用户名: 密码: 验证码:
非圆横截面空心零件旋压成形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋压是现代先进制造技术的重要组成部分,是薄壁回转体零件加工中需要优先考虑的一种成形工艺。非圆横截面空心零件旋压(简称非圆旋压)是旋压技术的最新突破,是国际塑性加工领域前沿研究的热点之一。近年来国内外的研究已初步证明了非圆旋压的可行性,并发现非圆旋压在壁厚分布、旋压力变化等方面具有与常规旋压不同的特点,但具体成因的解析还有待非圆旋压成形机理的深入研究。非圆旋压零件横截面的变化改变了传统圆形横截面空心零件旋压成形过程中旋轮的运动状态,使其径向运动由静态(或准静态)变为动态,加上非圆横截面空心零件自身形状复杂程度的增加,使得非圆旋压成形机理更为复杂。
     本文在国家自然科学基金项目“非圆横截面空心零件旋压成形方法及变形机理研究”(课题编号:50775076)的资助下,以圆形、圆弧形和直边形等不同类型横截面空心零件为研究对象,采用最广泛应用的平板坯料普通旋压成形方式,综合采用理论分析、有限元数值模拟和实验研究等手段,深入地研究了非圆横截面空心零件旋压成形机理。
     对非圆横截面空心零件旋压进行了分类;指出了非圆旋压旋轮运动特征是“旋压成形过程中,旋轮在绕工件转过的一周范围内,成形的零件外轮廓至芯模转动中心的距离存在反复变化”;对非圆横截面空心零件旋压成形过程变形特点进行了理论研究,提出采用相对高度和相对圆角半径分析非圆横截面空心零件旋压变形程度。基于图解分析法,获得了旋轮运动特点及其对旋压成形速度、接触面积等的影响,全面揭示了非圆旋压成形过程中旋轮与坯料接触区位置的变化特点——接触区不仅由于旋轮的轴向进给而轴向移动,而且由于非圆横截面形状的变化而径向、轴向和周向移动;在此基础上建立了非圆旋压旋轮接触面积计算方法和旋轮径向进给运动轨迹计算方法。采用软件MSC.ADAMS对非圆旋压成形过程旋轮的运动进行了研究,并对基于图解分析法建立的非圆旋压成形过程旋轮运动轨迹计算结果进行了验证,结果表明计算结果可靠。
     分析了非圆旋压涉及的大变形弹塑性有限元法的基本理论,对坯料设计、模型离散、旋轮运动控制、并行运算等有限元数值模拟关键技术进行了研究,开发了面向单机多核并行运算的旋轮运动控制子程序,建立了基于MSC.MARC软件的非圆旋压三维弹塑性有限元数值模拟模型。通过改变模型离散方法和运动边界条件设置及采用并行运算有效提高了非圆旋压成形数值模拟效率。研究表明,采用坯料静止的运动边界条件和多核并行运算可在不降低模拟精度的前提下使非圆旋压有限元数值模拟时间减少76.97%。
     以三维弹塑性数值模拟为分析手段,系统研究了圆形、圆弧形和直边形等不同类型横截面空心零件旋压成形过程,比较了其变形方式、等效应力应变分布、应变状态、壁厚分布及回弹情况的异同,研究了非圆零件几何参数(偏心距、相对高度和相对圆角半径等)的影响。以非圆特征最为明显的三边形横截面空心零件为例,研究了旋压成形过程中旋压力的变化规律与影响因素。以三直边圆角形横截面空心零件为例,结合正交试验设计,研究了主要工艺参数(旋轮直径、旋轮圆角半径、相对间隙、主轴转速和旋轮进给比等)对成形精度(壁厚减薄和回弹等)的影响。
     研制了非圆旋压工装,并对三边形横截面空心零件旋压成形进行了实验研究,成功试制出横截面最复杂的非圆旋压件——三直边圆角形横截面空心零件。利用应变网格实验获得了三边圆弧形横截面空心零件三向应变和等效应变分布规律;通过电测法实测得到旋压过程中旋压力的变化规律及工艺参数的影响;并运用工艺实验对理论分析结果及数值模拟结果进行了全面验证。从成形过程、成形件高度、壁厚减薄和旋压力等角度来看,本文所建的数值模拟模型是合理可靠的;实验所得的应变分布、应变状态、旋压力、工艺参数对成形精度的影响规律等与数值模拟结果吻合良好,数值模拟结果可靠。
Metal spinning is an important integral part of modern advanced manufacturingtechnologies, and is considered as the preferred forming process for the production ofthin-walled revolution parts. Non-circular spinning is the latest breakthrough of metalspinning technology, which has became the forefront in the international research field ofplasticity engineering. In recent years, researchers in China and abroad have preliminaryproved the feasibility of non-circular spinning and find that there are many differencesbetween non-circular spinning and traditional spinning on the aspects such as wall thicknessdistribution, spinning force variation, etc. The causes of the above phenomena can’t be founduntil in-depth research on the mechanism of non-circular spinning was done. The variation ofthe cross-section of the non-circular spinning part changes the motion status of the roller, andmakes its radial movement change from static or quasi-static during traditional spinning todynamic. Coupled with a more complex shape of the non-circular cross-section, themechanism of non-circular spinning is extreme complex.
