用户名: 密码: 验证码:
多弧离子镀Ti-Al-Zr-Cr-N系复合硬质膜的制备、微结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高速钢和硬质合金刀具表面沉积TiN等硬质膜,可提高刀具的硬度和耐磨性,从而提高刀具的切削性能和使用寿命。但随着数控加工机床的逐渐普及,高速切削已成为机械加工的主流,TiN薄膜刀具难以满足使用性能的要求。而另一方面,薄膜合金化、多层化和梯度化等复合形式可以实现提高硬质薄膜的综合性能和使用寿命。因此,本文旨在通过合金元素的添加和薄膜构成形式的变化来探索TiN基复合薄膜综合性能的改善。
     采用多弧离子镀技术,使用两个Ti-Al-Zr合金靶和一个纯Cr靶,在W18Cr4V高速钢和WC-8%Co硬质合金两种基体上成功地沉积了四种Ti-Al-Zr-Cr-N系复合硬质膜,即(Ti,Al,Zr,Cr)N多元膜、(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N和CrN/(Ti,Al,Zr,Cr)N多元双层膜以及TiAlZrCr/(Ti,Al,Zr,Cr)N多元梯度膜。利用扫描电镜(SEM)、激光扫描共聚焦光学显微镜、电子能谱仪(EDS)和X射线衍射(XRD)对四种复合膜的成分、形貌、粗糙度和微观结构进行了测量和表征;利用显微硬度计和划痕仪测评了四种复合膜的硬度和膜/基结合力;利用摩擦磨损试验机研究了四种复合膜在常温(15℃)和高温(500℃)条件下的耐磨损特性,并采用SEM观察了磨痕的表面形貌;同时对四种复合膜进行了600℃、700℃、800℃和900℃短时(4h)高温氧化实验及700℃和800℃长时(100h)高温循环氧化实验,并利用SEM、EDS和XRD观察和分析了试样表面的氧化膜。
     研究结果表明,获得的四种Ti-Al-Zr-Cr-N系复合硬质膜均具有B1-NaCl型的TiN面心立方结构;四种复合膜的成分除-50V偏压外,其它偏压下的变化均不明显;复合膜的表面都比较平整、致密,但仍然存在较多的大颗粒(微液滴)和微孔缺陷,同时增大偏压可以减少其表面的液滴污染现象,表面粗糙度有所改善;复合膜与基体之间无明显的缺陷,薄膜具有从基体到表面垂直生长的柱状晶组织;在不同的偏压下,四种复合膜的厚度大约为1~1.5μm,而且随着偏压的增大,其厚度有所减小。
     高速钢和硬质合金基体上的(Ti,Al,Zr,Cr)N多元膜的(Al+Zr+Cr)/(Ti+Al+Zr+Cr)原子比值分别为0.44~0.52和0.41~0.43,当其分别趋于0.44和0.41时,薄膜的显微硬度分别达到最大值3300HV_(0.01)和3600HV_(0.01),膜/基结合力也分别达到最大值190N和200N。(Ti,Al,Zr,Cr)N多元膜的摩擦磨损机理均为以塑性变形为主要特征的粘着磨损,并伴有轻微的磨粒磨损。在常温和高温条件下磨损时,平均摩擦系数在0.3~0.5之间。薄膜的摩擦系数曲线和磨损表面形貌分析表明,随着沉积偏压的增加,其耐磨性有所提高,而且硬质合金基体略优于高速钢基体上薄膜的耐磨性。另外,在短时氧化条件下,高速钢和硬质合金基体上的(Ti,Al,Zr,Cr)N膜分别在800℃和700℃时具有良好的抗高温氧化性能,在XRD谱中观察到了金红石结构的TiO_2;在长时氧化条件下,高速钢和硬质合金基体上(Ti,Al,Zr,Cr)N膜的抗高温循环氧化温度分别为700℃和600℃。
     (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N多元双层膜具有比(Ti,Al,Zr,Cr)N单层膜更高的硬度和更强的膜/基结合力。当高速钢和硬质合金基体上(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N膜的(Al+Zr+Cr)/(Ti+Al+Zr+Cr)原子比值分别达到0.44和0.40时,薄膜的显微硬度分别达到最大值3450HV_(0.01)和4000HV_(0.01),膜/基结合力也分别达到最大值190N和>200N。同时,(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N双层膜具有比(Ti,Al,Zr,Cr)N单层膜更优的耐磨损性能,其在常温和高温下磨损时的平均摩擦系数在0.3~0.35之间。而且,氧化增重、氧化膜的表面形貌及其相结构的分析表明,(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N双层膜具有比(Ti,Al,Zr,Cr)N单层膜更为良好的抗高温氧化性能。
     CrN/(Ti,Al,Zr,Cr)N多元双层膜具有比(Ti,Al,Zr,Cr)N单层膜更高、但略低于(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N双层膜的硬度,同时具有比(Ti,Al,Zr,Cr)N单层膜和(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N双层膜都强的膜/基结合力。当高速钢和硬质合金基体上CrN/(Ti,Al,Zr,Cr)N膜的(Al+Zr+Cr)/(Ti+Al+Zr+Cr)原子比值分别趋于0.45和0.40时,薄膜的显微硬度分别达到最大值3400HV_(0.01)和3900HV_(0.01),膜/基结合力也分别达到最大值190N和>200N。同时,CrN/(Ti,Al,Zr,Cr)N双层膜具有比(Ti,Al,Zr,Cr)N单层膜更优、但略低于(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N双层膜的耐磨损性能,其在常温和高温下磨损时的平均摩擦系数分别在0.3~0.4和0.3~0.45之间。而且,CrN/(Ti,Al,Zr,Cr)N双层膜具有比(Ti,Al,Zr,Cr)N单层膜更为良好的抗高温氧化性能。在短时氧化条件下,硬质合金基体上CrN/(Ti,Al,Zr,Cr)N膜的抗高温氧化温度进一步提高到800℃。
     TiAlZrCr/(Ti,Al,Zr,Cr)N多元梯度膜具有比(Ti,Al,Zr,Cr)N单层膜及(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N和CrN/(Ti,Al,Zr,Cr)N双层膜更高的硬度和更强的膜/基结合力。当高速钢和硬质合金基体上梯度膜的(Al+Zr+Cr)/(Ti+Al+Zr+Cr)原子比值分别达到0.45和0.39时,薄膜的显微硬度分别达到最大值3500HV_(0.01)和4000HV_(0.01),膜/基结合力也分别达到最大值200N和>200N。同时,TiAlZrCr/(Ti,Al,Zr,Cr)N梯度膜具有比(Ti,Al,Zr,Cr)N单层膜及(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N和CrN/(Ti,Al,Zr,Cr)N双层膜更优的耐磨性,其在常温和高温下磨损时的平均摩擦系数分别在0.25~0.3和0.3~0.35之间。而且,在短时氧化条件下,高速钢和硬质合金两种基体上的TiAlZrCr/(Ti,Al,Zr,Cr)N梯度膜在800℃时均具有良好的抗高温氧化性能;在长时氧化条件下,高速钢和硬质合金两种基体上TiAlZrCr/(Ti,Al,Zr,Cr)N梯度膜的抗高温循环氧化温度均为700℃,与(Ti,Al,Zr,Cr)N单层膜及(Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N和CrN/(Ti,Al,Zr,Cr)N双层膜相比,其抗高温氧化性能得到了明显的改善。
The TiN hard films deposited on the cutting tools of high speed steel and cemented carbide can enhance their hardness and wear resistance, which, in turn, improve the cutting performance and service life. However, high speed cutting has been the main trend in the mechanical processing field. The TiN hard films deposited cutting tools would not fulfill the function requirements of the numerical controlled processing machines, which gradually become more popular. On the other hand, the various composite techniques, namely film alloying, multilayer and gradient-layer, could improve the comprehensive quality and service life of the hard films. Therefore, the objective of this study is to achieve the better properties of TiN-based composite films by adding the different alloy elements and modifying the film structures.
