用户名: 密码: 验证码:
鹅PIT-1基因的克隆、表达和遗传效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂体特异性转录因子(Pit-1)由PIT-1基因编码,是动物垂体前叶特异表达的一种具有重要功能的转录因子。PIT-1与垂体中PRL、GH、TSH-β以及自身的启动子结合,调控这些基因的转录,通过调节这些基因的表达而在机体的生长、发育、繁殖和免疫等很多方面起着重要作用。
     本文对鹅PIT-1基因进行了系统的研究,以狮头鹅、皖西白鹅和籽鹅为对象,首次获得了PIT-1基因的cDNA序列,对其编码区及氨基酸序列进行了生物信息学分析;检测了狮头鹅、皖西白鹅、籽鹅、浙东白鹅、四季鹅和朗德鹅群体PIT-1基因序列的遗传变异,比较不同群体内的基因型的分布规律,并分析了基因遗传变异对早期体重和屠宰性状的影响;同时采用荧光定量PCR技术首次分析了皖西白鹅PIT-1基因早期的发育性表达规律,分析了GH基因和PRL基因的表达模式,并首次对不同基因间表达规律的关系进行了初探。主要研究结果如下:
     1.以皖西白鹅、籽鹅和狮头鹅为研究对象,采用RT - PCR和克隆测序的方法,获得了鹅PIT-1基因2条长为1014 bp的cDNA序列以及内含子2和2a的全部序列;其中编码区长度为1011 bp,与人类、鼠、火鸡、鸡和鸭的同源性分别为63.2%、68.2%、83.5%、84.3%和97.2%;内含子2和内含子2a的长度分别为819 bp和333 bp,与鸭的内含子序列的同源性分别为83%和89.2%;2条编码区序列分别在485位和746位存在差异。
     2.采用生物信息学方法分析得到的编码区序列, 2条序列的差异引起了其编码氨基酸162位和250位的变化,氨基酸序列与火鸡、鸡和鸭的同源性较高。所编码的氨基酸序列有15个磷酸化位点,且大多为亲水性氨基酸,无跨膜螺旋结构;氨基酸序列的二级结构包含了alpha螺旋(154AA)、延伸片段(16AA)和随机螺旋(166AA)三种结构,具有POU蛋白家族特有的保守结构,确定为鹅Pit-1氨基酸序列。
     3.在鹅PIT-1基因内含子1内检测到2处插入/缺失变异,该变异的分布在不同群体内差异显著,在外来品种朗德鹅内表现为单态;统计结果显示该遗传变异与皖西白鹅早期体重显著相关,插入了片段的B等位基因有利于早期体重的增加,可作为辅助分子标记对鹅早期体重性状进行选育;同时该遗传变异与狮头鹅的屠体性状有显著的基因型效应,AB型的心率显著高于AA型。表明对不同类型群体而言,该变异所影响的性状可能不一致。采用PCR-SSCP技术在6个群体内检测到了3个SNPs,其中非编码区以及364位的变异只存在于朗德鹅群体内;基因型在群体内的分布差异极显著,EE基因型只存在于朗德鹅群体内;统计结果显示,狮头鹅、籽鹅群体内DD型早期体重显著高于CD型,浙东白鹅群体内CD型体重显著高于CC型,表明D等位基因对于体重而言可能为有利基因;狮头鹅群体内的DD型腹脂率显著高于CD型,与体重的基因型效应一致,而籽鹅群体内DD型屠体率高于CD型,但差异不显著,CC型屠体率显著高于CD,说明就不同类型的群体而言,基因型对性状的影响可能会存在差异。在检测到的2种遗传变异的分布上,朗德鹅与国内5个群体存在极显著的差异,在这2种变异上所有个体表现为单态,这可能与群体的不同起源有关,也可能与群体长期适应不同生产性能的选育有关。插入/缺失变异的AA基因型和SNPs变异的EE基因型可能更利于朗德鹅的肥肝性能,可作为其选育的辅助分子标记。
     4.采用荧光定量PCR技术检测PIT-1基因、GH基因和PRL基因的早期发育性表达模式,结果表明,公母之间垂体内PIT-1基因和GH基因在0 - 4周龄内的变化趋势存在差异,其余阶段变化趋势一致;公母之间下丘脑内GH基因的表达出现高峰和低谷的阶段不一致,其余大体相同,表明PIT-1基因和GH基因的表达在性别间表现出二态性,对不同性别性状的影响可能会不一致。同一性别内,GH基因在公鹅垂体内和下丘脑内的表达模式一致,而母鹅在0 - 2周龄及30周龄的变化存在差异;表明不同性别间GH基因表达受调控的机制可能会存在一些差别。母鹅PRL基因不同组织内表达的模式不一致,垂体和下丘脑在2 - 10周龄内变化趋势一致,而在15周龄前,卵巢与下丘脑的变化趋势相反,说明对PRL基因而言,不同组织内基因的表达可能因不同因素的调节而存在差异。对PIT-1、GH和PRL 3种基因垂体内的表达模式进行比较发现,无论公母,垂体内GH基因的表达模式与PIT-1基因完全相同,说明GH基因的表达随着PIT-1基因的表达变化而变化,受到PIT-1基因的遗传调控;而PRL基因的表达模式和PIT-1基因并不完全一致,暗示PRL基因的表达还可能受到PIT-1基因与其它因子的共同影响。这一结果与前人的相关报道一致。
Pituitary-specific factor 1 (Pit-1) was encoded by PIT-1 gene, it is a transcription factor expressed in cephalic of Pituitary gland with essential function. PIT-1 regulates the transcription of PRL, GH, TSH-βand itself by binding to the promoter of them, and plays important roles in the growth, development, reproduction and immunity by regulates the expression of these genes.