     The research of this thesis was financially supported by National Natural ScienceFoundation of China (Subject title: Research on spinning method and deformation mechanismof hollow parts with non-circular cross-section; Subject No.:50775076). The hollow partswith circular, arc-type or straight-edge-type cross-section were selected as the study objects,and the most widely used spinning process: conventional spinning process with a flat sheetmetal blank was adopted, and combined with the theoretical analysis, numerical simulationand experimental investigation, in-depth research on the spinning mechanism of the hollowparts with non-circular cross-section was carried out.
     The classification of spinning of the hollow parts with non-circular cross-section hasbeen carried out, and the motion characteristic of the roller during non-circular spinning hasbeen revealed, which is that the distance from the outer contour of the part to the rotationalcenter varies repeatedly during every rotation of the mandrel. The deformation characteristicduring non-circular spinning was studied, and a deformation degree analysis method using therelative height and relative radius was put forward. By graphical analysis method, the motioncharacteristic of the roller and its effects on the forming speed, contact area and so on werestudied, and the variation characteristic of the contact position between the roller and blankwas revealed comprehensively, which does not only move along the axial direction for theroller’s axial feeding, but also moves along the radial, axial and circumferential directions forthe variation of the non-circular cross-section. Based on the above variation characteristic, the calculating methods for the contact area and the roller radial feed track were established. Thesoftware MSC.ADAMS was used to analyze the motion of the roller during non-circularspinning, and the calculated result of the roller radial feed track by graphical analysis methodwas verified. The result shows that the calculated result is reliable.
     The basic theory of finite element method (FEM) of the large elastic-plastic deformationwas introduced. The key techniques of the numerical simulation, including the blank design,meshing, motion control of the roller, parallel simulation and so on, were researched. Asubroutine for the motion control of the roller during multi-core parallel simulation wasdeveloped. The3D elastic-plastic FE numerical simulation model for the non-circularspinning was established using the software MSC.MARC. By changing the meshing method,boundary condition and using parallel simulation, the numerical simulation efficiency wasimproved effectively. The research results show that by using the stationary boundarycondition of the blank and multi-core parallel simulation, the simulation time can be reducedby76.97%while the simulation accuracy unaffected.
     With3D elastic-plastic numerical simulation, systematic studies on the spinning processof the hollow parts with circular, arc-type or straight-edge-type cross-section were carried out,and an analysis of the similarities and differences of the deformation model, equivalent stressand strain distributions, strain state, wall thickness distribution and springback was done. Theeffects of the geometry parameters of the non-circular part, such as the offset distance, relativeheight and relative radius, were revealed. Taking the hollow part with three straight-edgeround-corner cross-section as the study object and combining with the orthogonalexperimental design, the effects of the main process parameters, such as the roller diameter,roller nose radius, relative clearance between the roller and mandrel, spindle rotational speedand roller feed rate, on the forming accuracy (the wall thinning, springback, eta) wereobtained.
