用户名: 密码: 验证码:
基于多酸的杂化催化剂的设计及其在生物柴油合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境友好型高效催化剂的研究与开发是绿色化学研究的一个重要方向。多金属氧酸盐(多酸)以其酸性、氧化还原性及催化性能可调控性受到广泛重视。由于多酸比表面积小且易溶于极性溶剂,将均相多酸催化剂固载化是实现其应用的有效方法,通过固载化可以极大改善多酸的催化性能。
     本文致力于基于多金属氧酸盐的新型微孔及介孔纳米复合催化剂的设计制备,并采用硅烷基试剂,如甲基三甲氧基硅烷、双(三乙氧基)乙基硅烷等对以上复合催化剂进行修饰改性,制备系列多功能的有机–无机杂化催化剂。以酸催化生物柴油的合成(酯化和酯交换反应)作为模型反应,分别考察了这些催化材料在非均相酸催化反应中的催化性能。具体研究内容如下:
     1.采用溶胶-凝胶共缩合技术制备了微孔结构酸催化剂H3PW12O40/Ta2O5,并通过ICP-AES、FT-IR、Raman、N2吸附和FESEM等测试手段对复合材料的组成、结构、形貌和表面物理化学性质进行了表征,结果表明,复合材料中催化活性组分H3PW12O40的基本结构未发生改变,催化剂的平均孔径约为2 nm,且孔径分布均匀,其比表面积比多酸有了明显提高,粒子的平均粒径约为20 nm。在酸催化乙酸乙酯的反应中,考察了催化剂用量、反应摩尔比、反应时间和多酸掺杂量对反应活性的影响。通过对不同条件的比较,反应中乙醇的转化率最高可达87.4 %,每个活性点的周转频率(TOF)为2.4×103。在采用H3PW12O40/Ta2O5催化的乙酸乙酯的合成反应中,催化剂循环使用5次后H3PW12O40的脱落量小于5 %,催化剂的活性降低小于10 %。
     2.采用嵌段聚合物非离子表面活性剂为结构导向剂,通过溶胶-凝胶结合程序升温溶剂热方法,一步制备了介孔结构复合催化剂H3PW12O40/Ta2O5,其中多酸的担载量为3.6~20.1 %。通过对催化剂晶相结构和表面结构的表征发现,Keggin结构单元与Ta2O5网络结构之间存在着强的相互作用,且结合牢固。此外,该类复合材料具有三维交联介孔结构,表现出优异的表面物理化学性质如较大的比表面积(106.0~126.9 m2/g)、较高的孔容(0.44~1.37 cm3/g)和较大的孔径(3.9~5.0 nm),并且,催化活性位点在复合材料中分散均匀。以上固体酸催化剂的催化性能分别通过月桂酸与乙醇的酯化反应、三棕榈酸甘油酯的酯交换反应及以豆油为原料合成生物柴油的反应进行了探究。结果表明,在温和反应条件下(常压及65 oC),H3PW12O40/Ta2O5对同时进行的酯化和酯交换反应均显示了较高的催化活性。催化过程中,对影响催化活性的诸因素如催化剂用量、反应物的摩尔比及多酸的担载量等进行了考察,并深入研究了固体酸催化酯化和酯交换反应的机理,同时对H3PW12O40/Ta2O5的循环使用情况进行了讨论。
     3.分别采用后合成嫁接法和共缩合的方法,以硅烷基化的介孔Ta2O5为载体,合成了不同担载量的多功能复合催化剂Ta2O5/SiO2?[H3PW12O40/R]和[H3PW12O40/R]?Ta2O5/SiO2 (R = Me or Ph)。通过疏水有机硅烷的修饰调节了介孔材料H3PW12O40/Ta2O5的表面亲/疏水平衡。以含20 %肉豆蔻酸的豆油为原料制备生物柴油的反应作为模型反应,考察了多功能杂化催化剂的催化性能,研究了催化剂制备方法、功能组分的担载量和油醇摩尔比等因素对产物脂肪酸单酯产率的影响;此外,本文还详细讨论了采用共缩合方法制备的多功能催化剂Ta2O5/SiO2?[H3PW12O40/R]具有较高催化活性的原因。在催化剂的循环使用实验中发现,经多次催化循环,多酸未发生明显的脱落现象,说明以上合成的基于多酸的杂化材料是一类潜在的非均相酸催化剂。
     4.与在孔道中引入疏水有机基团的修饰不同,选择不同联结链的桥联有机硅烷代替普通的硅烷,采用一步合成方法制备出了骨架中含有有机官能团的基于多酸的多功能杂化催化剂Ta2O5/Si(R)Si?H3PW12O40(R = ?Et?/?Ph?),并通过FT-IR、XPS、TEM以及N2吸附测定等表征手段对该复合物的组成、形貌、相结构以及功能组分的掺杂方式进行了表征。结果表明,在此类杂化催化剂中,功能组分如Keggin结构单元和有机功能基团与载体分别通过Ta–O–W和Ta–O–Si键作用,结果使Keggin结构单元或有机功能基团与载体结合牢固,同时还降低了催化剂表面的质子释放能,增强了催化剂的表面酸性。其次,在无机材料的骨架中引入有机官能团可使产物的三维交联孔道更均匀,从而有利于反应物及产物的传质。以豆油为原料合成生物柴油的反应中,主要讨论了该催化剂中功能组分的引入对催化活性产生的影响,并与没有修饰有机官能团的H3PW12O40/Ta2O5及修饰普通硅烷的Ta2O5/SiO2?[H3PW12O40/R]催化剂进行了比较。
Eco-friendly and commercially visble catalyst systems have been a focus of much recent research. Polyoxometalates (POMs) have attracted significant attention because of their high acidity and favourable redox behaviour, which make them suitable for applications in size- and shape-selective catalysis. However, POMs exhibit low surface area, low pore volume, and low thermal stability, which limit their utility in many catalytic reactions. Thus, the dispersion of POMs on porous solid supports with high surface area, large pore diameter, and high specific pore volume is seen as a critical means of improving their properties and obtaining better performance in many potential heterogeneous catalytic applications.
