用户名: 密码: 验证码:
基于PRIC理论的图像信息技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用PRIC(Pattern Recognition and Intelligent Control,模式识别与智能控制)面向外部环境信息实现机器直接感知并做出相应智能反映的技术特点,融合信息、计算机、控制、模糊数学等交叉学科开展以图像信息的识别为前提的复杂背景下目标识别与跟踪技术研究,并将其应用于军事领域。
     文章在阐述图像识别基本理论的基础上提出多种有效识别算法及其实用技术。尤其是模糊加权的图像匹配方法,利用直方图的特性,引进数学中的模糊加权概念,显示各级量数在总量中所具有的重要程度,分别给予不同的级数;在相关匹配中,先对权重高的灰度值进行匹配,并运用模糊加权模板的思想来处理要匹配的现场图像,以获得二值化的稀疏矩阵,再以模糊加权模板将相关运算的乘法简化为稀疏矩阵的加法。
     文章阐述,模糊加权的图像匹配方法能够使得整个识别过程不仅降低了运算量,而且对噪声污染具有较强的抗干扰性;同时,系统能够克服一般模板方法对环境亮度轻微变化而造成的匹配失误;并通过实验证明了模糊加权算法对NMI特征值能保持良好的稳定性,且优于灰度门限算法和边缘检测等算法。
     为增强识别匹配的实用性,文章在给出模糊加权的NMI特性提取方法的同时,还提出了一种实用的复合图像识别匹配算法。该算法以模糊权重为二者的连接点,既降低了灰度匹配的计算量,又为NMI特征值计算寻找到了有效的方法。
     针对本课题的应用技术背景,文章详尽介绍了PRIC在制导武器系统中的末制导寻的实用算法及其技术。对于当前图像匹配过程所采用的经典决策中特征空间尺度MAD、CF和CCF等算法的局限性难以实现复杂环境条件下目标图像的高准确率识别,提出一种目标图像匹配的模糊合成多维决策方法。该方法在增加运算量不多的情况下,可以大幅度提高对复杂背景下目标图像识别的准确率,因此使得该领域的研究向实用技术迈进一大步。同时通过变角度识别、远距逼近、遮挡目标等复杂环境实验测试,最终证实,本课题提出的系列算法具有优异的实用性和有效性。
     最后,文章阐述了基于PRIC理论的图像信息技术拓展研究,以摄像机双目测量与图像形态学处理方法作为图像信息提取的另一重要手段以实现智能控制的三维形态目标。本文已经构建出能够进一步提高图像末制导武器识别能力和精度的三维信息工业软件平台。
The dissertation take good advantage of PRIC(Pattern Recognition and Intelligent Control)technology, which realize machine directly perceiving the external environment and make intelligent reflection. Its content involves information science, computer, control theory, fuzzy mathematics and so on. The whole disquisition study rapid target identification and tracking under the complex background based on the image information identification and apply into military domain.
     Many effective image recognition algorithms and technologies are described in the article, based on a variety of basic theory and practical skills. Especially, the image matching based on fuzzy weight under complex background which uses histogram characteristics, introduces the weight mathematical concept to show importance degree in the total volume, and gives different progression. And putting forward in correlation, the high weight of the gray values matches first, then deal with the scene image using the weighted template to obtain sparse binary matrix, then simplifies the correlation operation multiplication as the sparse matrix addition.
     The image matching based on fuzzy weight has not only reduced the operand, but inherited the correlation operation anti-jamming to the noise pollution. Simultaneously the introduction of fuzzy weighting has overcome the weighting template method which is easy to create matching fault to the slight environment brightness change. And fuzzy weighting algorithm proceeds than gradation threshold and edge detection in NMI characteristic value calculation, and has good robustness.
     In order to strengthen the usability of recognition and matching, while the article produces the calculation of fuzzy weighting NMI characteristic, it also propose a novel practical method of compound image recognition matching algorithm which takes the fuzzy weight as the junction. On the one hand, it reduces the gradation match computation quantity, and on the other hand, it also provides an effective method to seek the NMI characteristic.
     Aimed at the background of question for discussion, the thesis introduces the practicality algorithm and technique of PRIC used in terminal guidance homing adopted by control and guiding weapon system. The normally used methods to match images these years are MAD, CF, CCF, etc. However, all these classical characteristic space dimensions have their own limitations to be used under complicated background situations. In order to gain high matching-rate, this paper advances a multidimensional decision-making with composed fuzzy method to match images. This method can be used to make matching more accurately with little operation cost added, so as to promote the research in this area into practical techniques with a great step. Through a large numbers of experiment and testing in complex circumstance, such as variable pitch recognition, approaching, and blocking, approve that the series algorithms are excellent practical and effective.