     A device for the non-circular spinning was designed and manufactured. And a series ofexperiments was carried out. The hollow part with three straight-edge round-cornercross-section was manufactured by spinning process successful, which is one of the mostcomplex spun parts recently. By the grid experiment, the distributions of the strain andequivalent strain of the hollow part with triangular arc-type cross-section were obtained. Bythe electrical measuring method, the variation of the spinning force and the influence of theprocess parameters on the spinning force were investigated. The theoretical results andnumerical simulation results were fully verified by experiments. Judged by the formingprocess, height of spun part, wall thinning and spinning force, the simulation model established in this thesis is high reliable. The experimental results were used to compare withthe simulation results on the aspects of the strain distribution, strain state, spinning force andthe effect of process parameters on the forming accuracy, and good agreements are observed.
引文
[1]白宏伟,叶蕾,陈英硕.非圆截面布撒器发展及装备现状[J].飞航导弹,2008,(8):16-20
    [2] Steve Zaloga. AGM-158JASSM[J]. World Missiles Briefing,2006,(8):56-60
    [3] Jeremich Gertler. Air force next-generation bomber: background and issues for congress[J]. Congressional Research Service,2009,(12):89-95
    [4]纪秀玲,张太恒,何光林.非圆截面巡飞弹气动特性实验研究[J].南京理工大学学报(自然科学版),2010,34(1):71-74
    [5] Timothy R. Smith, Erich M. Mccoy, Mark Krasinski, et al. Ballute and parachutedecelerators for FASM/Quick look UAV[R]. Monterey, USA: AIAA-2003-2142,2003:s.n.
    [6]高红利,洪锡纲.非圆形截面容器的特点及其应力计算[J].暨南大学学报(自然科学版),2003,24(1):87-89
    [7]邱家骏.工程力学[M].北京:机械工业出版社,2004:152
    [8]赵中里,韩静涛.汽车轻量化中的管材内高压成形技术[J].现代制造工程,2005,(8):114-116
    [9] Musica O, Allwooda J M. Kawai K. A review of the mechanics of metal spinning [J].Journal of Materials Processing Technology,2010,210(1):3-23
    [10]杨明辉,梁佰祥,夏琴香,等.旋压技术分类与应用[J].机电工程技术,2004,33(11):14-16
    [11]赵云豪,李彦利.旋压技术与应用[M].北京:机械工业出版社,2007:12,56-57,64-65,200
    [12] Yang Yu, Xu Hongji. Overview of metal spinning process [C]. Proceedings of the2010IEEE International Conference on Information and Automation, Harbin, China,2010:2502-2507
    [13]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986:5-12,465,583-585,670,692-693
    [14]日本塑性加工学会.旋压成形技术[M].北京:机械工业出版社,1988:25-30,31-33,54-55
    [15]夏琴香,任晓龙,陈宝仪,等.民品旋压技术的应用[J].新技术新工艺,2002,(12):33-35
    [16]夏琴香,陈依锦,丘宏扬.旋压技术在汽车零件制造成形中的应用[J].新技术新工艺,2003,(9):29-30
    [17]胡昱,夏琴香,王玉辉,等.旋压技术在国防建设中的应用[C].全国第十届旋压技术交流大会论文集,太原,中国,2005:16-20
    [18]夏琴香.三维非轴对称偏心及倾斜管件缩径旋压成形理论与方法研究[D].广州:华南理工大学,2006
    [19] C.C. Wong, T.A. Dean, J. Lin.A review of spinning,shear forming and flow formingprocesses [J]. Mechanical and Manufacturing Engineering, MACHINE TOOLS&MANUFACTURE,2003,43:1419-1435
    [20] Edward Lloyd. An introduction to some metal forming, theory, principles and practice[M].Portcullis Press Ltd,1986:110
    [21] S. Dieter, H. Stefan. Tooling and process control for splitting of disc blanks[J]. Journal ofMaterials Processing Technology,2000,98:65-69
    [22]陈芳雷,张治民,滕焕波.旋压技术在皮带轮中的应用[J].锻压装备与制造技术,2007,(1):65-67
    [23]陈云飞,温彤,侯模辉. V型劈开式皮带轮旋压成形过程的分析[J].热加工工艺,2009,38(1):88-90
    [24]西山三朗.スピニング加工技術の课题と制品例[J].塑性と加工,2002,(11):24-28