     The two Ti-Al-Zr targets and one pure Cr target were used to prepare four types of Ti-Al-Zr-Cr-N composite hard films, namely (Ti, Al, Zr, Cr) N multi-component films, (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films, CrN/(Ti, Al, Zr, Cr) N bilayered films and TiAlZrCr/(Ti, Al, Zr, Cr) N gradient films, on the substrates of high speed steel (W18Cr4V) and cemented carbide (WC-8%Co). The composition, morphology, roughness and microstructure of the films were analyzed by energy disperse X-ray spectroscopy (EDS), scanning electron microscopy (SEM), laser scanning Confocal optical microscopy and X-ray diffraction (XRD). Vickers indentation and scratch test were performed to measure the micro-hardness and the adhesive strength between the film and the substrate. Meanwhile, the wear resistance of the films was studied by abrasion tester at the room temperature (15℃) and elevated temperature (500℃), and the worn surface morphologies were studied by SEM. Furthermore, short-term isothermal (at 600℃, 700℃, 800℃and 900℃for 4h) and long-term cyclic (at 700℃ and 800℃for 100h) high temperature oxidation behaviors of the films were studied, and the oxide scales formed on the film specimens were characterized by SEM, EDS and XRD.
     It was showed that the obtained Ti-Al-Zr-Cr-N composite hard films were of the TiN (B1-NaCl) type face-centered cubic structure. The compositions of the four composite films did not change too much at the other bias voltages except at -50V. The surface morphologies of the composite films were isotropy and dense; however, there were many macro-particles (or micro-drops) and pores. By increasing the bias voltage, the drop contamination on the films decreased significantly, and then the surface roughness of the films was also improved. The cross-section morphologies revealed the typical and dense columnar structure. No evident defects were observed at the interface between the composite films and the substrates. The thickness of the four composite films was about l~1.5|xm at the different bias voltages, and decreased with increasing the bias voltage.
     In the (Ti, Al, Zr, Cr) N multi-component films, the atomic ratio of (Al+Zr+Cr)/ (Ti+Al+Zr+Cr) varied from 0.44 to 0.52 on the W18Cr4V substrates, whereas it varied from 0.41 to 0.43 on the WC-8%Co substrates. When the atomic ratio approached 0.44 and 0.41, the micro-hardness of the films was improved up to 3300HV_(0.01) and 3600HV_(0.01), respectively. The adhesive strength between the film and the substrate was also enhanced up to 190N and 200N, respectively. The wear behavior of the films was characterized by the adhesive wear that was caused by the plastic deformation feature and the slight abrasive wear. The average values of friction coefficient varied between 0.3 and 0.5 at the room temperature and elevated temperature in the (Ti, Al, Zr, Cr) N multi-component films. The friction coefficient curves and the worn surface morphologies showed that the wear resistance was improved as the bias voltage increased. The properties of the films on the WC-8%Co substrates were better than those on the W18Cr4V substrates. Moreover, under short-term isothermal condition, the (Ti, Al, Zr, Cr) N films presented the excellent high temperature oxidation resistance on both the W18Cr4V (up to 800℃) and WC-8%Co (up to 700℃) substrates, and an oxide scale of TiO_2 was observed by XRD. On the other hand, under long-term cyclic high temperature condition, the oxidation resistant temperature of the (Ti, Al, Zr, Cr) N films was about 700℃on the W18Cr4V substrates and 600℃on the WC-8%Co substrates.