     In this study, the cDNA sequence of PIT-1 gene was first cloned in Shitou goose, Wanxi white goose and Zi goose, and the bioinformatics analysis on the CDS and amino acid sequences was conducted; then analysis of genetic variation of PIT-1 was carried out in Shitou goose, Wanxi white goose, Zi goose, Zhedong white goose, Siji goose and landosie goose, the genotypes distribution in different populations was compared and the effects of genotypes on early bodyweight and carcass traits was analyzed; further, gene expression of PIT-1 gene, PRL gene and GH gene in different developmental stages in Wanxi white goose was investigated by Real-time PCR technology to explore the expression characteristics. The main results were as follows:
     1. Two cDNA sequences of 1014 bp size and the sequences of intron 2 and intron 2a was gained by the methods of RT - PCR and sequencing in Wanxi white goose, Shitou goose and Zi goose; the CDS of PIT-1 gene was 1011 bp in length, and the identity with human, mouse, turkey, chicken and duck were 63.2%, 68.2%, 83.5%, 84.3% and 97.2%, respectively; the size of intron 2 was 819 bp, and intron 2a was 333 bp, their identity with duck introns were 83% and 89.2%; the bases in position 485 and 746 was different in two cDNA sequences.
     2. Bioinformatic analysis was conducted on CDS sequences, the differences in nucleotides changed the amino acids at position 162 and 250, there were high identity between the amino acids sequence with turkey, chicken and duck. There were 15 phosphorlated sites in amino acids sequence, most of the amino acids were hydrophilic, the there was no transmenbrane helices in the sequence. The second structure of amino acids was consisted of alpha-helix (154AA), extended strand (16AA) and random coil (166AA). The structure of amino acids was characterized with POU specific conserved region, and make sure that this is the sequence of Pit-1.
     3. Two insertion/deletion were detected in intron 1 of goose PIT-1 gene, the distribution of this variation was significantly different in different populations, and the landosie goose showed as monomorphsim. Statistic analysis showed that, this variation was remarkable correlated with the early bodyweight of Wanxi white goose, allele B ,which has the inserted fragments was benefit to the gain of early bodyweight; at the same time, this variation significantly affected the heart ratio of Shitou goose, AB was higher than AA. This conclusion indicated that, the variation may affect different traits in different type of populations. Three SNPs of PIT-1 gene were detected in 6 populations, among them the SNP in intron and of position 364 were only appeared in landosie goose; genotype distribution was significant between populations, and EE genotype was detected only in landosie goose. Statistic analysis showed that the early bodyweight of DD genotype in Shitou and Zi goose was significantly higher than CD, and bodyweight of CD genotype in Zhedong white goose was significant than that of CC, which suggested that allele D was positive for bodyweight; ratio of abdominal fat of DD genotype was remarkable higher than CD in Shitou goose, however the difference of carcass ratio was not significant between DD and CD genotype in Zi goose, and CC was significantly higher than CD, which may indicated that, the effects of genotypes on traits depend on the commercial type of populations. Landosie goose shown extreme remarkable differences with other 5 populations on the variations, it shown monomorphism in both variations, which may due to the different originations or related to the long time breeding for specific productions; the AA genotype of insertion/deletion variation and the EE genotype of SNPs variation may be more beneficial to Foie Gras trait, and could be used as the assisted molecular marker for breeding.
     4. Ontogeny expression of PIT-1 gene, GH gene and PRL gene was conducted by Real-time PCR in Wanxi white goose, the results showed that, expression of PIT-1 gene and GH gene in pituitary of male shown differences with that of female during 0 - 4 weeks’age, and the peak and valley of GH gene expression in hypothalamus appeared at different time of male and female, which suggested sexual dimorphism of gene expression during 0 - 4week, and different effects on traits in male and female. Within the sex, GH gene expression patterns of male in Pituitary and hypothalamus was identical, and differences existed in two tissues in female at 0 - 2 and 30 week’s age, which suggested that there could be some differences in the mechanism of regulation on GH gene in male and female tissues. The expression patterns of PRL gene shown differences between tissues during 2 - 10 weeks, changes in pituitary and hypothalamus was the same, and before 15 weeks, changes in ovary was opposite with hypothalamus, this may due to the regulation of PRL gene by different factors in different tissues. Expression characteristics of PIT-1, GH and PRL in Pituitary were also compared in this study, and we found that, the expression pattern of GH gene was the same as PIT-1 gene in both sexes, which notifies that the expression of GH gene changed in response to PIT-1 gene, and it was under the genetic regulation of PIT-1. However, the pattern of PRL was not the same as PIT-1 at all stages, this result was similar to previous study, and it could be concluded that the expression of PRL may under the combined effects of PIT-1 and other factors.