    [25] L.Y. Sun, B.Y. Ye, Q.X. Xia, et al. Analysis on forming characteristics of cup-shapedthin-walled inner gear spinning [J]. Key Engineering Materials,2011,455:544-547
    [26]孙凌燕,叶邦彦,郝少华,等.杯形薄壁梯形内齿轮旋压成形的机理[J].华南理工大学学报(自然科学版),2010,38(2):49-54
    [27] Xia Q.X., Xie Sh.W., Huo Y.L., et al. Numerical simulation and experimental research onthe multi-pass neck-spinning of non-axisymmetric offset tube [J]. Journal of MaterialsProcessing Technology,2008,206(1):500-508
    [28] XIA Qin-xiang, LIANG Bai-xiang, ZHANG Sai-jun, et al. Finite element simulation onthe spin-forming of the3D non-axisymmetric thin-walled tubes[J]. Journal of MaterialsScience&Technology,2006,22(2):261-268
    [29] A. Sekiguchi, H. Arai. Control of wall thickness distribution by oblique shear spinningmethods[J]. Journal of Materials Processing Technology,2012,212(4):786–793
    [30] B. Awiszus, F. Meyer. Metal spinning of non-circular hollow parts[C]. Proceedings of the8thInternational Conference on Technology of Plasticity, Verona:[s. n.],2005:353-355
    [31] Xia Qin-xiang, Lai Zhou-yi, Zhan Xin-xi, et al. Research on spinning method of hollowpart with triangle arc-type cross section based on profiling driving [J]. Steel ResearchInternational,2010,81(9):994-997
    [32]夏琴香,张帅斌,詹欣溪,等.直线电动机及其在非圆截面零件加工中的应用[J].现代制造工程,2008,(06):8-11,69
    [33]夏琴香,吴小瑜,张帅斌,等.三边形圆弧截面空心零件旋压成形的数值模拟及试验研究[J].华南理工大学学报(自然科学版),2010,38(6):100-106
    [34] T. Amano, K. Tamura.The study of an elliptical cone spinning by the trial equipment[C].Proceedings of the3rd International Conference on Rotary Metalworking Processes,8-10September,1984, Kyoto, Japan:312-224
    [35] Xi-Cheng Gao, Da-Chang Kang, Xiao-Feng Meng.Experimental research on a newtechnology of ellipse spinning[J].Journal of Materials Processing Technology,1999,94:197-200
    [36]程秋谋,康达昌.椭圆异形件旋压工艺的研究[J].塑性工程学报,1997,4(1):56-59
    [37] H. Arai. Robotic metal spinning-shear spinning using force feedback control [C]. Proc.2003IEEE Int. Conf. on Robotics and Automation (ICRA2003),2003:3977-3983
    [38] H. Arai. Robotic metal spinning-forming non-axisymmetric products using force control[C]. Proc.2005IEEE Int. Conf. on Robotics and Automation (ICRA2005),2005:2691-2696
    [39] H. Arai. Force-controlled metal spinning machine using linear motors [C]. Proc.2006IEEE Int. Conf. on Robotics and Automation, Orlando, Florida,2006:4031-4036
    [40]夏琴香,程秀全.非圆截面零件的旋压成形方法及其设备[P].中国: ZL200810219517.4,2010年9月
    [41]程秀全,夏琴香.一种非圆截面钣金零件的回转加工装置[P].中国: ZL200920053635.2,2009年12月
    [42]夏琴香,程秀全.一种三角形截面零件的旋压成形设备[P].中国: ZL200820204304.X,2009年9月
    [43]张帅斌.三角形截面空心零件旋压工艺研究及有限元数值模拟[D].广州:华南理工大学.2009
    [44]詹欣溪.三角形横截面空心零件旋压成形方法及旋压力试验研究[D].广州:华南理工大学.2009
    [45]吴小瑜.四边圆弧形横截面空心零件旋压成形数值模拟及试验研究[D].广州:华南理工大学.2010
    [46] Qinxiang Xia, Peng Zhang,Wu Xiaoyu, et al. Research on distributions of stress andstrain during spinning of quadrilateral arc-type cross-section hollow part [C].2011International Conference on Mechanical, Industrial, and Manufacturing Engineering,MIME2011, Australia, Melbourne,15-16, Jan,2011:17-20
    [47]程秀全,吴小瑜,夏琴香.四边圆弧形横截面空心零件旋压成形壁厚分布规律的研究[C].第五届泛珠三角塑性工程(锻压)学术年会,四川德阳,2010:60-64
    [48]王映品.五边形截面空心零件旋压成形数值模拟与工艺研究[D].广州:华南理工大学.2011
    [49]夏琴香,王映品,程秀全.五边形横截面零件旋压成形壁厚变化规律研究[C].第十二届全国塑性工程学术年会论文集,重庆,中国,2011: s.n.