     The micro-hardness of the (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films and the adhesive strength between the bilayered film and the substrate were increased remarkably with the addition of (Ti, Al, Zr) N interlayer. When the atomic ratio of (Al+Zr+Cr)/(Ti+Al+Zr+Cr) reached 0.44 on the W18Cr4V substrates and 0.40 on the WC-8%Co substrates, the micro-hardness of the films was improved up to 3450HV_(0.01) and 4000HV_(0.01), respectively. The adhesive strength between the film and the substrate was also enhanced to 190N and above 200N, respectively. Meanwhile, the wear resistance of the (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films was superior to those of the (Ti, Al, Zr, Cr) N single-layered films. The average values of friction coefficient varied between 0.3 and 0.35 at the room temperature and elevated temperature in the bilayered films. Moreover, the high temperature oxidation resistance of the (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films was improved with the addition of (Ti, Al, Zr) N interlayer according to the analysis of mass gain, morphology and microstructure of the oxide scales.
     In the CrN/(Ti, Al, Zr, Cr) N bilayered films, the micro-hardness values were higher than those of the (Ti, Al, Zr, Cr) N single-layered films, but lower than those of the (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films. The CrN/(Ti, Al, Zr, Cr) N bilayered films also presented the superior adhesive strength, as compared with (Ti, Al, Zr, Cr) N and (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N films. When the atomic ratio of (Al+Zr+Cr) /(Ti+Al+Zr+Cr) reached 0.45 on the W18Cr4V substrates and 0.40 on the WC-8%Co substrates, the micro-hardness of the films was improved up to 34OOHV_(0.01) and 3900HV_(0.01), respectively. The adhesive strength between the film and the substrate was also enhanced up to 190N and above 200N, respectively. Meanwhile, the wear resistance of the CrN/(Ti, Al, Zr, Cr) N bilayered films was superior to those of the (Ti, Al, Zr, Cr) N single-layered films, while not as good as those of the (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N bilayered films. The average values of friction coefficient varied between 0.3 and 0.4 at the room temperature and varied between 0.3 and 0.45 at the elevated temperature in the CrN/(Ti, Al, Zr, Cr) N films. Moreover, the high temperature oxidation resistance of the CrN/(Ti, Al, Zr, Cr) N bilayered films was improved with the addition of CrN interlayer, in which the oxidation resistance temperature of the films on the WC-8%Co substrates was up to 800℃under the short-term isothermal oxidation condition.
     The micro-hardness and adhesive strength of the TiAlZrCr/(Ti, Al, Zr, Cr) N gradient films were higher than those of the (Ti, Al, Zr, Cr) N, (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N and CrN/(Ti, Al, Zr, Cr) N films. When the atomic ratio of (Al+Zr+Cr)/(Ti +Al+Zr+Cr) approached 0.45 on the W18Cr4V substrates and 0.39 on the WC-8%Co substrates, the micro-hardness of the gradient films was enhanced up to 3500HV_(0.01) and 4000HV_(0.01), respectively. The adhesive strength between the gradient film and the substrate was also enhanced up to 200N and above 200N, respectively. Meanwhile, the wear resistance of the TiAlZrCr/(Ti, Al, Zr, Cr) N gradient films was superior to those of the (Ti, Al, Zr, Cr) N, (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N and CrN/(Ti, Al, Zr, Cr) N films. The average values of friction coefficient varied between 0.25 and 0.3 at the room temperature and varied between 0.3 and 0.35 at the elevated temperature in the gradient films. Moreover, under short-term isothermal condition, the high temperature oxidation resistance of the films was excellent up to 800℃on both the W18Cr4V and WC-8%Co substrates. Under long-term cyclic high temperature condition, the oxidation resistance of the films was excellent at about 700℃on both the W18Cr4V and WC-8%Co substrates. Therefore, the high temperature oxidation resistance of the TiAlZrCr/(Ti, Al, Zr, Cr) N gradient films was obviously improved and better than those of (Ti, Al, Zr, Cr) N, (Ti, Al, Zr) N/(Ti, Al, Zr, Cr) N and CrN/(Ti, Al, Zr, Cr) N films.
引文
1.肖兴成,江伟辉,宋力听,等.超硬膜的研究进展[J].无机材料学报,1999,14(5):706-710.
    2.Holleck H.Material selection for hard coatings[J].J.Vac.Sci.TechnoI.,1986,4(6):2661-2669.
    3.闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空,2000,(1):1-11.
    4.张钧,赵彦辉.多弧离子镀技术与应用[M].北京:冶金工业出版社,2007:223-224.
    5.谢致薇,白晓军,蒙继龙,等.(Ti Fe Cr)N多元膜的氧化行为[J].中国有色金属学报,2001,11(6):1064-1068.
    6.Diserens M,Patscheider J,Levy F.Mechanical properties and oxidation resistance of N and nanocomposite TiN-SiNx physical-vapor-deposited thin films[J].Surf.Coat.Technol.,1999,120-121:158,165.
    7.Sproul W D.Turning tests of high rate reactively sputter-coated T-15 HSS inserts[J].Surf.Coat.Technol.,1987,3(133):1-4.