引文
[1]聂庆华,张细权,杨关福.鸡生长轴相关基因的研究进展[J].农业生物技术学报, 2003, 11(3): 305-312.
    [2]沈建忠.动物生长激素及其应用[J].中国兽药杂志, 2000, 34(5): 49-53.
    [3]徐日福,孙如宪.肉鸡血浆生长激素含量与屠体性状的相关[J].山东家禽, 1998, 2: 12-13.
    [4]Foster D N, Kim S U, Enyeart J J, et al. Nucleotide sequence of the complementary DNA for turkey growth hormone [J]. Biochem Biophys Res Commun, 1990, 173(3): 967-975.
    [5]颜炳学,邓雪梅,费菁,等.鸡生长激素基因单核甘酸多态性与生长及屠体性状的相关性[J].科学通报, 2003, 48(12): 1304-1307.
    [6]敖金霞,李辉,王启贵,等.鹅生长激素基因的克隆和组织表达[J].农业生物技术学报, 2004, 12(5): 552-555.
    [7]敖金霞,李辉,王启贵,等.鹅生长激素基因内含子2单核甘酸多态性与体重性状的相关研究[J].中国畜牧杂志, 2006, 42(7): 9-11.
    [8]许盛海. 8个鸭品种生长激素基因遗传多样性研究: [学位论文][D].江苏扬州:扬州大学, 2007.
    [9]赵文明,陈清,程金花,等.鹅生长激素基因内含子2多态性分析[J].中国家禽, 2008, 30(1): 24-26.
    [10]Burnside J. Abnormal growth hormone receptor gene expression in the sexlinked dwarf chicken[J]. Comp.endocrinol, 1992, 88: 20-28.
    [11]Agarwal S K, Cogburn L A, J Burnside. Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain[J]. J Endocrinol, 1994, 142: 427-434.
    [12]Zhou Y, He L, Kopchick J. Structural comparison of a portion of the rat and mouse growth hormone receptor/binding protein genes[J]. Gene, 1996, 177: 257-259.
    [13]赵茹茜.鸡生长激素受体研究的新进展[J].中国家禽, 1999, 21(6): 41-42.
    [14]戴茹娟,吴常信,李宁.性连锁矮小鸡生长激素受体基因位点多态性分析[J].畜牧兽医学报, 1996, 27: 315-318.
    [15]Hull K L, Marsh J A, S Harvey. A missense mutation in the GHR gene of Cornell sex-linked dwarf chickens does not abolish serum GH binding[J]. J Endocrinol, 1999, 161: 495-501.
    [16]Feng X P, Kuhnlein U, Faithful R W, et al. A genetic marker in the growth hormone receptor gene associated with body weight in chicken[J]. J Hered, 1998, 89(4): 355-359.
    [17]裴勤娴.鸡GH基因和GHR基因多态性与早期生长性能的相关性研究: [学位论文][D].贵州贵阳:贵州大学, 2007.
    [18]李馨,肖翠红,杨隽,等.鹅生长激素受体基因克隆及其个体发育性表达研究[J].中国畜牧杂志, 2008, 44(23): 9-12.
    [19]陈清.鹅染色体核型分析及GH基因、GHR基因多态性与体重和屠宰性状关系的研究: [学位论文][D].江苏扬州:扬州大学, 2008.
    [20]Rvasilatos Youngken, G Scanes C. Growth hormone and growth factor in poultry growth:required,optimalor[J]. Poultry Sci, 1991, 70: 1764-1780.
    [21]Kikuchi K, Buonomo F C, Kajimoto Y, et al. Expression of insulin like growth factorⅠduring chicken development [J]. Endocrinology, 1991, 128(3): 1323-1328.
    [22]Radechi S V, Capdevielle M C, Buonomo F C, et al. Ontogeny of insulin like growth factors (IGFⅠand IGFⅡ) and IGF binding proteins in the chicken following hatching[J]. Gen Comp Endocrinol, 1997, 107(1): 109-117.
    [23]Amills M, Jimenez N, Villalba D, et al. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits[J]. Poultry Science, 2003, 82: 1485-1493.
    [24]范刚. IGF-1基因5’非编码区多态性与新扬州鸡早期生长和产肉性能的关系研究: [学位论文][D].江苏扬州:扬州大学, 2005.
    [25]朱智,徐宁迎,吴登俊,等.鸡IGFⅠ基因SNPs及其对屠体性状的遗传效应分析[J].畜牧兽医学报, 2007, 38(10): 1021-1026.
    [26]郭春燕.鸡胚胎外周IGFs水平变化规律及IGFⅡ基因多态性与中后期发育关联性的研究: [学位论文][D].江苏扬州:扬州大学, 2007.
    [27]De Ambrogi, Volpe S, C Tamanini. Ghrelin: Central and peripheral effects of anovel peptydil hormone[J]. Med Sci Monit, 2003, 9: 217-224.