    [50] Ichiro Shimizu. Asymmetric forming of aluminum sheets by synchronous spinning [J].Journal of Materials Processing Technology,2010,210:585-592
    [51] H. Sebastian, A. Birgit. Numerical and experimental investigations of production ofnon-rotationally symmetric hollow parts using sheet metal spinning [J]. Steel ResearchInternational,2010,81(9):998-1001
    [52] H. Arai. Synchronous die-less spinning of curved products [J]. Steel ResearchInternational,2010,81(9):1010-1013
    [53] A. zer, H. Arai. Robotic Metal spinning-experiments with cascaded position-velocitycontrol with an add-on vibration suppressor for enhanced trajectory tracking [C].Proceedings of ICROS-SICE International Joint Conference2009, Fukuoka, Japan,2009:2621-2626
    [54] O. Music, J. M. Allwood. Flexible asymmetric spinning[J].CIRP Annals-ManufacturingTechnology,2011,60:319-322
    [55]梁清香,张根全.有限元与MARC实现[M].北京:机械工业出版社,2003:2-3
    [56]王仲仁,滕步刚,汤泽军.塑性加工技术新进展[J].中国机械工程,2009,20(1):108-112
    [57]张彦敏,张学宾,龚红英.有限元在金属塑性成形中的应用[M].北京:化学工业出版社,2010:1
    [58]杨洁,马世成,吴伏家.旋压成形技术数值模拟方法的应用现状与发展趋势[J].现代制造工程,2011,(1):130-134
    [59] M. Zhan, H. Yang, J.H. Zhang, et al.3D FEM analysis of influence of roller feed rate onforming force and quality of cone spinning[J].Journal of Materials ProcessingTechnology,2007,187-188:486-491
    [60] Chun-Ho Liu. The simulation of the multi-pass and die-less spinning process [J]. Journalof Materials Processing Technology,2007,192-193:518-524
    [61]魏战冲,李卫东,万敏,等.旋轮加载轨迹与方式对多道次普通旋压成形的影响[J].塑性工程学报,2010,17(3):108-112
    [62] G. Sebastiani, A. Brosius, R. Ewers, et al. Numerical investigation on dynamic effectsduring sheet metal spinning by explicit finite-element-analysis[J]. Journal of MaterialsProcessing Technology,2006,177(1-3):401-403
    [63] M. Kleinera, R. G bela, H. Kantzb, et al. Combined methods for the prediction ofdynamic instabilities in sheet metal spinning [J]. Annals of the CIRP,2002,51(1):209-214
    [64] Lin Wang, Hui Long. Investigation of material deformation in multi-pass conventionalmetal spinning [J].Materials&Design,2011,32(5):2891-2899
    [65] Quigley, E., Monaghan, J.. An analysis of conventional spinning of light sheet metal [J].International Conference on Sheet Metal,1999:547-554
    [66]孙琳琳,寇宏超,胡锐,等. Ni-Cr-W-Mo合金曲母线异型件第一道次热旋成形有限元模拟[J].塑性工程学报,2010,17(2):33-38
    [67]李启军,吕宏军,王琪,等.薄壁曲母线TC4钛合金构件热旋模拟与试验研究[J].天津工业大学学报,2008,27(2):61-65
    [68]张晋辉,杨合,詹梅,等.旋轮参数对大型变壁厚椭圆封头强力旋压成形的影响[J].塑性工程学报,2011,18(2):114-119
    [69]李虎,詹梅,杨合,等.钛合金薄壁壳体强旋热力耦合有限元分析[J].机械工程学报,2008,44(6):187-193
    [70]马明娟,詹梅,杨合,等.异型薄壁壳体强力旋压三维有限元模型的建立[J].中国机械工程,2006,17(S1):92-95
    [71]赵宪明,吴迪,吕炎,等.筒形件正强旋旋压力分布规律的有限元分析[J].哈尔滨工业大学学报,2000,32(4):120-122