     In this dissertation, the micro- and mesoporous composite catalysts based on polyoxometalates have been prepared, which were further modified with organic silanes (methyltrimethoxysilane, phenyltrimethoxysilane, 1,2-bis-(triethoxysilyl)ethane or 1,4-bis-(triethoxysilyl)beneze). The catalytic performance of the resulting materials was evaluated the biodiesel production as a model reaction,
     1.In this paper, varying amounts of H3PW12O40 have been supported on tantalum pentoxide (Ta2O5) via hydrolysis of tantalum pentachloride (TaCl5) in the presence of H3PW12O40 using the sol-gel method for acid catalytic reaction. All obtained amorphous materials have been characterized by ICP-AES, FT-IR spectra, Raman scattering spectroscopy, nitrogen adsorption/desorption analysis and FESEM, in order to characterize the structure integrity of the Keggin unit in as-prepared composites as well as the morphology and surface textural properties of the composites. The results indicated that the primary Keggin structure of starting H3PW12O40 in as-prepared composites remain intact after formation of the composites. They have microporosity, large BET surface area and uniform pore size. Catalytic activity of the catalysts has been evaluated by esterification of acetic acid with ethanol as a probe reaction with different catalytic reaction parameters such as H3PW12O40 loading, reaction time, catalyst dose, molar ratio of the reactants, etc. The highest conversion of ethanol is about 87.4 %, and turnover frequency is 2.4×103. The catalyst is recyclable without significant loss of activity.
     2.A series of mesoporous polyoxometalate-tantalum pentoxide composite catalysts, H3PW12O40/Ta2O5, with H3PW12O40 loading from 3.6 to 20.1% was prepared by a one-step sol-gel-hydrothermal route in the presence of a triblock copolymer surfactant. Bulk and surface sensitive probe testing results indicated that the primary Keggin structure remained intact after formation of the composite, and strong interaction between the Keggin unit and Ta2O5 framework existed in the composite. Additionally, the composite exhibited larger and well-distributed three-dimensionally interconnected pores (3.9~5.0 nm), larger BET surface area (106.0~126.9 m2 g-1), high porosity (0.44~1.37 cm3 g-1), and homogeneous dispersion of the Keggin unit throughout the composite. As an environmentally friendly solid acid catalyst, the catalytic performance of the H3PW12O40/Ta2O5 was evaluated in the esterification of lauric acid and myristic acid, the transesterification of tripalmitin as well as the direct use of soybean oil for biodiesel production. Regardless of the presence of free fatty acids, the H3PW12O40/Ta2O5 composite showed high reactivity and selectivity towards simultaneous esterification and transesterification under mild conditions. The catalyst can be recovered, reactivated and reused several times.
     3.Mesoporous Ta2O5 materials functionalized with both alkyl group and a Keggin-type heteropoly acid, Ta2O5/SiO2?[H3PW12O40/R] (R = Me or Ph), was prepared by a single step sol-gel co-condensation method followed by a hydrothermal treatment in the presence of a triblock copolymer surfactant. The catalytic performance of the resulting multifunctionalized organic-inorganic hybrid materials was evaluated by a direct use of soybean oil for biodiesel production in the presence of 20 wt% myristic acid under atmosphere refluxing, and the influences of the catalyst preparation approaches, functional component loadings, and molar ratios of oil to methanol on the catalytic activity of the Ta2O5/SiO2?[H3PW12O40/R] were studied. In addition, the recyclability of the hybrid materials was evaluated via four catalytic runs. Finally, the network structures of the hybrid materials and the functions of the incorporated alkyl groups on the catalytic activity of the materials were put forward. The experimental results indicated that the co-condensed multifunctionalized catalyst exhibiting considerably high catalytic activity compared with the alkyl-free catalyst as well as the grafted ones,because ( Ta–OH2)n+(H2PW12O40)n? species, main acid sites of the catalysts with enhanced Br?nsted acidity compared to H3PW12O40 or Ta2O5 for catalyzing esterification or transesterification, were formed at the surface of the product via Ta–O–W covalent bonds.
     4.Organic-inorganic hybrid catalysts by co-hydrolysis and condensation reactions of TaCl5 and bridged organosilica precursors of the type (EtO)3Si-R-Si(OEt)3 instead of (MeO)3Si-R in the presence of POM. The organic units in this case are incorporated in the three-dimensional network structure of the silica and tantalum matrix through two covalent bonds and thus distributed totally homogeneously in the pore walls. The phase structure and surface textural property of the composites were characterized by several characterization techniques including FT-IR, XPS, TEM and N2 porosimetry. The catalytic activity of the hybrid catalysts was evaluated by a direct use of soybean oil for biodiesel production. For comparison, H3PW12O40/Ta2O5 and Ta2O5/SiO2?[H3PW12O40/R] were also tested.
引文
[1]Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives of polyoxometalates[J]. ChemRev, 1998, 98: 77-111.
    [2]王恩波,胡长文,许林.多酸化学导论[M]北京:化学工业出版社,1998.22
    [3]Keggin J F. The structure and formula of 12-phosphotungstic acid[J]. Proc Roy Soc A, 1934,144(851):75-100.
    [4]Dawson B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate,K6(P2W18O62).14H2O[J].Acta Cryst, 1953,6: 113-126.
    [5] Anderson J S. Constitution of the poly-acids[J]. Nature, 1937, 140: 850-850.
    [6]Waugh J, Schoemaker D P, Pauling L. On the structure of the heteropoly anion in ammonium9-molybdomanganate, (NH_4)_6MnMo_9O_32.8H_2O[J]. Acta Cryst. 1954, 7: 438-441.
    [7]Dexter D D, Silverton J V. A new structural type for heteropoly anions. The crystal structure of(NH4)_2H6(CeMo_12O_42).12H2O[J]. J Am Chem Soc, 1968,90(13): 3589-3590.
    [8]Misono M. Unique acid catalysis of heteropoly compounds (heteropoly oxometalates) in the solid state[J].Chem Comm, 2001: 1141-1152.
    [9]毛萱,殷元骐.杂多酸催化研究新进展[J],分子催化,2000,14:483.
    [10]Ai M. Effects of cations introduced into 12-molybdophosphoric acid on the catalyst properties[J]. Appl Catal, 1982, 4(3): 245-256.
    [11]Misono M, Okuhara T, Ichiki T, et al. Pesudoliquid behavior of heteropoly compound catalysts, unusual pressure dependencies of the rate and selectivity for ethanol dehydration[J]. J Am Chem Soc, 1987, 109(18): 5535-5536.