     Lastly, as image information technology based on PRIC theory development research, the paper pay attention to acquisition the image information, and take morphology image processing and binocular measuring technique as the important measure to realize the 3D configuration. In the article, image information software platform to improve the identification of image terminal guidance weapon has primarily composed.
引文
[1] Da peng Zhang and David, Parallel Computer Systems Design for Pattern Recognition & Image Processing. 1998, Harbin: Harbin industrial university press.
    [2]王顺晃,舒迪前,智能控制系统及其应用. 2 ed. 2005.7,北京:机械工业出版社.
    [3] Gonzalez, R.C. and R. E.Woods,数字图像处理. Vol. 2. 2004.
    [4] Aach, T., U. Schiebel, and G. Spekowius, Digital image acquisition and processing in medical x-ray imaging. Journal of Electronic Imaging, 2006. 8(1): p. 7-22.
    [5] Chan, T.F. and J. Shen, Image processing and analysis: variational, PDE, wavelet, and stochastic methods. 2005: Society for Industrial and Applied Mathematics.
    [6] Iaroslavskii, L.P., Digital holography and digital image processing. 2004: Kluwer Academic Boston.
    [7] Meynart, R., Digital image processing for speckle flow velocimetry. Review of Scientific Instruments, 2006. 53(1): p. 110-111.
    [8] Mojsilovic, A., et al., Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. IEEE Transactions on Image Processing, 2002. 11(11): p. 1238-1248.
    [9] Obdrzalek, S. and J. Matas, Object recognition using local affine frames on distinguished regions, in Proc. British Machine Vision Conference. 2002. p. 113–122.
    [10] Sminchisescu, C. and B. Triggs, Kinematic jump processes for monocular 3D human tracking, in Computer Vision and Pattern Recognition, 2003. Proceedings. . 2003.
    [11] Sudhakar, R., et al., Estimation of motion parameters using binocular camera configurations, in Proceedings of SPIE. 2005, SPIE. p. 24.
    [12]章毓晋,图像工程.图像处理和分析. Vol. 2. 2004,北京:清华大学出版社.
    [13] Tsingas, V., Graph-theoretical approach for multiple-feature matching and its application for digital point transfer, in Proceedings of SPIE, 2003 2003, SPIE. p. 865.
    [14] Wang, Z., et al., Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004. 13(4): p. 600-612.
    [15] Yang Jian, Y.J., From Image Vector to Matrix: a Straightforward Image Projection Technique---- IMPCA vs. PCA. Pattern Recognition, 2002. 35(9): p. 3.
    [16] Zhao, H. and J. Li, Stereo image matching based on phase unwrapping, in Proceedings of SPIE, 2004 2004, SPIE. p. 394.
    [17] Gonzalez, R.C. and R.E. Woods, Digital Image Processing. Vol. 2. 2002.
    [18]章毓晋,图像工程.图象理解与计算机视觉. Vol. 2. 2004,北京:清华大学出版社.
    [19]王红梅,张科, and李言俊,图像匹配研究进展.计算机工程与应用, 2004. 40(19).
    [20]何斌,马天予,王运坚,朱红莲, Visual C++数字图像处理. 2002,北京:人民邮电出版社.
    [21] Yang, C.H.T., S.H. Lai, and L.W. Chang, Reliable image matching via modified Hausdorff distance with normalized gradient consistency measure. Information Technology: Research and Education, 2005. , 2005: p. 158-161.
    [22] Ghafoor, A., R.N. Iqbal, and S. Khan, Robust image matching algorithm, in Video/Image Processing and Multimedia Communications. 2003.
    [23] Chalechale, A., G. Naghdy, and A. Mertins, Sketch-Based Image Matching Using Angular Partitioning. IEEE TRANSACTIONS ON SYSTEMS, 2005. 35(1).
    [24]王小平,曹立明,遗传算法. 2002,西安:西安交通大学出版社.
    [25]门蓬涛,张秀彬,张峰,等.,基于NMI特征的目标识别与跟踪.微计算机信息(测控仪表自动化), 2004(3).
    [26] Amin, M.A., N.V. Afzulpurkar, and S. Akhter, An algorithm to find area and area based feature of image objects and its application in image matching, in Image and Graphics, 2004. Proceedings. . 2004. p. 540-543.
    [27] Dufournaud, Y., C. Schmid, and R. Horaud, Image matching with scale adjustment. Computer Vision and Image Understanding, 2004. 93(2): p. 175-194.