    [28]臧贵明,唐新枢.新近发现的一种调节肽—生长素[J].生理科学进展, 2002, 33(1): 50.
    [29]Kaiya H, Van Der G S, Kojima M, et al. Chicken ghrelin: purification, cDNA cloning, and biological activity[J]. Endocrinology, 2002, 143: 3454-3463.
    [30]李长春.藏鸡腿肌全长cDNA文库构建与其ESTs的生物信息学分析和验证: [学位论文][D].湖北武汉:华中农业大学, 2005.
    [31]王丽云.京海黄鸡Ghrelin基因多态性与生长及屠宰性状的关联分析: [学位论文][D].江苏扬州:扬州大学, 2007.
    [32]Bodner M, Castrillo J L, Theill L E, et al. The Pituitary-specific transcription factor GHF-1 is a homeobox-containing protein[J]. Cell, 1988, 55: 505-518.
    [33]Cao Z, Barron E A, Carrllio A J, et al. Reconstitution of cell-type-specific transcription of the rat prolactin gene in vitro[J]. Mol Cell Biol, 1987, 7: 3402-3408.
    [34]Tatsumi K, K Miyai. Cretinism with combined hormone deficiency caused by a mutation in the PIT-1 gene[J]. Nat Genet, 1992, 1(1): 56-58.
    [35]Theill L E, M Karin. Transcriptional control of growth hormone expression and anterior pituitary development[J]. Endocrine Reviews, 1993, 14: 670-689.
    [36]Jacobson E M, Li P, Leon-del-Rio A, et al. Structure of PIT-1 domain bound to DNA as a dimmer: unexpected arrangement and flexibility[J]. Gene Der, 1997, 11: 198-212.
    [37]Augutijin K D. Structural characterization of the PIT-1/EST-1 ineraction: PIT-1 phosphorylation regulates PIT-1/EST-1 bind[J]. Proc Natl Sci USA, 2002, 1999(20): 12657-12662.
    [38]Brown M R, Parks J S, Adess M E, et al. Centralhypothyroidism reveals compound heterozygous mutations in the PIT-1 gene[J]. Horm Res, 1998, 49: 98-102.
    [39]Quentien M H, Pitois F, Gunz G, et al. Regulation od prolactin, GH and PIT-1 gene expression in anterior pituitary by PIT-2: an approach using PIT-2 mutants[J]. ENDocrinology, 2002, 143(8): 2839-2851.
    [40]Ohta K, Nobukuni Y. Characterization of the gene encoding human pituitary specific transcription factor, PIT-1[J]. Gene 1992, 122(2): 387-388.
    [41]Tuggle C K, Yu TP, et al. Cloning and restriction frament length polymorphsim analysis of a cDNA for swine PIT-1, a gene controlling growth hormone expression[J]. Animal Genetics, 1993, 24: 17-21.
    [42]Li S, E Crenshaw. Dwarf locus mutants lacking three pituitary cell types result from mutations in the gene PIT-1[J]. Nature, 1990, 347(6293): 528-533.
    [43]Theill L E, Castrillo J L, Wu D, et al. Dissection of functional domains of the pituitary-specific transcription factor GHF-1[J]. Nature, 1989, 342: 945-948.
    [44]Ingraham H A, Chen R P, Manganlam H J, et al. A tissue-specific transcription factor containing a homeodomain specifies a pltuitary phenotype[J]. Cell, 1988, 55: 519-529.
    [45]Latinga-van Leeuwen I S, Mol J A, Kooaistra H S, et al. Cloning of the canine gene encoding transcription factor PIT-1 and its exclusion as candidate gene in a canine model of pituitary dwarfism[J]. Mamm Genome, 2000, 11: 31-36.
    [46]Schanke J T, Conwell C M, Durming M, et al. Pit-1/Growth hoemone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta[J]. J Clin Endocrinol Metab, 1997, 82: 800-807.
    [47]Thomas M G, Carroll J A, Raymond S R, et al. Transcriptional regulation of pituitary synthesis and secretion of growth hormone in growing wethers and the influence od zeranol on these mechanisms[J]. Domest Anim Endocrinol, 2000, 18: 309-324.
    [48]Chiu C C, Ting J W, Hseu T H, et al. Characterization of transcription domain and developmental expression of pituitary specific transcription factor, POU1F1 of ayu(Plecoglossus altivelis)[J]. Gen Comp Endocrinol, 2002, 127: 307-313.
    [49]Lorens J B, Aasland R, Brunstad H, et al. Two variants of the pituitary specific transcription factor PIT-1 in Atlantic salmon[J]. J Mol Endocrimol, 1996, 17: 225-236.
    [50]Majumdar S, Irwin D M, P Elsholtz H. Selective constraints on the activation domain of transcription factor POU1F1[J]. Proc Natl Sci USA, 1996, 93: 10256-10261.
    [51]Martinez-Barbera J, Vila V, Valdivia M M, et al. Molecular cloning of gilthead seabream(Sparus aurata) pituitary transcription factor GHF-1/PIT-1[J]. Gene, 1997, 185: 87-93.