    [12]韩维屏.催化化学导论[M].北京:科学技术出版社,2003.369-374.
    [13]Kozhevnikov I V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates inLiquid-Phase Reactions[J]. Chem Rev. 1998, 98, 171-198.
    [14]Izumi Y, Urabe K, Onaka M. Zeolite, clay and heteropoly acid in organic reactions, rodansha/VCH[M]. Tokyo, 1992.
    [15]Kaur J, Griffin K, Harrison B, et al. Friedel-crafts acylation catalysed by heteropoly acids[J]. J Catal,2002, 208(2): 448-455.
    [16]Kozhevnikova E F, Quartararo J, Kozhevnikov I V. Fries rearrangement of aryl esters catalysed byheteropoly acid[J]. Appl Catal A: Gen, 2003, 245(1): 69-78.
    [17]Kozhevnikova E F, Derouane E G, Kozhevnikov I V. Heteropoly acid as a novel efficient catalyst forFries rearrangement[J]. Chem. Commun, 2002, 11: 1178-1179.
    [18]Kukovecz A, Balogi Z, Konya Z, et al. Synthesis, characterisation and catalytic applications of sol-gelderived silica-phosphotungstic acid composites[J]. Appl. Catal. A: Gen, 2002, 228(1): 83-94.
    [19]Kozhevnikov I V. Friedel-Crafts acylation and related reactions catalysed by heteropoly acids[J]. ApplCatalA: Gen, 2003, 256(1-2): 3-18.
    [20]Udayakumar S, Ajaikumar S, Pandurangan A. A protocol on yields to synthesize commercialimperative bisphenols using HPA and supported HPA: effective condensation over solid acid catalysts[J].Appl Catal A: Gen, 2006, 302(1): 86-95.
    [21]Huang W, He D, Liu J, et al. Catalytic condensation of formaldehyde and methyl formateoverl2-tungstosihcic compounds[J]. Appl Catal A: Gen, 2000, 199(1): 93-98.
    [22]Hou Z, Okuhara T, et al. Condensation of benzene and aqueous formaldehyde to diphenylmethane in abiphasic system consisting of an aqueous phase of heteropolyacid[J]. J Mol Catal A: Chem, 2003, 206(1-2):121-130.
    [23]Sheemol N, Unnii R, Gopinathan C. Catalysis by heteropoly acids: formation of bisphenol A fromphenol and acetone[J]. Indian J Chem Technol, 2001, 8(4): 298-300.
    [24]Mrowiec-Bialoh J, Turek W, Jarzebski A, et al. Preparation of highly active heteropolyacid - silicacomposite catalysts using the sol - gel method[J]. Reaction Kinetics Catal Lett, 2002, 76(2): 213-219.
    [25]Izumi Y, Urabe K, Onaka M, et al. Advances in liquid-phase organic reactions using heteropolyacid andclay[J]. Microporous Mesoporous Mater, 1998, 21(4-6): 227-233.
    [26]Guo Y, Li K, Clark J H. The synthesis of diphenolic acid using the periodic mesoporousH3PW12O40-silica composite catalysed reaction of levulinic acid[J]. Green Chem, 2007, 9(8): 839-841.
    [27]Guo Y, Li K, Yu X, et al. Mesoporous H_3PW_(12)O_(40)-silica composite: Efficient and reusable solid acidcatalyst for the synthesis of diphenolic acid from levulinic acid[J]. Appl Catal B: Environ, 2008, 81(3-4):182-191.
    [28] Yu X, Guo Y, Li K, et al. Catalytic synthesis of diphenolic acid from levulinic acid over cesium partlysubstituted Wells-Dawson type heteropolyacid[J]. J Mol CatalA: Chem., 2008, 290: 44 - 53.
    [29]Okuhara T, Nishimura T, Watanabe H, et al. Insoluble heteropoly compounds as highly active catalystsfor liquid-phase reactions[J]. J Mol Catal, 1992, 74: 247-256.
    [30] Izumi Y, Ono M, Ogawa M, et al. Acidic cesium salts of keggin-type heteropolytungstic acids asinsoluble solid acid catalysts for estenfication and hydrolysis reactions[J]. Chem Lett, 1993, 825-828.
    [31]Kozhevnikov I V, Sinnema A, Jansen R J J, et al. (17)~O NMR determination of proton sites in solidheteropoly acid H3PW_(12)O_(40)-31P, 29Si and 17O NMR, FT-IR and XRD study of H_3PW_(12)O_(40) and H_4SiW_(12)O_40supported on carbon [J]. Catal Lett, 1994,27(1-2): 187-197.
    [32]Rocchiccioli-Deltchff C, Amirouche M, Herve G, et al. Structure and catalytic properties ofsilica-supported polyoxomolybdates: II. Thermal behavior of unsupported and silica-supported12-molybdosilicic acid catalysts from IR and catalytic reactivity studies [J]. J Catal, 1990, 126(2): 591-599.
    [33]Kasztelan S, Payen E, Moffat J B, The existence and stability of the silica-supported12-molybdophosphoric acid keggin unit as shown by Raman, XPS, and 31P NMR spectroscopic studies[J].J Catal, 1990, 125(1): 45-53.
    [34]Bruckman K, Che M, Haber J, et al. On the physicochemical and catalytic properties of H_5PV_2Mo_10O_40supported on silica[J]. Catal Lett, 1994,25(3-4): 225-240.
    [35]Mastikhm V M, Kulikov S M, Nosov A V, et al. 1~H and 31P MAS NMR studies of solid heteropolyacidsand H_3PW_(12)O_(40) supported on SiO2[J]. J Mol Catal, 1990, 60(1): 65-70.
    [36]Mohana Rao K, Gobetto R, Iannibello A, et al. Solid state MNR and IR studies ofphosphomoly bdenum and phosphotungsten heteropoly acids supported on SiO_2,γ-Al_2O_3, and SiO_2-A12O3[J]. J Catal, 1989, 119(2): 512-516.
    [37]Lefebvre F, 31P MAS NMR study of H_3PW_(12)O_(40) supported on SiO2: formation of(=SiOH2+)( H2PW_(12)O_(40))[J]. J Chem Soc, Chem Commun, 1992, (10): 756-757.
