滑坡涌浪及滑坡预警研究.水利发电,1995,(3):14-16.
    [7l]王育林,陈凤云,齐华林,等.危岩体崩滑对航道影响及滑坡涌浪特征研究.中国地质灾害与防治学报,1994,5(3):95-100.
    [72]H M Fritz, W H Hager, H E Minor. Landslide generated impulse waves.1.Instantaneous flow fields. Experiments in Fluids,2003,35(1):505-519.
    [73]H M Fritz, W H Hager, H E Minor. Landslide generated impulse waves.2.Hydrodynamic impact craters. Experiments in Fluids,2003,35(1):520-532.
    [74]H M Fritz, W H Hager, H E Minor. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coast, and Ocean Engineering,2004,130(6): 287-302.
    [75]Zweifel, W H Hager, H E Minor. Plane impulse waves in reservoirs. Journal of Waterway, Port, Coast, and Ocean Engineering,2006,132(5):358-368.
    [76]Panizzo, P. DeGirolamo, M Di Risio, A Petaccia. Forecasting impulsive waves generated by subaerial landslides. Journal of Geophysical Research,2005,110, C12025.
    [77]Marcello Di Risio, Giorgio Bellotti, Andrea Panizzo. Three dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering,2009,56:659-671.
    [78]B Ataie-Ashtiani, A Nik-Khah. Impulsive waves caused by subaerial landslides. Environmental Fluid Mechanics,2008,8(7):263-280.
    [79]Valentin Heller, W H Hager, Hans-Erwin Minor.,2008. Scale effects in subaerial landslide generated impulse waves. Exp Fluids,44:691-703.
    [80]Valentin Heller, W H.Hager,2010. Impulse product parameter in landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 136(3):145-155.
    [81]代云霞.库岸滑坡涌浪计算方法及物理模拟试验研究:[硕士学位论文].武汉:中国地质大学,2010.
    [82]殷坤龙,刘艺梁,汪洋等.三峡水库库岸滑坡涌浪物理模型试验.地球科学——中国地质大学报,2012,37(5):1067-1074.
    [83]李颖,王平义,胡小卫.山区河道型水库滑坡涌浪的计算研究.重庆交通大学学报(自然科学版),2011,30(2):295-299.
    [84]刘建秀.流体力学滑坡涌浪区的样条边界元法.黄淮学刊,1994,10(3):35-38.
    [85]杜小弢,吴卫,龚凯等.二维滑坡涌浪的SPH方法数值模拟.水动力学研究与进展,2006,21(5):579-586.
    [86]缪吉伦,陈景秋,张永祥.基于SPH方法的立面二维涌浪数值模拟.中南大学学报(自然科学版),2012,43(8):3244-3249.
    [87]L F Liu, T R Wu, F Raichlen, et al.. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech,2005,536:107-144
    [88]D Yuk, S C Yim, Liu P L F. Numerical modeling of submarine mass-movement generated waves using RANS model. Computers and Geosciences,2006,32,927-935.
    [89]Serrano-Pacheco, J Murillo, P Garcia-Navarro. A finite volume method for the simulation of the waves generated by landslides. Journal of Hydrology,2009,373:273-289
    [90]Debashis Basu, Kaushik Das, Steve Green, et al.,2010. Numerical simulation of surface waves generated by a subaerial landslide at Lituya Bay Alaska. Journal of Offshore Mechanics and Arctic Engineering,2010,132:041101-1-041101-11.
    [91]Stephane Abadie, Denis Morichon, Stephan Grilli, et al.. Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coastal Engineering, 2010,57:779-794.
    [92]任坤杰,金峰,徐勤勤.滑坡涌浪垂面二维数值模拟.长江科学院院报,2006,23(2): 1-4.
    [93]周桂云.水库边坡稳定分析方法及滑坡涌浪数值模拟研究:[博士学位论文].南京:河海大学,2007.
    [94]B. Ataie-Ashtiani, G Shobeyri. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids,2008,56(2):209-232.
    [95]宋新远,邢爱国,陈龙珠.基于FLUENT的二维滑坡涌浪数值模.水文地质工程地质,2009,(3):90-94.