    8.王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.
    9.贾秀芹,臧晓明.45#钢多弧离子镀硬质合金涂层的耐磨性[J].河北理工学院学报.2003,25(1):45-49.
    10.Lai F D,Wu J K.Structure,hardness and adhesion properties of CrN films deposited on nitrided and nitrocarburized SKD 61 tool steels[J].Surf.Coat.Technol.,1997,88(1-3):183-189.
    11.Igarashi Y,Yamaji T,Nishikawa S.A new mechanism of failure in silicon p+/n junction induced by diffusion barrier metals[J].J.Appl.Phys.,1990,29:2337-2342.
    12.Budke E,Krempel-Hesse J,Maidhof H,et al.Decorative hard coatings with improved corrosion resistance[J].Surf.Coat.Technol.,1999,112:108-113.
    13.张钧.多弧离子镀合金涂层成分离析效应的物理机制研究[J].真空科学与技术,1996,16(3):174-178.
    14.Zhang J,Li L,Zhang L P,Zhao S L,et al.Composition demixing effect on cathodic arc ion plating[J].J.Univ.Sci.Technol.Beijing:Eng.Ed.,2006,13(2):125-130.
    15.赵时璐,张震.Ti-Al-Zr靶材的多弧离子镀沉积过程的模拟研究[J].机械设计与制造,2007(5):137-139.
    16.Sproul W D,Rothstein R.High hate reactively sputtered TiN coating on HSS drill[J].Thin Solid Films,1985,126:257-263.
    17.Xing-zhao Ding,Bui C T,Zeng X T.Abrasive wear resistance of Ti_(1-x)Al_xN hard coatings deposited by a vacuum arc system with lateral rotating cathodes[J].Surf.Coat.Technol.,2008,203(5-7):680-684.
    18.Han Jeon G,Yoon Joo S,Kim Hyung J,et al.High temperature wear resistance of(TiAl) N films synthesized by cathodic are plasma deposition[J].Surf.Coat.Technol.,1996,86-87(part 1):82-87.
    19.Mitsuo A,Uchida S,Nihira N,et al.Improvement of high-temperature Oxidation resistance of titanium nitride and titanium carbide films by aluminum ion implantation[J].Surf.Coat.Technol.,1998,103/104:98-103.
    20.赵立新,郑立允,牛兰芹,等.TiAlN镀层硬质合金结构及性能研究[J].金属热处理,2008,33(7):16-19.
    21.马胜利,徐健,介万奇,等.PCVD制备Ti_(1-x)Al_xN硬质薄膜的结构与硬度[J].金属学报,2004,40(6):669-672.
    22.Raveh A,Weiss M,Shneck R.Optical emission spectroscopy as a tool for designing and controlling the deposition of graded(Ti Al) N layers by ECR-assisted reactive RF sputtering[J].Surf.Coat.Technol.,1999,111:263-268.
    23.汝强.TiN系涂层多元多层强化研究进展[J].工具技术,2004,38(4):3-8.
    24.徐向荣,黄拿灿,卢国辉,等.电弧离子镀(Ti,Cr)N涂层的制备与性能研究[J].金属热处理,2005,30(7):40-42.
    25.刘燕燕,张庆瑜,林国强.电弧离子镀制备(TiCr)N 薄膜的微观结构及性能[J].真空科学与技术.2002,22(4):299-302.
    26.Han Jeon G,Myung Hyun S,Lee Hyuk M,et al.Microstructure and mechanical properties of Ti-Ag-N and Ti-Cr-N superhard nanostructured coatings[J].Surf.Coat.Technol.,2003,174-175:738-743.
    27.Panckow A N,Steffenhagen J,Wegener B,et al,Application of a novel vacuumarc ion-plating technology for the design of advanced wear resistant coatings[J].Surf.Coat.Technol.,2001,138(1):71-76.
    28.张钧,赵彦辉.多弧离子镀技术与应用[M].北京:冶金工业出版社,2007,102-106.
    29.Yamamoto K,Sato T,Takahara K,et al.Properties of(Ti,Cr,Al) N coatings with high Al content deposited by new plasma enhanced arc-cathode[J].Surf.Coat.Technol.,2003,174-175:620-626.
    30.Ichijo K,Hasegawa H,Suzuki T,et al.Microstructures of(Ti,Cr,Al,Si) N films synthesized by cathodic arc method[J].Surf.Coat.Technol.,2007,201(9-11):5477-5480.
    31.Hasegawa H,Yamamoto T,Suzuki T,et al.The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents[J].Surf.Coat.Technol.,2006,200(9):2864-2869.
    32.Carvalho S,Rebouta L,Cavaleiro A,et al.Microstructure and mechanical properties of nanocomposite(Ti,Si,Al) N coatings[J].Thin solid films,2001,398-399:391-396.
    33.Luo Q,Rainforth W M,M(u|¨)nz W-D.Wear mechanisms of monolithic and multi-component nitride coatings grown by combined arc etching and unbalanced magnetron sputtering[J].Surf.Coat.Technol.,2001,146-47:430-435.
    34.Donohue L A,Smith I J,M(u|¨)nz W-D,et al.Microstructure and oxidationresistance of Ti_(1-x-y-z)Al_xCr_yY_zN layers grown by combined steered-arc/unbalanced-magnetron-sputter deposition[J].Surf.Coat.Technol.1997,94-95:226-231.