    [38]Kozhevnikov I V, Kloetstra K R, Sinnema A, et al. Study of catalysts comprising heteropoly acidH_3PW_(12)O_(40) supported on MCM-41 molecular sieve and amorphous silica[J]. J Mol Catal, 1996, 114(1-3):287-298.
    [39]Vazquez P, Pizzio L, Romanelli G, et al. Mo and W heteropoly acid based catalysts applied to thepreparation of flavones and substituted chromones by cyclocondensation of o-hydroxyphenyl aryll,3-propanediones[J]. Appl Catal A: Gen, 2002, 235 (1-2): 233-240.
    [40]Misono M. Polyoxometalates from platonic solids to anti-retroviral activity [J]. Catal Rev Sci Eng,1987,29: 269-321.
    [41]Subramanian G, Manoharan V N, Thorne J D, et al. Ordered macroporous materials by colloidalassembly: A possible route to photonic bandgag materials[J]. Adv Mater, 1999, 11(15): 1261-1265.
    [42]Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporousframeworks[J]. JAm Chem Soc, 1999, 121:4308-4309.
    [43]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photo catalyticdegradation of aqueous organocholorine pesticides[J]. Chem Mater, 2000, 12(11): 3501-3508.
    [44]Guo Y, Hu C, Wang X, et al. Microporous Decatungstates: Synthesis and Photochemical Behavior[J].Chem Mater, 2001, 13(11): 4058-4064.
    [45]Peng G, Wang Y, Hu C, et al. Hereropolyoxometalates which are included in microporous silica,CsxH3-xPMo12O40/SiO2 and CsyH3-yPMo10V2O_(40)/SiO_2 as insoluble solid bifunctional catalysis: synthesisand selective oxidation of benzyl alcohol in liquid-solid systems[J]. Appl Catal A: Gen, 2001, 218(1-2):91-99.
    [46]Corma A, Garcia H, Lewis acids as catalysts in oxidation reactions: From homogeneous toheterogeneous systems[J]. ChemRev, 2002, 102: 3837-3892.
    [47]Qu X, Guo Y, Hu C, Preparation and heterogeneous photo catalytic activity of mesoporousH_3PW_(12)O_(40)/ZrO_2 composites[J]. J Mole Catal A: Chem, 2007, 262: 128-135.
    [48] Jiang C, Guo Y, Wang C, et al. Synthesis of dimethyl carbonate from methanol and carbon dioxide inthe presence of polyoxometalates under mild conditions[J]. Appl Catal A: Gen, 2003, 256(1-2): 203-212.
    [49]Devassy M, Halligudi S B, Hegde S G, et al. 12-Tungstophosphoric acid/zirconia—a highly activestable solid acid—comparison with a tungstated zirconia catalyst[J]. Chem Commun, 2002, 1074-1075.
    [50]Kulkarni M G, Gopinath R, Meher C L, et al. Solid acid catalyzed biodiesel production bysimultaneous esterification and transesterification[J]. Green Chem, 2006, 8: 1056-1062.
    [51] Devassy M, Halligudi S B. Zirconia-supported heteropoly acids: Characterization and catalyticbehavior in liquid-phase veratrole benzoylation[J]. J Catal, 2005, 236: 313-323.
    [52]Hoffmann F, Cornelius M, Morell J, et al. Silica-Based Mesoporous Organic-Inorganic HybridMatenals[J]. Angew Chem Int Ed, 2006, 45(20): 3216-3251.
    [53]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by aliquid-crystal template mechamsm[J]. Nature, 1992, 359(6397): 710-712.
    [54]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared withliquid crystal templates[J]. J Am Chem Soc, 1992, 114(27):10834-10843.
    [55]Huo Q S, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporoussilica-based matenals[J]. Chem Mater, 1996, 8(5): 1147-1160.
    [56]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.
    [57]Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinumfilms from lyotropic liquidcrystalline phases [J]. Science, 1997, 278(5339): 838-840.
    [58]Braun P V, Osenar P, Tohver V, et al. Nanostructure templating in inorganic solids withorgamclyotropic liquidcrystals[J]. J Am Chem Soc, 1999, 121(32): 7302-7309.
    [59]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular-sieves by nonionicpolyethylene oxide surfactants [J]. Science, 1995, 269(5228): 1242-1244.
    [60]Huo Q, Margolese D I , Clesla U, et al. Organization of organic moleculars with inorganic molecularspecies into nanocomposites biphase array [J].Chem Mater, 1994, 6, 1176-1191.
    [61]Huo Q, Leon R, Petroff M, et al. Mesostructure design with Gemini surfactants: supercage formation ina three-dimensional hexagonal array[J]. Science, 1995,268, 1324-1327
    [62] Vartuli J C, Schmitt K D, Kresge C T, et al. Effects of surfactant/silica molar ratios on the formation ofmesoporous molecular sieves[J]. Chem Mater, 1994, 6: 2317-2326.
    [63]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials: Liquid-crystaltemplating versus intercalation of layered silicates[J]. Chem Mater, 1994, 6, 2070-2077.
    [64]Luan Z H, Cheng C F, Zhou W Z, et al. Mesoporous molecular sieve MCM-41 containing frameworkalummum[J]. J Phys Chem, 1995, 99, 1018-1024.
    [65]Luan Z H, Cheng C F, He H Y, et al. Thermal stability of structure aluminium in the mesoporousmolecular sieve MCM-41[J]. J Phys Chem, 1995,99, 10590-10593.
    [66]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J].Chem Rev, 1997, 97(6): 2373-2419.
    [67]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of superamolecular-templatedmesoporous materials[J]. Angew Chem Int Ed, 1999, 38: 56—77.
    [68]Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles[J]. Nature, 2001, 412: 169-172.
    [69]Antonelli D M, Ying J Y Synthesis of a stable hexagonally packed mesoporous niobium oxidemolecular sieve through a novelligand-assisisted templating mechanism.[J]. Angew Chem Int Ed En, 1996,35(4): 426-430.
    [70] Schuth F. Non-siliceous mesostructured and mesoporous materials[J]. Chem Mater, 2001, 13:3184-3195.
    [71]He X, Antonelli D M. Recent Advances in Transition Metal Containing Mesoporous MolecularSieves[J]. Angew Chem Int Ed, 2002, 41: 214-229.