    [96]赵兰浩,杨庆庆,李同春.地震作用下土质库岸边坡失稳运动及初始涌浪数值模拟方法.水力发电学报,2011,30(6):104-108.
    [97]徐波,蒋昌波,邓斌.三维滑坡涌浪的产生及其传播过程的数值研究.交通科学与工程,2011,27(2):39-45.
    [98]Lynett P, Liu P L. A numerical study of submarine-landslide-generated waves and run-up. Phil Trans Roy Soc Lond UK A,2002,458:2885-2910.
    [99]Lynett P, Liu P L. A numerical study of the run-up generated by three-dimensional. Journal of Geophysical Research,2005,110, C03006,1-16.
    [100]Ataie-Ashtiani B, Najafi-Jilani A. A higher-order Boussinesq-type model with moving bottom boundary:applications to submarine landslide tsunami waves. International Journal for Numerical Methods in Fluids,2007,53(6):1019-1048
    [101]Behzad Ataie-Ashtiani, Saeedeh Yavari-Ramshe,2011. Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides,2011,8:417-432.
    [102]黄波林,殷跃平.基于波浪理论的水库地质灾害涌浪数值分析方法.水文地质工程地质,2012,39(4):92-97.
    [103]郭洪巍,吴葱葱.水库滑坡涌浪的数学模型及其应用.华北水利水电学院学报,2000,21(1):24-27.
    [104]姜治兵,金峰,盛君.滑坡涌浪的数值模拟.长江科学院院报,2005,22(5):1-3.
    [105]袁晶,张小峰,张为.可变网格下的水库滑坡涌浪数值模拟研.水科学进展,2008,19(4):546-551.
    [106]Silvia Bosa, Marco Petti,2011. Shallow water numerical model of the wave generated by the Vajont landslide. Environmental Modelling & Software,26:406-418
    [107]杨学堂,刘斯凤,杨耀.黄腊石滑坡群石榴树包滑坡涌浪数值计算.武汉水利电力大学(宜昌)学报,1998,20(3):51-55.
    [108]周剑华.水库滑坡涌浪灾害的数值研究.长江科学院院报,2003,20(2):7-9.
    [109]黄润秋,许强.中国典型灾难性滑坡.北京:科学出版社,2008.
    [110]王兰生,詹铮,苏道刚等.新滩滑坡发育特征和运动、滑动及制动机理的初步研究.见:中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会编.中国典型滑坡.北京:科学出版社,1988,211-217.
    [111]薛果夫,吕贵芳,任江.新滩滑坡研究.见:中国岩石力学与工程学会地面岩石工程 专业委员会,中国地质学会工程地质专业委员会编.中国典型滑坡.北京:科学出版社,1988.200-210.
    [112]汪发武,谭周地.长江三峡新滩滑坡滑动机制.长春地质学院学报,1990,20(4):437-442.
    [113]张咸恭,王思敬,张倬元等著.中国工程地质学.北京:科学出版社,2000.
    [114]肖诗荣,刘德富,姜福兴,等.三峡库区千将坪滑坡地质力学模型试验研究.岩石力学与工程学报,2010,29(5):1023-1030.
    [115]崔政权.滑坡牵动域是滑坡研究领域里的重要内容.岩土工程界,2003,6(11):66-68.
    [116]陈永波,王成华,樊晓一.湖北省千将坪大型滑坡特征及成因分析.山地学报,2003,21(5):633-634.
    [117]王治华,杨日红.三峡水库千将坪滑坡活动性质及运动特征.中国地质灾害与防治学报,2005,16(3):5-11.
    [118]肖诗荣,刘德富,胡志宇.三峡库区干将坪滑坡地质力学模型研究.岩土力学,2007,28(7):1459-1464.
    [119]杨海平,工金生.长江三峡工程库区千将坪滑坡地质特征及成因分析.工程地质学报,2009,17(2):233-239.
    [120]肖诗荣,刘德富,胡志宇.三峡库区千将坪滑坡高速滑动机制研究.岩土力学,2010,31(11):3531-3536.