    [52]Nica G, Herzog W, Sonntag C, et al. Zebrafish pit-1 mutants lack three pituitary cell types and develop severe dwarfism[J]. Mol Endocrinol, 2004, 18: 1196-1209.
    [53]Ono M, Y Takayama. Structures of cDNAs encoding chum salmon pituitary-specific transcription factor, PIT-1/GHF-1[J]. Gene, 1992, 116: 275-279.
    [54]Yamada S, Hata J, S Yamashita. Molecular cloning of fish PIT-1 cDNA and its functional binding to promoter of gene expressed in the pituitary[J]. J Biol Chem, 1993, 268: 24361-24366.
    [55]Morris A E, Kloss B, McChesney R E, et al. An alternatively spliced POU1F1 isoform altered in its ability to transactivate [J]. Nucleic Acids Res, 1992, 20: 1355-1361.
    [56]Haugen B R, Wood W M, Gordon D F, et al. Athyrotrope-variant of POU1F1 transactivates the thyrotropin beta promoter[J]. J Biol Chem, 1993, 268: 20818-20824.
    [57]Kurima K, Weatherly K L, Sharova L, et al. Synthesis of turkey POU1F1 mRNA variants by alternative splicing and transcription initiation[J]. DNA Cell Biol, 1998, 17: 93-103.
    [58]Takara M, Yamamoto I, Ohkubo T, et al. cDNA cloning and developmental alterations in gene expression of two POU1F1/GHF-1 transcription factors in chicken pituitary[J]. Gen Comp Endocrinol, 1999, 114: 441-448.
    [59]Van As P, Buys N, Onagbesan O M, E Decuypere. Complementary DNA cloning and ontogenic expression of pituitary-specific transcription factor of chickens(Gallus domesticus) from the pituitary gland[J]. General and Comparative Endocrinology, 2000, 120: 127-136.
    [60]Bedecanats G, Guemene D, Morvan C, et al. Quantification of prolactin messenger ribonucleic acid, Potuitary content and plasma levels of prolactin, and detection of immunoreactive isoforms of prolactin in Pituitaries from turkey embryos during ontogeny[J]. Biol Reprod, 1999, 61: 757-763.
    [61]Kineman R D, Faught W J, S Frawley L. The ontogenic and functional relationships between growth hormone and prolactin releaseing cells during the development of the bovine pituitary[J]. J Endocrinol, 1992, 134: 91-96.
    [62]Sinha Y N, LKlemcke H G, Maurer R R, et al. Ontogeny of glycosylated andnonglycosylated forms of prolactin and growth hornone om porcine pituitary during fetal life[J]. Proc Soc Exp Biol Med, 1990, 194: 293-300.
    [63]Day R N, H Day K. An alternatively spliced form of PIT-1 represses prolactin gene expreesion[J]. Mol Endocr, 1994, 8: 374-381.
    [64]Simmons D M, Voss J W, Ingraham H A, et al. Pituitary cellphenotypes involve cell-specific PIT-1 mRNA translation and synergistic interactions with other classes of transcription factors[J]. Gene, 1990, 4: 695-711.
    [65]Castriool J L, Theill L E, M Carin. Function of homeodomain protein GHF-1 in pituitary cell proliferation[J]. Science, 1991, 253: 197-199.
    [66]Mc Cormick A, Brady H, THeill L E, et al. Regulation of the pituitary-specific homeobox gene GHF-1 by cell-automimous and enviromental causes[J]. Nature, 1990, 345: 829-832.
    [67]Sheng M, Thompson M A, E Greenberg M. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases[J]. Science, 1991, 252: 1427-1430.
    [68]Frish H, Kim C, Hausler G, et al. Conbind Pituitary hormone deficiency and pituitary hypoplasia due to a mutation of the POU1F1 gene[J]. Clin Endocrinol, 2000, 52: 661-665.
    [69]范月超,张洪涛,王雄伟,等.抑制PIT-1基因表达对垂体生长激素腺瘤生物学行为影响的实验研究[J].实用医学杂志, 2005, 23: 2597-2599.
    [70]王秩,邓洁英. PIT-1基因突变与生长激素缺乏症[J].国内外医学分泌学分册, 1999, 19(1): 1-4.
    [71]王秩,邓洁英,史轶蔡.生长激素缺乏患者PIT-1基因突变分析[J].实用儿科临床杂志, 1999, 3: 136-137.
    [72]徐春,王晖. PIT-1基因在垂体催乳素腺瘤发生中作用的研究[J].中国医师杂志, 2006: 44-46.
    [73]Radoick S, M Nations. Amutation in the POU-1 homeodomain of PIT-1 responsible for combined pituitary hormone deficiency[J]. Science, 1992, 257(5073): 1115-1118.
    [74]Day R N, C Voss T. Imaging the localized protein interactions between POU1F1 and the CCAAT/enhancer binding protein alpha in the living Pituitary cell nucles[J].Mol Endcrinol, 2003, 17: 333-345.