    [72] Yang P D, Zhao D Y, Margoless D L, et al. Generalized syntheses of large-pore mesoporous metaloxides with semi crystalline frameworks[J]. Nature, 1998,396: 152-155.
    [73]Tian B, Liu X, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-basepairs[J]. Nature Mater, 2003, 2, 159-163.
    [74]Utting A K, Macquarrie J D. Silica-supported imines as mild, efficient base catalyst[J]. New J Chem,2000,24,591-595.
    [75]Diaz I, Mohino F, Perez-pariente, et al. A direct synthesisroute to the mesoporous silicate SBA-2bearing thiol groups[J]. Stud Surf Sci Catal, 2001, 135, 1248-1253.
    [76]Diaz I, Mohino F, Perez-pariente, et al. Synthesis, characterization and catalytic activity ofMCM-41-type mesoporous silicas functionalized with sulfonicacid[J]. Appl Catal A: Gen, 2001, 205,19-30.
    [77]Gonzalez-Pena V, Diaz I, Marquez-Alvarez C, et al. Thermally stable mesoporous alumina synthesizedwith non-ionic surfactants in thepresence of amines[J]. Microporous Mesoporous Mater, 2001, 44-45,295-302.
    [78]Bossaert W D, De Vos D E, Van Rhijn W M, et al. Mesoporous sulfonic acids as selectiveheterogeneous catalysts for the synthesis of monoglycerides[J]. J Catal, 1999, 182(1): 156-164.
    [79]Van Rhijn W M, De Vos D E, Sels B F, et al. Sulfonic acid functionalized ordered mesoporousmaterials as catalysts for condensation and esterification reactions [J]. Chem Comm, 1998, 3: 317-318.
    [80]Das D, Lee J F, Cheng S. Selective Synthesis of Bisphenol-A over Mesoporous MCM Silica CatalystsFunctionalized with Sulfonic Acid Groups[J]. J Catal, 2004,223, 152-160.
    [81]Shimizu K, Hayashi E, Hatamachi T, et al. Acidic properties of sulfonic acid-functionalized FSM-16mesoporous silica and its catalytic efficiency for acetalization of carbonyl compounds[J]. J Catal, 2005, 231,131-138.
    [82]Brunel D, Cauvel A, Renzo F, et al. Preferential grafting of alkoxysilane coupling agents on thehydrophobic portion of the surface of micelle-templated silica[J]. New J Chem, 2000, 24: 807-813.
    [83]Abramson S, Lasperas M, Galarneau A, et al. Best design of heterogenized-aminoalcohols forimprovement of enantioselective addition of diethylzinc to benzaldehyde[J]. Chem Commun, 2000,1773-1774.
    [84]Martin T, Galarneau A, Brunel D, et al. Stud Surf Sci Catal, 2001, 135: 205.
    [85]Abramson S, Lasperas M, Brunei D. Design of mesoporous aluminosilicates supported(lR,2S)-(-)-ephedrine:Evidence for the main factors influencing catalytic activity in the enantioselectivealkylation of benzaldehyde with diethylzinc[J]. Tetrahedron: Asymmetry, 2002, 13: 357-367.
    [86]Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganic-organic mesoporous silica byco-condensation of siloxane and organosiloxane precursors[J]. Chem Commun, 1996, 1367-1368.
    [87]Lim M H, Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hybridmesoporous materials [J]. Chem Mater, 1999, 11: 3285-3295.
    [88]Yokoi T, Yoshitake H, Tatsumi T. Synthesis of amino-functionalized MCM-41 via directco-condensation and post-synthesis grafting methods using mono-,di-and tri-amino-organoalkoxysilanes[J].J Mater Chem, 2004, 14: 951-957.
    [89]Fiorilli S, Onida B, Bonelli B, et al. In situ infrared study of SBA-15 functionalized with carboxylicgroups incorporated by a co-condensation route[J]. J Phys Chem B, 2005, 109: 16725-16729.
    [90]Lim M H, Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hybridmesoporous matenals[J]. Chem Mater, 1999, 11(11): 3285-3295.
    [91]Yokoi T, Yoshitake H, Tatsumi T. Synthesis of amino-functionalized MCM-41 via directco-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes[J]. JMater Chem, 2004, 14(6): 951-957.
    [92]Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with acrystal-like wall structure[J]. Nature, 2002, 416: 304-307.
    [93]Melde B J, Holland B T, Blanford C F, et al. Mesoporous sieves with unified hybrid inorganic/organicframeworks[J]. Chem Mater, 1999, 11, 3302-3308.
    [94]Asefa T, MacLachan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic groupsinside the channel walls [J]. Nature, 1999,402(6764): 867-871.
    [95]Burleigh M C, Markowitz M A, Wong E M, et al. Synthesis of Periodic Mesoporous Organosilicas withBlock Copolymer Templates[J]. Chem. Mater. 2001, 13, 4411-4412.
    [96]Sawant D P, Vinu A, Jacob N E, et al. Formation of nanosized zirconia-supported12-tungstophosphoric acid in mesoporous silica SBA-15: A stable and versatile solid acid catalyst for benzylation of phenol[J]. J Catal, 2005, 235: 341-352.
    [97]孙渝,乐英红,李惠云等.McM-41负载磷钨杂多酸催化剂的性能研究[J]化学学报,1999,57:746-753.
    [98]Nowinska K, Formanniak R, Kaleta W, et al. Heteropoly compounds incorporated into mesoporous material structure[J]. Appl Catal A: Gen, 2003, 256: 115-123.
    [99]Yun H S, Kuwabara M, Zhou H S, et al. One-step synthesis of mesoporous PWA/SiO_2 composite materials using triblock copolymer templates[J]. J Mater Sci, 2004, 39: 2341-2347.
    [100]牟英.生物柴油和1,3一丙二醇偶联生产工艺的研究[D]:[博士学位论文].大连:大连理工大学生物化工,2006.
    [101]李学勇,王宏广.发展生物技术引领生物经济[M].中国医药出版社,2005.206-212.
    [102]李永善,于佑世.大有作为的“绿色化工”——未来的可再生柴油[J].灾害学,2003,16(2):12-17
    [103]Ma F, Hanna MA. Biodiesel production: a review. Bioresour[J]. Technol, 1999, 70: 1-15.