    [121]Huang B, Yin Y, Liu G, et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23,2008. Landslides,2012:1-11.
    [122]惠遇甲,工桂仙.河工模型试验.北京:中国水利水电出版社,1999.
    [123]罗先启,葛修润.滑坡模型试验理论及其应用.北京:中国水利水电出版社,2008.
    [124]曹玲,罗先启,程圣国.千将坪滑坡物理模型试验相似材料研究.三峡大学学报(自然科学版),2007,29(1):37-40.
    [125]陈陆望.物理模型试验技术研究及其在岩土工程中的应用:[博士学位论文].中国科学院武汉岩土力学岩土所,2006.
    [126]韩春玲,工修贵,时述凤.水工模型试验中的相似性定律.中国水运,2006,6(10):67-70.
    [127]杨静,陈剑平,戴长冰,王吉亮.基于正交试验设计的边坡预应力锚固参数敏感性分析.水文地质工程地质,2008,(5):50-53.
    [128]倪恒刘,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用.岩石力学与工程学报,2002,21(7):989-992.
    [129]杨和雄,工良元.敏感性分析及其模糊方法.南京邮电学院学报,1998,18(1):99-101.
    [130]蔡毅,邢岩,胡丹.敏感性分析综述.北京师范大学学报(自然科学版),2008,44(1):9-14.
    [131]汪洋,刘艺梁.平面滑动型涉水岩质滑坡速度计算模型研究.灾害学,2012,27(3):22-25.
    [132]汪洋,殷坤龙,刘艺梁,姜治兵.考虑水阻力的涉水滑坡运动速度计算模型研究.工程地质学报,2012,20(6):903-908.
    [133]毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算.岩土工程学报,2001,23(6):746—752.
    [134]汪洋,周丽,殷坤龙.基于土条周边水压力分析的水下滑体稳定性研究.岩土工程学报,2010,31(4):1068—1071.
    [135]三峡库区地质灾害防治工作指挥部.三峡库区三期地质灾害防治工程地质勘察技术要求.2004.
    [136]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究.岩石力学与工程学报,2003,22(5):691-696.
    [137]李同春,卢智灵,姚纬明,等.边坡抗滑稳定安全系数的有限元迭代解法.岩石力学与工程学报,2003,22(3):446-450.
    [138]黄润秋.中国西部地区典型岩质滑坡机理研究.地球科学进展,2004,19(3):443-450.
    [139]王效宁.滑坡温度特性研究及其在三峡库岸稳定分析中的应用.岩石力学与工程学报,1993,12(2):126-137.
    [140]文宝萍,申健,谭建民.水在千将坪滑坡中的作用机理.水文地质工程地质,2008,35(3):12-18.
    [141]程圣国,方坤河,罗先启,等.三峡库区新生型滑坡滑带土抗剪强度确定概率方法.岩石力学与工程学报,2007,26(4):840-845.
    [142]曹玲,罗先启.三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究.岩土力学,2007,28:93-97.
    [143]吴碧辉等.重庆市三峡库区巫山县巫峡镇龚家坊至独龙一带斜坡补充勘(调)查报告.重庆:重庆市地质矿产勘查开发局107地质队,2012.
    [144]夏震寰.现代水力学(四)-波浪力学.北京:高等教育出版社,1992.53-72;
    [145]李远林.波浪理论及波浪荷载.广州:华南理工大学出版社,1994.62-75;
    [146]邱大洪.波浪理论及其在工程中的应用.北京:高等教育出版社,1985.32-62;
    [147]陈士荫,顾家龙,吴宋仁.海岸动力学.北京:人民交通出版社,1988.36-55;
    [148]陶建华.水波的数值模拟.天津:天津大学出版社,2005.25-33;
    [149]李文勋,韩祖恒,郑开琪.水力学中的微分方程及其应用.上海:上海科学技术出版社,1982.253-263;
    [150]M.范戴克(著),李家春(译).摄动法及其在流体力学中的应用.北京:科学出版社,1987.152-165;
    [151]姜治兵.水库滑坡涌浪灾害的数值模拟:[硕士学位论文].武汉:长江科学院,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700