    [75]Enwright J F, Kawecki-Crook M A, C Voss T. A PIT-1 homeodomain mutant blocks the intranuclear recruitment of the CCAAT/enhancer binding protein are reguired for prolactin gene transcription[J]. Mol Endocrinol, 2003, 17: 209-222.
    [76]高岩.垂体特异性转录因子研究进展[J].国外医学内分泌分册, 1995, 15(3): 116-120.
    [77]Yu TP, Rothschild M R, et al. Rapid communication: a Mspl restriction fragment length polymorphism at the swine PIT-1 locus[J]. Journal of Animal Science, 1993, 71: 2275.
    [78]Yu TP, Tuggle C K, Schmitz C B, et al. Association of PIT1 polymorphsims with growth and carcass traits in pigs[J]. J Anim Sci, 1995, 73(5): 1282-1288.
    [79]腾勇.猪垂体转录因子(POU1F1)基因部分序列变异分析及其与生长性能的相关性研究: [学位论文][D].江苏扬州:扬州大学, 2004.
    [80]Xue K, Chen H, Wang S, et al. Effect of Genetic Variations of the POU1F1 Gene on Growth Traits of Nanyang Cattle[J]. Acte Genetica Sinica, 2006, 33(10): 901-907.
    [81] Mukesh M, Sodhi M, Sobit R C, et al. Analysis of bovine pituitary specific transcription factor (PIT-1) gene polymorphism in Indian zebuine cattle[J]. Livestock Science, 2007, 10: 901-907.
    [82]Lan X Y, Pan C Y, Chen H, et al. An Alul PCR-RFLP detcting a silent allele at the goat POU1F1 locus and its association with production traits[J]. Small Ruminant Research, 2007, 2: 344-346.
    [83]Huang W, Maltcca C, H Khatib. A proline to histidine mutation in POU1F1 is associated with production traits in dairy cattle[J]. Animal Genet 2008, 39(5): 554-557.
    [84]Jiang R S, Li J, Qu L, et al. A new single nucleotide polymorphism in the chicken pituitary-specific transcription factor (POU1F1) gene associated with growth rate[J]. Animal Genet, 2004, 35(4): 344-346.
    [85]Nie Q H, Lei M M, Ouyang J H, et al. Identification and characterization of single nucleotide polymorphsims in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography[J]. Genet Sel Evol, 2005, 37: 339-360.
    [86]邱峰芳,聂庆华,金卫根,等.鸡PIT-1基因57bp插入/缺失多态与生长和屠体性状的相关研究[J].江西农业大学学报, 2006, 28(2): 284-288.
    [87]H, Nie Q, Fang M, Xie L, et al. The PIT-1 gene polymorphisms were associated with chicken growth traits[J]. BMC Genet, 2008, 9(1): 20-24.
    [88]S Shimanuki. Asingle nucleotide polymorphsim in the porcine androgen receptor gene[J]. Animal Genetics, 2001, 32: 165-166.
    [89]杨凤萍,陈义权,李世平,等. 3品种鹅Myostatin基因3’-调控区SNPs群体遗传学分析[J].畜牧兽医学报, 2007, 38(5): 442-446.
    [90]杨凤萍,陈义权,李世平,等.鹅Myostatin基因编码区核苷酸多态性研究[J].扬州大学学报(农业与生命科学版), 2007, 28(4): 29-32.
    [91]梁忠,陈宏权,黄华云,等.鹅3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGR)基因内含子5的SNP及其与鹅重要经济性状的关联性[J].农业生物技术学报, 2007, 15(6): 936-941.
    [92]耿照玉,陈兴勇,姜润生,等.皖西白鹅催乳素基因Exon2克隆及多态性研究[J].畜牧兽医学报, 2007, 38(6): 533-536.
    [93]赵文明,陈清,程金花,等.籽鹅GH基因内含子3多态性及其与体重和屠体性状的关联分析[J].畜牧兽医学报, 2008, 39(4): 443-448.
    [94]陈清,赵文明,程金花,等.鹅GH基因内含子3多态性及其与体重和屠宰性能相关分析[J].扬州大学学报(农业与生命科学版), 2008, 29(1): 41-44.
    [95] Haunerland N H, F Spener. Fatty acid-binding proteins insights from genetic manipulations[J]. Prog Lipid Res, 2004, 43: 328-349.
    [96]包俊英,余新炳,吴忠道.比较基因的表达分析[J].热带医学杂志, 2001, 2(1): 172.
    [97]李长龙.猪ADD1基因的克隆及其与肉质性状关系的研究: [学位论文][D].黑龙江哈尔滨:东北农业大学, 2004.
    [98]Samnrook J, Fritsch E F, Maniatis T, et al. Thermodynamic analysis of nucleic acids and protein in purified form and in cellular extracts[J]. Biophy Chem, 1989, 26: 235-246.
    [99]E Corey. Detection of disseminated prostate cells by reverse transcription -polymerase chain reaction (RT-PCR): Technical and clinical aspects[J]. International Journal of Cancer, 1998, 77: 655-673.