    [104]Fukuda H, Kondo A, Noda H. Biodiesel fuel production by trans esterification of oils[J]. J BiosciBioeng, 2001, 92: 405-416.
    [105]Muniyappa P R, Brammer S C, Noureddini H. Conversion of plant oils and animal fats into biodieseland co-product[J]. Bioresour Technol, 1996, 56:19-24.
    [106]Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of differenthomogeneous catalysts systems[J]. Bioresour Technol, 2004, 92: 297-305.
    [107]Dorado M P, Ballesteros E, Lopez F J, et al. Optimization of alkali-catalyzed trans esterification ofBrassica carinata oil for biodiesel production[J]. Energ Fuel, 2004, 18: 77-83.
    [108]Meher L C, Dharmagadda V S S, Naik S N. Optimization of alkali-catalyzed tran sester if ication ofPongamia pinnata oil for production of biodiesel[J]. Bioresour Technol, 2006, 97: 1392-1397.
    [109]Dorado M P, Ballesteros E, Mittelbach M, et al. Kinetic parameters affecting the alkali-catalyzedtransester if ication process of used olive oil[J]. Energ Fuel, 2004, 18: 1457-1462.
    [110]Freedman B, Butterfield R O, Pryde E H. Transester if ication kinetics of soybean oil[J]. J Am OilChem Soc, 1986, 63: 1375-1380.[lll]Haas M J. The interplay Between Feedstock Ouality and Ester if ication technology in biodieselproduction[J]. Lipid Technol, 2004, 16(1) :7-ll.
    [112]Freedman B, Pryde E H, Mounts T L. Variables affecting the yield of fatty esters transesterifiedvegetable oils[J]. J Am Oil Chem Soc, 1984, 61(10): 1638-1643.
    [113]李昌珠,蒋丽娟,程树棋.生物能源-绿色能源.北京:化学工业出版社,2004
    [114]Tashtoush G M, Al-Widyan M I, Al-Jarrah M M. Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel[J]. Energ Convers Manag, 2004, 45: 2697-2711.
    [115]Kulkarni M G, Dalai A K. Waste cooking oils-an economical source for biodiesel: A review[J]. IndEng Chem Res, 2006, 45: 2901-2913.
    [116]Canakci M, Gerpen J V. Biodiesel Production via acid catalysis[J]. Trans ASAE, 1999, 42(5):1203-1210.
    [117]Zheng S, Kates M, Dube M A, et al. Acid-catalyzed production of biodiesel from waste frying oil[J].Biomass Bioenerg, 2006, 30: 267-272.
    [118]Zhang Y, Dube M A, McLean D D, et al. Biodiesel production from waste cooking oil: 1. Processdesign and technological assessment[J]. Bioresour Technol, 2003, 89: 1-16.
    [119]Formo M W. Ester reactions of fatty matenals[J]. J Am Oil Chem Soc, 1954, 31: 548-559.
    [120]A1-Widyan M I, Al-Shyoukh A O. Experimental evaluation of the transesterification of waste palm oilinto biodiesel[J]. Bioresour Technol, 2002, 85: 253-256.
    [121]Nimcevic D, Puntigam R, Worgetter M, et al. Preparation of rapeseed oil esters of lower aliphaticalcohols[J]. J Am Oil Chem Soc, 2000, 77(3): 275-280.
    [122]Mittelbach M, Silbetholz A, Koncar M. Novel aspects concerning acid catalyzed alcoholysis oftriglycerides. Proceedings of the 21s World Congress of The Intenational Society for Fat Research(ISF),The Hague(Netherland), 1995, 3: 497-499.
    [123]Jacobson K, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production from wastecooking oil[J]. Appl Catal B: Environ, 2008, 85: 86-91.
    [124]Narasimharao K, Brown D, Lee A, et al. Structure-activity relations in Cs-doped heteropolyacidcatalysts for biodiesel production[J]. J Catal, 2007, 248(2): 226-234.
    [125]Chai F, Cao F, Zhai F, et al. Transesterification of vegetable oil to biodiesel using a heteropolyacidsolid catalyst[J]. Adv Synth Catal, 2007, 349, 1057-1065.
    [126]Kiss A A, Dimian A C, Rothenberg G Solid Acid Catalysts for Biodiesel Production—TowardsSustainable Energy [J]. Adv Synth Catal, 2006, 348, 75-81.
    [127]Mittelbach M. Lipase-catalyzed alcoholysis of sunflower oil[J]. J Am Oil Chem Soc, 1990, 67:168-170.
    [128]Nelson L A, Foglia T A, Marmer W N, Lipase-catalyzed production of biodiesel[J]. J Am Oil ChemSoc, 1996,73: 1191-1195.
    [129]Okuhara T. Water-tolerant solid acid catalysts[J]. Chem Rev. 2002, 102(10): 3641-3666.
    [130]Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J Mol Catal A,2007,262(1-2): 86-92.
    [131]Guo Y, Hu C, Jiang C, et al. Preparation and heterogeneous photo catalytic behaviors of thesurface-modified porous silica materials impregnated with monosubstituted keggin units[J]. J Catal, 2003,217(1): 141-151.
    [132]Guo Y, Hu C, Jiang S, et al. Heterogeneous photo degradation of aqueous hydroxy butanedioic acid bymicroporous polyoxometalates[J]. Appl Catal B, 2002, 36(1): 9-17.
    [133]李莉,郭伊荇,周萍等.孔道结构H_3PW_(12)O_(40)/TiO_2的制备及其可见光光催化降解水溶性染料的性能[J].催化学报.2005,26(3):209-215.
    [134]Nobuhito I, Toshiyuki M, Hidekazu H,et al. Amorphous cerium-titanium solid solution phosphate asa novel family of band gap tunable sunscreen materials[J]. Chem Mater, 2003, 15(12): 2289-2291.
    [135]Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites:Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation[J].Micropor Mesopor Mater, 2005, 87(1): 1-9.
    [136]Jiang S, Guo Y, Wang C,et al. One-step sol-gel preparation and enhanced photocatalytic activity ofporous polyoxometalate-tantalum pentoxide nanocomposites[J]. J Coll Inter Sci, 2007, 308(1): 208-215.
    [137]Teo H T R, Saha B. Heterogeneous catalysed esterification of acetic acid with isoamyl alcohol:kinetic studies[J]. J Catal, 2004, 228(1): 174-182.