    [28] Ghafoor, A., R.N. Iqbal, and S. Khan, Image Matching Using Distance Transform. LECTURE NOTES IN COMPUTER SCIENCE, 2003: p. 654-660.
    [29] Huang, Y., et al., Image matching algorithm and implementation for SAR images. Dianzi Yu Xinxi Xuebao, 2005. 27(1): p. 6-9.
    [30] Kanazawa, Y. and K. Kanatani, Image mosaicing by stratified matching. Image and Vision Computing, 2004. 22(2): p. 2.
    [31] Navy, P., et al., Matching two clusters of points extracted from satellite images. Pattern Recognition Letters, 2006. 27(4): p. 268-274.
    [32] Shunyi, Z., Z. Zuxun, and Z. Jianqing, Image Relaxation Matching Based on Feature Points for DSM Generation.地球空间信息科学学报(英文版), 2004. 7(4).
    [33] Wu, J., G. Zhou, and P.F. Shi, Algorithm of subpixel image matching with high accuracy. Proceedings of SPIE, 2003. 4552: p. 265.
    [34] Zhang, Y., et al., Real-time image matching in dual-band image fusion, in Proceedings of SPIE, 2005. 2005, SPIE. p. 440.
    [35] Yoshimura S. , K.T., Fast template matching based on the normalized correlation by usingmultiresolution eigenimages, in Intelligent Robots and Systems, IROS'94. 1994.
    [36]潘正君,康立山,陈毓屏,演化计算. 1998,北京:清华大学出版社.
    [37]王立新,模糊系统与模糊控制教程A COURSE IN FUZZY SYSTEM & CONTROL. 2003,北京:清华大学出版社.
    [38]肖家庆,卢凌,李晟.等,基于矩不变量的图像目标识别武汉理工大学学报(信息与管理工程版), 2006. 30(4): p. 4.
    [39]陈伏兵.,王.杨.,图像特征抽取的奇异值分解方法.计算机工程与应用, 2006. 32(8): p. 3.
    [40]丁明跃,常金玲,彭嘉雄.,不变矩方法研究.数据采集与处理, 1992. 7(1): p. 9.
    [41]王晓红,矩技术及其在图像处理与识别中的应用研究. 2001,西北工业大学.
    [42]杜亚娟,潘泉,张洪才.,一种新的不变矩特征在图像识别中的应用.系统工程与电子技术, 1999: p. 4.
    [43]程云鹏,矩阵论. 1989,西安:西北工业大学出版社.
    [44] Golub G H, V.L.C.F.,矩阵计算. 2001,北京:科学出版社.
    [45] Martinez A M, K.A.C., PCA Versus LDA. IEEE Trans. Pattern Anal. Machine Intell., 2001. 23(2): p. 2.
    [46] Duda R O, H.P.E., Stork D G., Pattern Classification(2nd Edition). 2001, New York: John Wiley & Sons.
    [47] Belhumeur, P.N., Hespanha J P, Kriegman D J., Eigenface vs. Fisherface Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Machine Intell., 1997. 19(7): p. 10.
    [48] Liu K, C.Y.Q., Yang J Y., Algebraic Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion. Pattern Recognition, 1993. 26(6): p. 9.
    [49]蒋玉春,张秀彬,胡朕.,基于奇异值特征的目标识别复合算法.计算机工程, 2005. 31(15): p. 3.
    [50]门蓬涛, et al.,基于NMI特征的目标识别与跟踪.微计算机信息(测控仪表自动化), 2004(3).
    [51]孙志旻,目标识别与跟踪算法的研究及其实现(硕士学位论文), in电力学院. 2004,上海交通大学:上海.
    [52]杨小冈, et al.,基于图像NMI特征的目标识别新方法.计算机工程, 2002. 28(6).
    [53]吕铁英,图像的特征与匹配识别研究, in图像处理. 1999,华中理工大学:武汉.
    [54] Gonzalez, R.C., R.E. Woods, and S.L. Eddins, Digital Image Processing Using Matlab. 2004,北京:电子工业出版社.
    [55] Gonzalez, R.C., R.E. Woods, and S.L. Eddins,数字图像处理(Matlab版). 2005,北京:电子工业出版社.
    [56]施得恒,红外成像导引头及其红外成像制导武器.现代军用仪器与技术, 2002. 8(4): p. 4.
    [57]许达哲,国外弹道导弹技术研究与发展. 1998,北京:宇航出版社.
    [58]刘兴堂,刘力.,精确制导武器与仿真技术研究.系统仿真学报, 2006. 18(Suppl.2): p. 4.
    [59]马春艳,刘莉,杜小菁,等.,末制导炮弹姿态更新算法研究北京理工大学学报, 2006. 25(9): p. 4.