    35.Yang S,Li X,Teer D G.Properties and performance of CrTiAlN multilayer hard coatings deposited using magnetron sputter ion plating[J].Surf.Coat.Technol.,2002,18:391-396.
    36.张利鹏.(Ti,Al,Zr)N膜最佳成分及最佳工艺的研究[D].沈阳:沈阳大学,2007:43-46.
    37.Baibich M N,Broto J N,Fert A,et al.Giant magnetoresistance of(001) Fe/(001)Cr magnetic superlattices[J].Phys.Rev.Lett.,1988,61(21):2472-2474.
    38.Jin Jung Jeong,Sun Keun Hwang,Chongmu Lee.Hardness and adhesion properties of HfN/Si_3N_4 and NbN/Si_3N_4 multilayer coatings[J].Mater.Chem.Phys.,2002,77:27-33.
    39.Okumiya M,Griepentrog M.Mechanical properties and tribological behavior of TiN-CrAlN and CrN-CrAlN multilayer coatings[J].Surf.Coat.Technol.,1999,112:123-128.
    40.Bull S J,Jones A M.Multilayer coatings for improved performance[J].Surf.Coat.Technol.,1996,78:173-184.
    41.赵时璐,李友,张钧,王闯,刘常升.刀具氮化物涂层的研究进展[J].金属热处理,2008,33(9):99-104.
    42.Donohue L A,M_(u|¨)nz W-D,Lewis D B,et al.Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering[J].Surf.Coat.Technol.,1997,93(1):69-87.
    43.Knotek O,Loeffler F,Kraemer G.Process and advantages of multicomponent and multiplayer PVD coatings[J].Surf.Coat.Technol.,1993,59(1-3):14-20.
    44.Minevich A A.Wear of cemented carbide cutting inserts with multiplayer Ti-based PVD coatings[J].Surf.Coat.Technol.,1992,53(2):161-170.
    45.Dark M J,Leyland A,Mattews A.Corrosion performance of layered coatings produced by physical vapour deposition[J].Surf.Coat.Technol.,1990,43-44(1-3):481-492.
    46.Rie K T,Gebauer A,Woehler J,et al.Synthesis of TiN/Ti-C-N/TiC layer systems on steel and cerment substrates by PACAD[J].Surf.Coat.Technol.,1995,74-75(1):375-381.
    47.Holleck H,Lahres M,Woll P.Multilayer coatings-influence of fabrication parameters on constitution and properties[J].Surf.Coat.Technol.,1990,41(2):179-190.
    48.Helmersson U,Toderova S,Marbert L,et al.Growth of single-crystal TiN/VN strained-layer supperlattices with extremely high mechanical hardness.Journal of Applied Physics,1987,62(2):481-484.
    49.Madan A,Yashar P,Shinn M,et al.X-ray diffraction study of epitaxial TiN/NbN supperlattices[J].Thin Solid Films,1997,302(1-2):147-154.
    50.Prengel H G,Santhanam A T,Penich R M,et al.Advanced PVD-TiAlN coatings on carbide and cermet cutting tools[J].Surf.Coat.Technol.,1997,94-95:597-602.
    51.赵时璐,张钧,刘常升.涂层刀具的切削性能及其应用动态[J].材料导报,2008,22(11):62-65.
    52.黄榜彪,高原.现代表面处理技术在高速钢刀具上的应用[J].材料导报,2007,(3):19-21.
    53.Okumiya M.Griepentrog M.Mechanical properties and tribological behavior of TiN-CrAlN and CrN-CrAlN multilayer coatings[J].Surf.Coat.Technol.,1999,112(1-3):123-128.
    54.刘建华.ZrN 涂层刀具的设计开发及其切削性能研究[D].山东:山东大学,2007:83-97.
    55.Bernus F V,Freller H,G_(u|¨)nther K G..Vapour-deposited films and industrial applications[J].Thin solid films,1978,50:39-48.
    56.赵海波.国内外切削刀具涂层技术发展综述[J].工具技术,2002,36(2):3-7.
    57.董小虹,黄拿灿,黎炳雄,等.关于电弧离子镀Ti-N系涂层的若干技术问题[J].金属热处理,2005,30(10):70-72.
    58.Lu Y H,Shen Y G,Zhou Z F,et al.Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti-B-N thin films[J].Wear,2007,262(11-12):1372-1379.
    59.李辉,李润方,许洪斌,等.32Cr2MoV复合镀TiN的滑动摩擦试验分析[J]. 热加工工艺,2006,35(16):42-44.
    60.肖诗纲.现代刀具材料[M].重庆:重庆大学出版社,1992:168-174.
    61.张少锋,黄拿灿,吴乃优,等.PVD氮化物涂层刀具切削性能的试验研究[J].金属热处理,2006,31(7):50-53.
    62.叶伟昌,严卫平,叶毅.涂层硬质合金刀具的发展与应用[J].硬质合金,1998,15(1):54-57.
    63.Gunter B,Christoph F,Erhard B,et al.Development of chromium nitride coatings substituting titanium nitride[J].Surf.Coat.Technol.,1996,86-87(Part l):184-191.
    64.Johnson P C,Randhawa H.Zirconium nitride films prepared by cathodic arc plasma deposition process[J].Surf.Coat.Technol.,1987,33:53-62.
    65.Sue J A,Chang T P.Friction and wear behavior of TiN,ZrN and CrN coatings at elevated temperatures[J].Surf.Coat.Technol.,1995,76-77(Part l):61-69.