    [138]Liu Y, Lotero E, Goodwin Jr J G. Effect of carbon chain length on ester if ication of carboxylic acidswith methanol using acid catalysis[J]. J Catal, 2006, 243(2): 221-228.
    [139]曲荣君,孙昌梅,纪春暖等.二乙烯苯交联聚(2-羟乙基硫甲基苯乙烯)树脂的相转移催化合成[J].催化学报,2005,26(3):183-188.
    [140]Liu Q, Wu W, Wang J, et al. Characterization of 12-tungstophosphoric acid impregnated onmesoporous silica SB A-15 and its catalytic performance in isopropy lation of naphthalene withisopropanol[J]. Micropor Mesopor Mater, 2004, 76(1): 51-60.
    [141]Zong M, Duan Z, Lou W, et al. Preparation of a sugar catalyst and its use for highly efficientproduction of biodiesel[J]. Green Chem, 2007, 5: 434-437.
    [142]Haas M J, Scott K M, Alleman T L, et al. Engine performance of biodiesel fuel prepared fromsoybean soapstock: a high quality renewable fuel produced from a waste feedstock[J]. Energy Fuels, 2001,15: 1207-1212.
    [143]Agarwal A K, Das L M. Biodiesel development and characterization for use as a fuel in compressionignition engmes[J]. Trans ASME, 2001, 123: 440-447.
    [144]Lotero E, Liu Y, Lopez D E, et al. Synthesis of Biodiesel via Acid Catalysis[J]. Ind Eng Chem Res,2005,44: 5353-5363.
    [145]Bournay L, Casanave D, Delfort B, et al. New heterogeneous process for biodiesel production: a wayto improve the quality and the value of the crude glycerin produced by biodiesel plants[J]. Catal Today,2005, 106: 190-192.
    [146]Kinney A J, Clemente T. Modifying soybean oil for enhanced performance in biodiesel blends[J].Fuel Process Technol, 2005, 86:1137-1147.
    [147]Granados M L, Zafra Poves M D, Alonso D M, et al. Biodiesel from sunflower oil by using activatedcalcium oxide[J]. Appl Catal B: Environ, 2007, 73(3-4): 317-326.
    [148]Zafiropoulos N A, Ngo H L, Foglia T A, et al. Catalytic synthesis of biodiesel from high free fattyacid-containing feedstocks[J]. Chem Commun, 2007, 3670-3672.
    [149]A1-Zuhair S. Production of biodiesel: possibilities and challenges. A review[J]. Biofuels BioprodBioref, 2007, 1:57-66.
    [150]Suppes G J, Dasari M A, Doskocil E J, et al. Transesterification of soybean oil with zeolite and metalcatalysts[J]. Appl. Catal. A: Gen, 2004, 257, 213-223.
    [151] Reddy C R V, Oshel R, Verkade J G. Temperature conversion of soybean oil and poultry fat tobiodiesel catalysed by nanocrystalline calcium oxides[J]. Energy & Fuels, 2006, 20, 1310-1314.
    [152]Xie W, Huang X. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO[J]. Catal Lett,2006, 107(1-2): 53-59.
    [153]Arzamendi G, Campo I, Arguinarena E, et al. Synthesis of biodiesel with heterogeneousNaOH/alumina catalysts: Comparison with homogeneous NaOH[J]. ChemEng J, 2007, 134(1-3), 123-130.
    [154]Kim H J, Kang B S, Kim M J, et al. Transesterification of vegetable oil to biodiesel usingheterogeneous base catalyst[J]. Catal Today, 2004, 315: 93-95.
    [155]Ebiura T, Echizen T, Ishikawa A, et al. Selective transesterification of triolein with methanol tomethyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst[J]. ApplCatal A: Gen, 2005, 283(1-2): 111-116.
    [156]Serio Di M, Cozzolino M, Giordano M, et al. From Homogeneous to Heterogeneous Catalysts inBiodiesel Production[J]. Ind Eng Chem Res, 2007, 46(20): 6379-6384.
    [157]Kulkarni M G, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production bysimultaneous esterification andtransesterification[J]. Green Chem, 2006, 8: 1056-1062.
    [158]Mbaraka K Isa, Radu D R, Lin -Y S V, et al. Organosulfonic acid-functionalized mesoporous silicasfor the esterification of fatty acid[J], J Catal, 2003, 219(1): 329-336.
    [159]Mbaraka K Isa, Shanks H B, Design of multifunctionalized mesoporous silicas for esterification offatty acid[J]. J Catal, 2005, 229(2): 365-373.
    [160]Lopez E D, Suwannakarn K, Bruce D A, et al. Esterification and transesterification on tungstatedzirconia: Effect of calcination temperature[J]. J Catal, 2007, 247(1), 43-50.
    [161]Rhijn Van M W, Vos De E D, Sels F B, et al. Sulfonic acid functionalised ordered mesoporousmaterials as catalysts for condensation and esterification reactions[J]. Chem Commun, 1998, 317-318.
    [162]Harmer M A, Farneth W E, Sun Q, Towards the Sulfuric Acid of Sohds[J]. Adv Mater, 1998, 10:1255-1257.
    [163]Harmer M A, Sun Q, Solid acid catalysis using ion-exchange resins[J]. Appl Catal A: Gen, 2001,221(1-2): 45-62.
    [164]Yadav G D, Nair J J, Sulfated zirconia and its modified versions as promising catalysts for industrialprocesses[J]. Micropor Mesopor Mater, 1999, 33(1-3): 1-48.
    [165]Morin P, Hamad B, Sapaly G, et al. Trans esterification of rapeseed oil with ethanol: I. Catalysis withhomogeneous Keggin heteropolyacids[J]. Appl Catal A: Gen, 2007, 330: 69-76.
    [166]Rao P M, Wolfson A, Kababya S, et al. Immobilization of molecular H_3PW_(12)O_(40) heteropolyacidcatalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices[J]. J Catal, 2005, 232(1),210-225.
    [167]Verhoef J M, Kooyman J P, Peters A J, et al. A study on the stability of MCM-41-supportedheteropoly acids under liquid- and gas-phase esterification conditions[J]. Micropor Mesopor Mater, 1999,27(2-3): 365-371.