    [100]Freeman W M, Vrana K E. Quantitative RT-PCR: pitfalls and potential[J]. Biotechniques, 1999, 26: 112-125.
    [101]Marone M. Giannitelli C., Giannitelli C. Cyclin E and cdk2 alterations in ovarian cancer: amplification and overexpression[J]. International Journal of Cancer, 1997, 74: 390-395.
    [102]Razin E K, B Leslie, Schrader J W. Connective tissue mast cell in contact with fibroblasts express IL-3 mRNA: Analysis of single cells by polymerase chain reaction[J]. J. Immunol, 1991, 146: 981-987.
    [103]Abe A, Inoue K, Tanaka T, Kato J, et al. Quantitation of hepatitis B virus genomic DNA by real-time detection PCR[J]. J Clin Microbiol, 1999, 37(9): 2899-2903.
    [104]A, Becker, ReitⅡA, Napiwotzki J, et al. Aquantitativementhod of determine initial amounts of DNA by polymerase chain reaction cycle titration using digital imaging and a novel DNA stain[J]. Anal Biochem, 1996, 237(2): 204-207.
    [105]吴桂琴,郑江霞,杨宁.伴性矮小型鸡GH、GHR和IGF-1基因的表达变化[J].遗传, 2007, 29(8): 989-994.
    [106]苏胜彦,李齐发,刘振山,等.朗德鹅填饲后不同组织PPARγ基因mRNA表达量差异的初步研究[J].畜牧兽医学报, 2008, 39(7): 879-884.
    [107]苏胜彦,李齐发,刘振山,等.朗德鹅肝脏和脂肪组织LXRα基因表达水平的比较[J].农业生物技术学报, 2008, 16(3): 421-425.
    [108]褚晓红,徐宁迎,胡锦平,等.浙东白鹅催乳素基因表达特点[J].遗传, 2008, 30(8): 1021-1025.
    [109]褚晓红,胡锦平,卢立志,等.浙东白鹅催乳素受体基因的克隆及其表达特点的研究[J].畜牧兽医学报, 2008, 39(6): 823-826.
    [110]Benson D A, Boguski M S, Lipman D J, et al. Genbank[J]. Nucleic Acids Res, 1997, 25(1): 1-6.
    [111]Tateno C, T Gojobori. DNA data of Japan in the age of information biology[J]. Nucleic Acids Res, 1997, 25(1): 14-17.
    [112]陈国宏,王克华,王金玉,等.中国禽类遗传资源[M]:上海科技出版社, 2004.
    [113]Cohen L E, Wondisford F E, S Radovick. Role of PIT-1 in the gene expression of growth hormone, prolactin, and thyrotropin[J]. Endocrinology﹠Metabolism Clinics of North American, 1996, 25(3): 523-540.
    [114]黄培堂(译).分子克隆实验指南(第三版)[M].北京:科技出版社, 2002.
    [115]Blom N, Gammeltoft S, S Brunak. Sequence-and structure-based prediction of eukaryotic protein phosphorylation sits.[J]. Journal of Molecular Biology, 1999, 294(5): 1351-1362.
    [116]Kapiloff M S, Farkash Y, Weqner M, et al. Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements[J]. Science, 1991, 253(5021): 786-789.
    [117]Caelles C, Hennemann H, M Karin. M-phase-specific phosphorylation of the POU transcription factor GHF-1 by a cell cycle-regulated protein kinase inhibits DNA bingding[J]. Mol Cell Biol, 1995, 15: 6694-6701.
    [118]张成岗,贺福初.生物信息学方法与实践[M].北京:科技出版社, 2002.
    [119]W Herr, A Cleary M. The POU domain: Versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain[J]. Genes & Dev, 1995, 9: 1679-1693.
    [120]Wegner M, Drolet D W, G Rosenfeld M. POU-domain proteins: Structure and fuction of developmental regulators[J]. Curr Opin Cell Biol, 1993, 5: 488-498.
    [121]Jacobson E M, Li P, Leon-del-Rio A, et al. Structure of Pit-1 POU domain bound to DNA as a dimmer: unexpected arrangement and flexibility[J]. Genes & Dev, 1997, 11: 198-212.
    [122]Hendriks-Stegeman B I, Augutijin K D, Bakker B, et al. Combined pituitary hormone defiency caused by compound heterozygosity for two noved mutations in the POU domain of the Pit/POU1F1 gene[J]. The journal of Clinical Endocrinology & Metablism, 2001, 86(4): 1545-1550.
    [123]Brunsch C, Sternstein I, Reinecke P, et al. Analysis of associations of PIT-1 genotypes with growth, maet quality and carcass composition traits in pigs[J]. Applied Genetics, 2002, 43(1): 85-91.
    [124]Stancekova M G, Vasicek D, Peskovicova D, et al. Effect of genetic variability of the porcine pituitary-specific transcription factor(PIT-1) on carcass traits in pigs[J].1999.
    [125]Zhao Q, Davis M E, C Hines H. Associations of polymorphisms in the PIT-1 gene with growth and carcass traits in Angus beef cattle[J]. Journal of Animal Science, 2004, 82(8): 2229-2233.