    [60]苏建刚,付梦印.,激光末制导炮弹半实物仿真系统.系统仿真学报, 2006. 18(9): p. 5.
    [61]李群章,多模、多色复合寻的制导技术.红外与激光工程, 2005. 25(25): p. 2.
    [62]李旭平,郑万千,国内外导弹技术对比分析. 2003.
    [63]潘火荣,任风云.,美国空军精确制导武器技术发展计划简述.航空兵器, 2004. 4: p. 2.
    [64]夏思宇,精确制导技术及其现状与发展.航空科学技术, 2003. 1(1): p. 2.
    [65]张纯和,复合制导技术的发展.飞航导弹, 2004. 4(1).
    [66]张合新,孙鹏,孟飞.,激光在精确制导武器中的应用.激光与红外, 2004. 34(1): p. 3.
    [67]谷口庆治,数字图像处理. 2004,北京:科学出版社.
    [68] Acampora, G., et al., Achieving transparency and adaptivity in fuzzy control framework: an application to power transformers predictive overload system. Fuzzy Systems, 2004. 1.
    [69] Ben-kun, Y., B. Xin-qian, and G.U.O. Wei-lai, Application of adaptive fuzzy control technology to pressure control of a pressurizer.哈尔滨工程大学学报(英文版), 2005. 4(1).
    [70] Chang, W., et al., Output Feedback Fuzzy Control for Uncertain Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 2004. 125: p. 521.
    [71] Diao, Y., J.L. Hellerstein, and S. Parekh, Optimizing quality of service using fuzzy control. Proceedings of Distributed Systems Operations and Management, 2002. 4.
    [72] Faucher, J. and P. Maussion, A contribution to frequency domain tuning for fuzzy control. IEEE International Symposium on Industrial Electronics, 2004. 1.
    [73] Khatun, P., et al., Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems. IEEE Transactions on Vehicular Technology, 2003. 52(5): p. 1356-1364.
    [74] Kim, E. and S. Kim, Stability Analysis and Synthesis for an Affine Fuzzy Control System via LMI and ILMI: Continuous Case. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002. 10(3): p. 391.
    [75] Lewis, F.L., J. Campos, and R. Selmic, Neuro-fuzzy control of industrial systems with actuator nonlinearities. 2002: Society for Industrial and Applied Mathematics Philadelphia.
    [76] Ramírez, M., et al., Fuzzy control of a multiple hearth furnace. Computers in Industry, 2004. 54(1): p. 105-113.
    [77] Sun, Q., R. Li, and P. Zhang, Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model. Fuzzy Sets and Systems, 2003. 133(1): p. 1-17.
    [78] Tang, Y. and D. Vélez-Díaz, Robust Fuzzy Control of Mechanical Systems. IEEE TRANSACTIONSON FUZZY SYSTEMS, 2003. 11(3): p. 411.
    [79] Tong, S., H.X. Li, and W. Wang, Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets and Systems, 2004. 148(3): p. 355-376.
    [80] Wang, H.B., S.J. Jiao, and J. She, Adaptive Fuzzy Sliding Mode Control for Underactuated Planar Manipulator.系统仿真学报, 2006. 18(7): p. 1893-1896.
    [81] Yang, Y., C. Zhou, and X. Jia, Robust adaptive fuzzy control and its application to ship roll stabilization. Information Sciences, 2002. 142(1-4): p. 177-194.
    [82] Yi, Z. and P.A. Heng, Stability of fuzzy control systems with bounded uncertain delays. IEEE Transactions on Fuzzy Systems, 2002. 10(1): p. 92-97.
    [83] Zhang, J.H., et al., Adaptive fuzzy control system of a servomechanism for electro-discharge machining combined with ultrasonic vibration, in Journal of Materials Processing Tech. 2002, Elsevier. p. 45-49.
    [84] Zhou, C. and D. Ruan, Fuzzy control rules extraction from perception-based information using computing with words. Information Sciences, 2002. 142(1-4): p. 275-290.
    [85] Xu, H.Z. and B.S. Song, FUZZY-PID双模蒸纱锅控制器.武汉理工大学学报(信息与管理工程版), 2006. 28(4): p. 22-25.
    [86]黄峰, et al.,模糊参数自整定PID控制器的设计与仿真研究.光学精密工程, 2004. 12(2).
    [87]孙志旻,张秀彬,张峰,复杂背景中移动目标的快速识别与跟踪.微电子与计算机, 2003. 11.
    [88] Barnard, k.a.F., D., Learning the semantics of words and pictures, in Int. Conf. on Computer Vision. 2001.