    [168]Samaranch B, Piscina P R, Clet G, et al. Synthesis and Characterization of Ta_2O_5-ZrO_2Systems: Structure, Surface Acidity, and Catalytic Properties[J]. Chem Mater, 2007, 19(6): 1445-1451.
    [169]Ushikubo T, Wada K, Catalytic properties of hydrated tantalum oxide[J]. Appl Catal, 1990, 67(1):25-38.
    [170]Garrone E, Chiappetta R, Spoto G, et al. Proceedings from the Ninth International Zeolite Conference.1993, Vol II,p267.
    [171]Newman A D, Lee A F, Wilson K, et al. On the active site in H3PW12O_(40)/SiO_2 catalysts for finechemical synthesis[J]. Catal Lett, 2005, 102(1-2): 45-50.
    [172]Chen Y, Fierro G L J, Tanaka T, et al. Supported tantalum oxide catalysts: Synthesis, physicalcharacterization, and methanol oxidation chemical probe reaction[J]. J Phys Chem B, 2003, 107(22):5243-5250.
    [173]Lopez-Salinas E, Hernandez-Cortez G J, Schifter I, et al. Thermal stability of 12-tungstophosphoricacid supported on zircoma[J]. Appl Catal A: Gen, 2000, 193(1-2): 215-225.
    [174]Lee B, Yamashita T, Lu D, et al. Single-Crystal Particles of Mesoporous Niobium-Tantalum MixedOxide[J]. Chem Mater, 2002, 14(2): 867-875.
    [175]Kim S S, Pauly T R, Pinnavaia T J, Non-ionic surfactant assembly of wormhole silica molecularsieves from water soluble silicates[J]. Chem Commun, 2000, (10): 835-836.
    [176]Kumar D, Landry C C. Immobilization of a Mo,V-polyoxometalate on cationically modifiedmesoporous silica: Synthesis and characterization studies[J]. Micropor Mesopor Mater, 2007, 98(1-3):309-316.
    [177]Kumbar M S, Heteropoly acid supported on titania as solid acid catalyst in alkylation of p-cresol withtert-butanol[J]. J Mol Catal A: Chem, 2006, 256(1-2): 324-334.
    [178]Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate-tantalum pentoxidecomposite catalyst and its application for biodiesel production by esterification and transesterification[J].Green Chem, 2008, 10(7): 746-755.
    [179]Corma A, Garcia H, Iborra S, et al. Modified faujasite zeolites as catalysts in organic reactions:Esterification of carboxylic acids in the presence of HY zeolites[J]. J Catal, 1989, 120(1): 78-87.
    [180]Lee B, Lu D, Kondo J N, et al. Three-Dimensionally Ordered Mesoporous Niobium Oxide[J]. J AmChem Soc, 2002, 124(38): 11256-11257.
    [181]Diaz I, Marquez-Alvarez C, Mohino F, et al. Combined Alkyl and Sulfonic Acid Functionalization ofMCM-41-Type Silica: Part 1. Synthesis and Charactenzation[J]. J Catal, 2000, 193(2): 283-294.
    [182]Li Y, Wang Y, Ceesay S. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy,article in press.
    [183]Lin-Vien D, Colthup N B, Fateley W B, et al. The Handbook of Infrared and Raman CharacteristicFrequencies of Organic Molecules. Academic Press: Boston, 1991.
    [184]Melero J A, Grieken van R, Morales G. Advances in the Synthesis and Catalytic Applications ofOrganosulfomc-Functionahzed MesostructuredMaterials[J]. Chem Rev, 2006, 106(9): 3790-3812.
    [185]Wight P A, Davis E M. Design and preparation of organic-inorganic hybrid catalysts[J]. Chem Rev,2002, 102(10): 3589-3614.
    [186]Diaz I, Marquez-Alvarez C, Mohino F, et al. Combined alkyl and sulfonic acid functionalization ofMCM-41-type silica: Part 2. Estenfication of glycerol with fatty acids[J]. J Catal, 2000, 193(2): 295-302.
    [187]Dossin F T, Reyniers M, Berger J R, et al. Simulation of heterogeneously MgO-catalyzedtransesterification for fine-chemical and biodiesel industrial production[J]. Appl Catal B: Environ, 2006,67(1-2): 136-148.
    [188] Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution oforganic groups andinorganic oxide in their frameworks[J]. J Am Chem Soc, 1999, 121: 9611-9614.
    [189] Kapoor P M, Setoyama N, Yang Q, et al. Oligomeric polymer surfactant driven self-assembly ofphenylene-bridged mesoporous materials and their physicochemical properties[J]. Langmuir 2005, 21:443-449.
    [190] Hunks W J, Ozin G A. Challenges and advances in the chemistry of periodic mesoporousorganosilicas (PMOs)[J]. J Mater Chem, 2005, 15(31): 3716-3724.
    [191]Bao X Y, Zhao X S. Morphologies of Large-Pore Periodic Mesoporous Organosilicas[J]. J Phys ChemB, 2005, 109(21): 10727-10736.
    [192]Li C, Liu J, Shi X, et al. Periodic mesoporous organosihcas with 1,4-diethylenebenzene in themesoporous wall: synthesis, characterization, and bioadsorption properties[J]. J Phys Chem C, 2007, 111,10948-10954.
    [193]Sawant P D, Justus J, Balasubramanian V V, et al. Heteropoly acid encapsulated SBA-15/TiO2nanocomposites and their unusual performance in acid-catalysed organic transformations [J]. Chem Eur J,2008, 14: 3200-3212.
    [194]Jiang D, Yang Q, Yang J, et al. Mesoporous ethane-Silicas functionalized withtrans-(lR,2R)-diaminocyclohexane as heterogeneous chiral catalysts[J]. Chem Mater, 2005, 17: 6154-6160.
    [195]Wang P, Yang J, Liu J, et al. Chiral mesoporous organosihcas with R-(+)-Binol integrated in theframework[J]. Micropor Mesopor Mater, 2009, 117: 91-97.
    [196]Yoo K, Lee T, Kim J. Preparation and characterization of mesoporous TiO_2 particles by modifiedsol-gel method using ionic liquids[J]. Micropor Mesopor Mater, 2005, 84: 211-217.
    [197]Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templatingapproach[J]. Chem Commun, 2007, 897-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700