    66.Jie Gu,Gary Bzrber,Simon Tung,et al.Tool life and wear mechanism of uncoated and coated milling insertes[J].Wear,1999,225-229(Part l):273-284.
    67.Paldey S,Deevi S C.Single layer and multilayer wear resistant coatings of(Ti,Al) N:a review[J].Mater.Sci.and Eng.,2003,A342:58-79.
    68.Tanaka Y,G_(u|¨)r T M,Kelly M,et al.Properties of(Ti_(1-x)Al_x) N coatings for cutting tools prepared by the cathodic arc ion plating method[J].J.Vac.Sci.Techol.,1992,A10(4):1749-1756.
    69.Jindal P C,Santhanam A T,Schleinkofer U,et al.Performance of PVD TiN,TiCN,and TiA1N coated cemented carbide tools in turning[J].International Journal of Refractory Metals and Hard Materials,1997,17:163-170.
    70.Freller H,G(u|¨)nther K G,H(a|¨)ssler H,et al.Progress in physical vapour deposited wear resisting coatings on tools and components[J].CIRP Annals-Manufacturing Technology,1988,37(1):165-169.
    71.全燕鸣,王成勇,林金萍.高速铣削淬硬模具钢的工艺性与经济性研究[J].工具技术,2003,37(12):6-9.
    72.Lembke M I,Lewis D B,M(u|¨)nz W-D.Localised oxidation defects in TiAlN/CrN superlattice structured hard coatings grown by cathodic arc/unbalanced magnetron deposition on various substrate materials[J].Surf.Coat.Technol.,2000,125:263-268.
    73.Lugscheider E,Knotek O,Barimani C,et al.PVD hard coated reamers in lubricant-free cutting[J].Surf.Coat.Technol.,1999,112:146-151.
    74.Harris S G.,Doyle E D,Vlasveld A C,et al.A study of the wear mechanisms of Ti_(1-x)Al_xN and Ti_(1-x-y)Al_xCr_yN coated high-speed steel twist drills under dry machining conditions[J].Wear,2003,254:723-734.
    75.白力静,肖继明,蒋百灵,等.磁控溅射CrTiAlN涂层钻头的制备及其钻削性能研究[J].表面技术,2005,34(4):21-29.
    76.张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展[J].摩擦学学报,2000,20(2):156-160.
    77.秦秉常.国外汽车工业刀具的技术水平[J].工具技术,1991,25(9):1-6.
    78.刘建华,邓建新,赵金龙,等.ZrN/TiN复合涂层的制备及其磨损性能研究[J].制造技术与机械,2006(11):26-28.
    79.黄元林,李长青,马世宁.多弧离子镀Ti(C,N)/TiN多元多层膜研究[J].材料保护,2003,36(6):6-8.
    80.Proust M,Judong F,Gilet J M,et al.CVD and PVD copper integration for dual damascene metallization in a 0.18 μ m process[J].Microelectronie Engineering,2005,55:269-275.
    81.Bunshah R F,Ranghuram A C.Activated reactive evaporation progress for high rate deposition of compounds[J].J.Vac.Sci.Technol.,1972,9:1385-1388.
    82.Morley J R,Smith H R.High rate ion production for vacuum deposition[J].J.Vac.Sci.Technol.,1972,9:1377-1378.
    83.Mulayama Y,Mashimoto K.Equipment of radio frequency ion plating[J],Applied Physics,1974,42:687-691.
    84.汪泓宏,田民波.离子束表面强化技术[M].北京:机械工业出版社,1991:68-72.
    85.陈宝清,朱英臣,王斐杰,等.磁控溅射离子镀技术和铝镀膜的组织形貌、相组成及新相形成物理冶金过程的研究[J].热加工工艺,1984,5:42-49.
    86.张祥生.离子镀膜-一种全新的镀膜技术[J].真空技术,1979(1):54-67.
    87.王祥春.国外中空热阴极放电离子镀技术现状[J].材料保护,1982(3):26-36.
    88.Randhawa H,Johnson P C.Technical note:A review of.cathodic arc plasma deposition processes and their applications[J].Surf.Coat.Technol.,1987,31(4):303-318.
    89.Randhawa H.Cathodic arc plasma deposition technology[J].Thin solid films,1988,167(1-2):175-186.
    90.Sathrum P,Coll B F.Plasma and deposition enhancement by modified arc evaporation source[J].Surf.Coat.Technol.,1992,50(2):103-109.
    91.Vetter J.Vacuum arc coatings for tools:potential and application[J].Surf.Coat.Technol.,1995,76-77:719-724.
    92.童洪辉.物理气相沉积硬质涂层技术进展[J].金属热处理,2008,33(1):91-93.
    93.田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991,3:486-488.
    94.徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000,6:212-217.
    95.赵文轸.金属材料表面新技术[M].西安:西安交通大学出版社,1992,11:221-224.
    96.Paul A.Lindfors,William M.Mulafie.Cathodic arc deposition technology[J].Surf.Coat.Technol.,1986,29(4):275-290.
    97.胡传忻,白韶军,安跃生,等.表面处理手册[M].北京:北京工业大学出版社,2004,3(9):73-74.
    98.Lafferty J.真空电弧理论和应用[M].北京:机械工业出版社,1985:134-135.
    99.史新伟,李杏瑞,邱万起,等.磁过滤电弧离子镀TiN薄膜的制备及其强化机理研究[J].真空科学与技术学报,2008,28(5):486-491.
    100.张琦,陶涛,齐峰,等.非平衡磁控溅射氮化钛薄膜及其性能研究[J].真空科学与技术学报,2007,27(2):361-365.