    [126]杨甲芳.七个猪种Pit-1基因部分cDNA序列的SNPs分析: [学位论文][D].黑龙江哈尔滨:东北农业大学, 2003.
    [127]俞沛初.香猪的特性及Pit-1基因多态性的研究: [学位论文][D].山西太谷:山西农业大学, 2003.
    [128]庞谨,李宏滨,郑友民.猪Pit-1基因的多态性研究[J].畜牧兽医学报, 2005, 36(6): 531-535.
    [129]许玲玲,李宁,张守发,等.猪肥胖基因5’-调控区与内含子1的测序分析及其两个新微卫星的发现[J].遗传学报, 2005, 32(4): 360-365.
    [130]王军,邓昌彦,熊远著,等.猪HUMMLC2B基因第一内含子单核苷酸多态与胴体、肉质性状的相关分析[J].农业生物技术学报, 2008, 16(5): 64-69.
    [131]唐春娟,李祥龙,周荣艳,等.山羊Agouti基因第1内含子T128缺失在中国主要地方山羊品种中的变异[J].畜牧兽医学报, 2009, 40(3): 320-326.
    [132]方华,郑友民,李宏滨,等.猪POU1F1第一内含子单核苷酸多态性和生长性状相关性研究[J].中国农业科学, 2009, 42(1): 283-289.
    [133]刘波,陈宏,蓝贤勇,等.秦川牛及其杂种牛POU1F1基因多态性与生长性能相关性研究[J].中国农业科学, 2005, 38(18): 2520-2525.
    [134]王俐智.鸡垂体特异性转绿因子(Pit-1)多态性与屠宰性状的相关分析: [学位论文][D].四川雅安:四川农业大学, 2008.
    [135]胡玉萍. PIT-1基因对京海黄鸡生长性状的遗传效应研究: [学位论文][D].江苏扬州:扬州大学, 2008.
    [136]Livak K J, D Schmitthen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method[J]. Methods, 2001, 25(4): 402-408.
    [137]Pvy L A, L Asa S. The ontogeny of pit-1 expression in the human fetal pituitarygland [J]. Neuroendocrinology, 1996, 63(4).
    [138]Gonzalez-Parra S, Chouen J A, Garcia Sequra L M, et al. Ontogeny of pituitary transcription factor(pit-1), growth hormone(GH) and prolactin(PRL) mRNA levels in male and female rats and the differential expression of Pit-1 in lactotrophs and somatotrophs[J]. J Neuroendocrinol, 1996, 8(3): 211-225.
    [139]赵文明.鹅GH、PRL基因序列及其多态性与早期生长发育及屠宰性状的关联分析: [学位论文][D].江苏扬州:扬州大学, 2008.
    [140]Seuntjens E, Hauspie A, Vankelecom H, et al. Ontogeny of plurihormonal cells in the anterior pituitary of the mouse, as studied by means of hormone mRNA detection in single cells[J]. J Neuroendocrinol, 2002, 14(8): 611-619.
    [141]徐金先.二花脸猪生长激素基因表达的发育性及其与大白猪的比较研究: [学位论文][D].江苏南京:南京农业大学, 2001.
    [142]MacCann-Levorse L M, Radecki S V, Donoghue D J, et al. Ontogeny of pituitary growth hormone and growth hormone mRNA in the chicken[J]. Proc Soc Exp Biol Med, 1993, 202: 109-113.
    [143]Kansaku N, Shimada K, Terada O, et al. Prolactin, growth hormone, and lutenizing hormone-beta-submit gene expression in cephalic and caudal lobles of the anterior pituitary gland during embryogenesis and different reproductive stages in chicken[J]. Gen Comp Endocrinol, 1994, 96: 197-205.
    [144]赵茹茜.鸡生长激素基因表达及分泌调控的研究进展[J].南京农业大学学报, 1995, 18(2): 9.
    [145]Van As P, Janssens K, Pals K, et al. The chicken pituitary-specific transcription factor Pit-1 is involved in the hypothalamic regulation of pituitary hormones[J]. Acta Vet Hung, 2006, 54(4): 455-471.
    [146]Van As P, Careghi C, Bruggeman V, et al. Regulation of growth hormne expression by thyrotropin-releasing hormone through the pituitary-specific transcription factor Pit-1 in chicken pituitary[J]. Acta Vet Hung, 2004, 52(4): 389-402.
    [147]Tanaka M, Hayashida Y, Sakaguchi K, et al. Growth hormone-indepengdent of insulin like growth factor-I messenger ribonucleic acid in extrahepatic tissues of the chicken[J]. Endocrinology, 1994, 137: 30-34.
    [148]Ohkubo T, Araki M, Takara M, et al. Molecular cloning and characterization of the yellowtail GH gene and its promoter. A consesus seuence for teleost and avain Pit-1/GHF-1 binding sites[J]. J Mol Endocrimol, 1996, 16: 63-72.
    [149]Wong E A, Silsby J L, E E L Halawani M. Complementary DNA cloning and expression of Pit/GHF-1 from the domestic turkey[J]. DNA Cell Biol, 1992, 11: 651-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700