    [72] Ken-ichiro Mori, Takayuki Nonaka. Simplified three-dimensional finite elementsimulation of shear spinning process based on axisymmetric modeling [J]. Journal ofManufacturing Processes,2005,7(1):51-56
    [73]张利鹏,刘智冲,周宏宇.筒形件强力旋压发展过程及其现状分析[J].塑性工程学报,2006,13(1):43-46,57
    [74]杨坤,李健.基于有限元方法的TA2筒形件多道次旋压成形过程[J].塑性工程学报,2010,17(2):39-44
    [75]王强.普通旋压的弹塑性有限元分析及变形机理研究[D].哈尔滨:哈尔滨工业大学,1990
    [76]徐银丽.异型薄壁壳体强旋成形机理及规律的三维有限元分析[D].西安:西北工业大学,2006
    [77]董洪波,王高潮.杯形内啮合齿轮旋压成形的数值模拟[J].锻压技术,2009,34(8):32-34
    [78]江树勇,孙金凤,赵立红,等.纵向内筋薄壁筒反向滚珠旋压有限元分析[J].锻压技术,2009,(8):35-38
    [79] Ch. Klimmeka, R. G bela, W.Homberg, et al. Finite element analysis of sheet metalforming by spinning [J]. Advanced Technology of Plasticity,2002,(2):1411-1416
    [80]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版出版社,1999:4
    [81]胡建军,许洪斌,金艳.塑性成形数值仿真精度的提高途径[J].锻压技术,2009,34(2):149-151,156
    [82] E. Quigley, J.Monaghan. Enhanced finite element models of metal spinning [J]. Journalof Materials Processing Technology,2002,121:43-49
    [83]童隆长.塑性加工过程有限元法模拟的现状和困难[J].塑性工程学报,2002,9(4):1-6
    [84]化春键,赵升吨,申光宪.数值模拟塑性成形过程的并行计算现状[J].锻压技术,2005,(1):1-6
    [85]包向军,陶宏之,何丹农,等.金属薄板冲压成形数值模拟的并行计算[J].塑性工程学报,2000,7(3):33-36
    [86] E. Quigley, J. Monaghan. The finite element modeling of conventional spinning usingmulti-domain models [J]. Journal of Materials Processing Technology,2002,124:360-365
    [87]谷照升.基于多核CPU的并行计算设计[J].长春工程学院学报(自然科学版),2009,10(3):92-94
    [88] Douglas C. Montgomery.实验设计与分析[M].第三版.汪仁官,陈荣昭.北京:中国统计出版社,1998:1-11
    [89]杨德.试验设计与分析[M].北京:中国农业出版社,2002:23-26
    [90]赵选民.试验设计方法[M].北京:科学出版社,2006:4-6
    [91] M. Zhan, H. Yang, Z.Q. Jiang, et al.3D FEM analysis of forming parameters on conespinning based on orthogonal experimental design method[C]. Proceedings of ICTP2008, Gyeongiu, Korea,2008:374-388
    [92]陈岗,詹梅,杨合,等.基于正交优化的异型薄壁壳体强力旋压成形有限元分析[J].塑性工程学报,2008,15(4):67-71
    [93]吕昕宇,侯红亮,张士宏,等.基于正交优化的TC4合金剪切旋压数值模拟与实验验证[C].第九届全国塑性工程学术年会第二届全球华人先进塑性加工技术研讨会论文集,太原,中国,2005:185-188
    [94]罗杜宇,夏琴香,孙凌燕.内齿轮旋压用杯形毛坯设计[J].锻压技术,2010,(2):62-65
    [95]王鸿基,陈晨,徐迎强,等.双锥形件无芯模旋压的工艺参数优化[J].模具技术,2011,(3):6-11
    [96]贾建磊.汽车铝合金轮毂强力旋压成形工艺研究[D].合肥:合肥工业大学.2010
    [97]韩志仁,陶华.筒形件强力内旋压工艺的正交试验研究[J].锻压技术,2005,(2):29-31
    [98]程秀全,冯万林,夏琴香.非轴对称管件缩径旋压的数值模拟与参数优化的研究[J].塑性工程学报,2008,15(4):61-66
    [99]孙凌燕.杯形薄壁内齿轮旋压成形机理及工艺优化研究[D].广州:华南理工大学,2010
    [100] Wang L, Long H, Ashley D, et al. Analysis of single-pass conventional spinning bytaguchi and finite element methods[J]. Steel Research International,2010,81(9):974-977
    [101] Xia Qinxiang, Wang Yinpin, Yuan Ning, et al. Study on spinning of pentagonalcross-section hollow part based on orthogonal experiment design [C]. Proceedings of2011International Conference on Advanced Design and Manufacturing Engineering,Guangzhou, China,2011: s.n.