    101.王齐伟,左秀荣,黄晓辉,等.直流磁控溅射在铝衬底上沉积(TixAly)N薄膜及其性能研究[J].真空科学与技术学报,2008,28(4):351-354.
    102.Shum P W,Li K Y,Zhou Z F,et al.Structural and mechanical properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering[J].Surf.Coat.Technol.,2004,185(2-3):245-253.
    103.Feng H,Guo H W,Barnard J A,et al.Microstructure and stress development in magnetron sputtered TiAlCr(N) films[J].Surf.Coat.Technol.,2001,146-147:391-397.
    104.谢元华.多弧离子镀镀膜过程中几个参数的研究[D].沈阳:东北大学2004:16-20.
    105.Uvarov V,Popov I.Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials[J].Materials Characterization,2006,58(10):883-891.
    106.刘全顺,张静茹,王金发.多弧物理沉积技术制备(Ti,Al)N超硬膜[J].真空与低温,1998,4(2):108-110.
    107.曾鹏,胡社军,谢光荣.多弧离子镀(Ti,W)_xN合金涂层组织与性能[J].材料工程,2000,(9):33-41.
    108.尹瑞洁,乔学亮,陈建国,等.(Ti,Al,V)N薄膜抗氧化性能的研究[J].机械工程材料,2001,25(9):13-14.
    109.潘国顺,杨文言,邵天敏,等.多弧离子镀硬质膜的抗空蚀性能研究[J].摩擦学学报,2001,21(1):15-18.
    110.Li Z Y,Zhu W B,Zhang Y,et al.Effects of superimposed pulse bias on TiN coating in cathodic arc deposition[J].Surf.Coat.Technol.,2000,131(1-3):158-161.
    111.张钧.多弧离子镀合金涂层成分离析效应的物理机制研究[J].真空科学与技术,1996,16(3):174-178.
    112.Zhang J,Zhang Y,Li L,et al.Approximate design of alloy composition of cathode target[J].J.Mater.Sci.Technol.,2006,22(5):639-642.
    113.李明升,王福会,王铁钢,等.电弧离子镀(Ti,Al)N复合薄膜的结构和性能研究[J].金属学报,2003,39(1):55-60.
    114.Boxman R L,Zhitomirsky V N,Grimberg I,et al.Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti,Zr and Nb[J].Surf. Coat.Technol.,2000,125(1-3):257-262.
    115.Donohue L A,Cawley J,Brooks J S,et al.Deposition and characterization of TiA1ZrN films produced by a combined steered arc and unbalanced magnetron sputtering technique[J].Surf.Coat.Technol.,1995,74-75(partl):123-134.
    116.Lewis D B,Donohue L A,Lembke M,et al.The influence of the yttrium content on the structure and properties of Ti_(1-x-y-z)Al_xCr_yY_zN PVD hard coatings[J].Surf.Coat.Technol.,1999,114(2-3):187-199.
    117.Donohue L A,Cawley J,Brooks J S.Deposition and characterisation of arcbond sputter Ti_xZr_yN coatings from pure metallic and segmented targets[J].Surf.Coat.Technol.,1995,72(1-2):128-138.
    118.Korhonen A S,Molarius J M,Penttinen I,et al.Hard transition metal nitride films deposited by triode ion plating[J].Mater.Sci.and Eng.,1988,A105-106(part2):497-501.
    119.Steyer P,Pilloud D,Pierson J F,et al.Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition[J].Surf.Coat.Technol.,2006,201(7):4158-4162.
    120.Joshua Pelleg,Zevin L Z,Lungo S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin solid films,1991,197(1-2):117-128.
    121.Quaeyhaegens C,Knuyt G,Haen J D,et al.Experimental study of the growth evolution from random towards a(111) preferential orientation of PVD TiN coatings[J].Thin solid films,1995,258(1-2):170-173.
    122.谢致薇,王国庆,杨元政,等.TiAlCrFeSiBN多元膜的性能与组织结构研究[J].稀有金属材料与工程,2005,34(4):648-652.
    123.Jonsson B,Hogmark S.Hardness measurements of thin films[J].Thin solid films,1984,114(3):257-269.
    124.徐建华,王昕,马胜利,等.TiN纳米薄膜的高硬度及其产生机制[J].材料研究学报,2008,22(2),201-204.
    125.Mattox D M.Particle bombardment effects on thin-film deposition:A review[J].J.Vac.Sci.Technol.,1989,A7(3):1105-1114.
    126.赵时璐,张钧,刘常升.硬质合金表面多弧离子镀(Ti,Al,Zr Cr)N多元氮化物膜[J].金属热处理,2009,33(9):99-104.
    127.Charles F,Fred O,Jean B.Distinguishing thin films and substrate contributions in microindentation hardness measurements[J].J.Vac.Sci.Technol.,1990,A8(1):117-121.
    128.Suzuki T,Huang D,Ikuhara Y.Microstructures and grain boundaries of(Ti,AI)N films[J].Surf.Coat.Technol.,1998,107(1):41-47.
    129.Tsutomu Ikeda,Hiroshi Satoh.Phase formation and characterization of hard coatings in the Ti-Al-N system prepared.by the cathodic arc ion plating method[J].Thin solid films,1991,195(1-2):99-110.
    130.Fox-Rabinovich G S,Yamomoto K,Veldhuis S C,et al.Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions[J].Surf.Coat.Technol.,2005,200(5-6):1804-1813.