    [89] Castleman, K.R., Digital Image Processing. 2005,北京:电子工业出版社.
    [90] Zhao, S.M. and D.R. Li, ADS40影像几何预处理.武汉大学学报(信息科学版), 2006. 31(4): p. 308-311.
    [91]吴益明, et al.,基于双谱相位算法的无人机图像定位研究.飞行器测控学报, 2006. 25(3): p. 20-24.
    [92]岳永娟,苗立刚, and彭思龙,多层显微图像的自动拼接方法. JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, 2006. 18(7): p. 959-964.
    [93]张见威,韩国强, and张见东,一种综合的多分辨率医学图像配准方法.计算机工程与应用, 2006. 42(22): p. 192-195.
    [94]朱明and鲁剑锋,基于DSP+ FPGA结构图像处理系统设计与实现.计算机测量与控制, 2004. 12(9).
    [95]杨臣华,激光与红外技术手册. 1990,北京:国防工业出版社.
    [96]杨宜禾and岳敏,红外系统. 1995.
    [97] Forsyth, D.A., ComputerVision: A Modern Approach. 2004: Prentice Hall.
    [98] Bjorkman, M. and J.O. Eklundh, Real-time epipolar geometry estimation of binocular stereo heads. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. 24(3): p. 425-432.
    [99] Lavoie, P., D. Ionescu, and E.M. Petriu, 3D object model recovery from 2D images using structured light. IEEE Transactions on Instrumentation and Measurement, 2004. 53(2): p. 437-443.
    [100] Rothganger, F., et al., 3D object modeling and recognition using affine-invariant patches and multi-view spatial constraints. Computer Vision and Pattern Recognition, 2003. 2.
    [101] Uka, T. and G.C. DeAngelis, Binocular Vision: An Orientation to Disparity Coding. Current Biology, 2002. 12(22): p. 764-766.
    [102] von Noorden, G.K. and E.C. Campos, Binocular vision and ocular motility. 2002: Mosby StLouis.
    [103] Zickler, T.E., et al., Binocular Helmholtz stereopsis, in Ninth IEEE International Computer Vision Proceedings, 2003. . 2003. p. 1411-1417.
    [104] Vallerand, S., M. Kanbara, and N. Yokoya, Binocular vision-based augmented reality system with an increased registration depth using dynamic correction of feature positions, in IEEE Virtual Reality Proceedings. 2003. 2003. p. 271-272.
    [105]隋婧and金伟其,双目立体视觉技术的实现及其进展.电子技术应用, 2004. 30(10).
    [106]李介谷,计算机视觉的理论和实践. Vol. 2. 1998,上海:上海交通大学出版社.
    [107] lab, G.M. The laboratory of computer graphics at dep. of CS MSU. 2006 [cited; Available from: http://research.graphicon.ru.
    [108] Zhang Zhengyou, R.D.e.a., A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry. Artificial Intelligence, 1995. 78(87).
    [109] Archer, T., C#技术内幕. 2001,北京:清华大学出版社.
    [110] Palmer, G., C#程序员参考手册. 2002,北京:清华大学出版社.
    [111] Simon Robinson, B.H., Professional C# (2nd Edition). 2002: Wrox Press Inc.
    [112]刘浩,陈曙东, C#编程实例与技巧. 2002,北京:清华大学出版社.
    [113]郑淑芬,许嘉仁,张书源.,新一代C#与ASP.NET权威指南. 2001,北京:北京青年出版社.
    [114]李兰友,王学彬, Visual C#图像处理程序设计实例. 2003,北京:国防工业出版社.
    [115] Weinshall, D.a.T., C., Linear and incremental acquisition of invariant shape models from image sequences IEEE Trans. Patt. Anal. Mach. Intell., 1995.
    [116]金为铣,摄影测量学. 1996,武汉:武汉大学出版社.
    [117]钱曾波,刘静宇,曾国超,航天摄影测量. 1992,北京:解放军出版社.
    [118]张祖勋,张剑清,数字摄影测量学. 2001,武汉:武汉大学出版社.
    [119] Rutkowski, L., New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing. 2004: Springer-Verlag New York.
    [120] Zhou, D., et al., A stereo matching algorithm based on fuzzy identification. Intelligent Systems and Signal Processing, 2003. 2.
    [121]汤国安,张友顺,刘咏梅.,遥感数字图像处理. 2004,北京:科学出版社.
    [122]万刚,陈刚,游雄.,虚拟城市中地物几何建模技术的研究.测绘学报, 2002.
    [123]杨必胜,李清泉,梅宝燕., 3维城市模型的可视化研究.测绘学报, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700