    131.Rebouta L,Vaz F,Andritschky M,et al.Oxidation resistance of(Ti,Al,Zr,Si) N coatings in air[J].Surf.Coat.Technol.,1995,76-77(partl):70-74.
    132.赵时璐,张钧,刘常升.多弧离子镀(Ti,Al,Zr,Cr)N多元膜的高温氧化行为[J].中国腐蚀与防护学报,2009,29(4):296-300.
    133.Wang Y K,Cheng X Y,Wang W M,et al.Microstructure and properties of(Ti,Al) N coating on high speed steel[J].Surf.Coat.Technol.,1995,72(1-2):71-77.
    134.Weber F R,Fontaine F,Scheib M,et al.Cathodic arc evaporation of(Ti,Al) N coatings and(Ti,Al) N/TiN multiplayer-coatings-correlation between lifetime of coated cutting tools,structural and mechanical film properties[J].Surf.Coat.Technol.,2004,177-178:227-232.
    135.Rudigier H,Bergmann E,Vogel J.Properties of ion-plated TiN coatings grown at low temperatures[J].Surf.Coat.Technol.,1988,36(1-2):675-682.
    136.Johnsen O A,Dontje J H,Zenner R L D.Reactive arc vapor ion deposition of TIN,ZrN and HfN[J].Thin Solid Films,1987,153:75-82.
    137.Leoni M,Scardi P,Rossi S,et al.(Ti,Cr) N and Ti/TiN PVD coatings on 304stainless steel substrates:Texture and residual stress[J].Thin Solid Films,1999,345:263-269.
    138. Zhao J P, Chen Z Y, Wang X, et al. The influence of ion energy on the structure of TiN films during filtered arc deposition, Nuclear[J]. Instrument and Method in Physics Research, 1998, B135: 388-391.
    
    139. Tay B K, Shi X, Yang H S, et al. The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique[J]. Surf. Coat. Technol., 1999, 111: 229-233.
    
    140. Mori T, Fukuda S, Takemura Y. Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering[J]. Surf. Coat. Technol., 2001, 140(2): 122-127.
    
    141. Chang Yin-Yu, Wang Da-Yung, Hung Chi-Yung. Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process[J]. Surf. Coat. Technol., 2005, 200(5-6): 1702-1708.
    
    142. Yang Sheng-Min, Chang Yin-Yu, Lin Dong-Yin, et al. Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process[J]. Surf. Coat. Technol., 2008, 202(10): 2176 -2181.
    
    143. Chang Yin-Yu, Yang Shun-Jan, Wang Da-Yung. Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc. deposition process[J]. Surf. Coat. Technol., 2006,201(7): 4209-4214.
    
    144. Veprek S. Conventional and new approaches towards the design of novel superhard materials[J]. Surf. Coat. Technol., 1997, 97: 15-22.
    
    145. Lii D F. The effects of aluminium composition on mechanical properties of reactivity sputtered TiAlN films[J]. J. Mater. Sci., 1998, 33: 2137-2145.
    
    146. LIN Kwanglung, CHAO Wenhsiuan, Wu Chengdau. The performance and degradation behaviours of the TiAlN/interlayer coatings on drills[J]. Surf. Coat. Technol., 1997, 89: 279-284.
    
    147. Wang D Y, Chang C L, Wong K W, et al. Improvement of the interfacial integrity of (Ti, Al) N hard coatings deposited on high speed steel cutting tools[J]. Surf. Coat. Technol., 1999,120-121: 388-394.
    148.黄锡森.金属真空表面强化的原理与应用[M].上海:上海交通大学出版社,1989:120-125.
    149.ZhitomirskyV N,Grimberg I,Rapoport L,et al.Structure and mechanical properties of vacuum arc-deposited NbN coatings[J].Thin Solid Films,1998,326:134-142.
    150.Santana A E,Karimi A,Derflinger V H,et al.Microstructure and mechanical behavior of TiAlCrN multilayer thin films[J].Surf.Coat.Technol.,2004,177-178(30):334-340.
    151.Holleck H,Schier V.Multilayer PVD coatings for wear protection[J].Surf.Coat.Technol.,1995,76-77(part 1):328-336.
    152.Xi Chu,Scott A.Barnett.Model of superlattice yield stress and hardness enhancements[J].J.Appl.Phys.,1995,77(9):4403-4410.
    153.Yashar P C,Sproul W D.Nanometer scale multilayered hard coatings[J].1999,55:179-190.
    154.ZHAO Shi-lu,ZHANG Jun,LIU Chang-sheng.Investigation of TiAIZrCr/(Ti,Al,Zr,Cr) N gradient films deposited by multi-arc ion plating[J].Vacuum Technology and Surface Engineering.Proceedings of the 9~(th) Vacuum Metallurgy and Surface Engineering Conference,2009:83-88.
    155.谢中维,郭薇,贺小明.离子束辅助沉积(Ti,Al)N梯度薄膜的结合强度[J].真空,1998(2):23-27.
    156.Gao Y Z,Lin G Q,Zhang Q Z.TiN-based multi-component hard coatings by multi-arc ion plating[J].7th Sine-Korean International Symposium on Thin- film Materials,China Dalian,2000,7.
    157.PalDey S,Deevi S C,Alford T L.Cathodic arc deposited thin film coatings based on TiA1 intermetallics[J].Intermetallics,2004,12(7-9):985-991.
    158.PalDey S,Deevi S C.Properties of single layer and gradient(Ti,Al) N coatings[J].Mater.Sci.and Eng.,2003,A361(1-2):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700