    [102]夏琴香,詹欣溪,张帅斌,等.三面圆弧型等距截面空心零件旋轮运动轨迹的设计[J].锻压装备与制作技术,2008,(6):77-82
    [103]李健.圆锥形零件极限拉深系数及合理压边力的研究[D].重庆:重庆大学,2002
    [104]贺军涛.盒形件拉深的研究[D].吉林:吉林大学,2004
    [105]杨玉英.盒形件成形机理的探讨[J].锻压技术,1989,(6):13-17
    [106]刘红生,邢忠文,杨玉英.方盒形件拉深成形无网格法模拟[J].机械工程学报,2010,46(4):48-53
    [107] Q.X. Xia, X.Q. Cheng, Y. Hu, et al. Finite element simulation and experimentalinvestigation on the forming forces of3D non-axisymmetrical tubes spinning [J].International Journal of Mechanical Sciences,2006,48(7):726-735
    [108]钱文瀚,钱康.椭圆的四圆弧拟合[J].数学的实践与认识,1981,(02):23-31
    [109]郑相周,唐国元.机械系统虚拟样机技术[M].北京:高等教育出版社,2010:3-6
    [110]秦成.基于Pro/E和Adams的凸轮机构虚拟样机研究[J].机械工程与自动化,2008,(17):35-36
    [111]李军,刑俊文,覃文浩,等. ADAMS实例教程[M].北京:北京理工大学出版社,2002
    [112] Y. Altintas, C. Brecher, M. Weck, et al. Virtual Machine Tool [J]. CIRP Annals-Manufacturing Technology,2005,54(2):115-138
    [113]门玉琢.基于ADAMS的重型载货汽车可靠性仿真与试验研究[D].吉林:吉林大学,2009
    [114]王猛.基于ADAMS的急救车担架支架减振特性仿真分析与优化研究[D].北京:中国人民解放军军事医学科学院,2009
    [115]裴未迟,李耀刚,李运.基于虚拟样机技术-ADAMS的冲击力模型[J].河北理工大学学报(自然科学版),2008,30(4):59-63
    [116]王国强,张进平,马若相.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002:10-20
    [117]李勇.基于ADAMS的微小研抛机器人动态仿真研究[D].吉林:吉林大学,2007
    [118]石明全.基于ADAMS的多接触问题研究[J].计算机工程与应用,2004,(29):220-222
    [119] Qinxiang Xia, Yingpin Wang, Ning Yuan, et al. Parameters analysis of solving complexspace tracks based on ADAMS [C]. The International Conference on Electrical andControl Engineering (ICECE), Wuhan, China,2010:143-146
    [120]魏勇亮,金圭. ADAMS仿真时发生接触穿透的原因及对策[J].机械工程师,2005,(9):53-54
    [121]于殿勇,钱玉进.基于ADAMS动力学仿真参数设置的研究[J].计算机仿真,2006,23(9):103-107,183
    [122]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:99
    [123]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003:5,9-10
    [124]刘劲松,张士宏,肖寒,等. MSC.Marc在材料加工工程中的应用[M].北京:中国水利水电出版社,2010:1,9
    [125]叶又,彭颖红,阮雪榆.板料塑性成形分析的若干力学问题[J].应用基础与工程科学学报,1997,5(1):6-1
    [126]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M],北京:冶金工业出版社出版日期,1997:160-161
    [127]吕军,王忠金,王仲仁.有限元六面体网格的典型生成方法及发展趋势[J].哈尔滨工业大学学报,2001,33(04):485-490
    [128]夏琴香,胡昱,孙凌燕,等.旋轮型面对矩形内齿旋压成形影响的数值模拟[J].华南理工大学学报(自然科学版),2007,35(8):1-6
    [129]阚前华,常志宇. MSC.Marc工程应用实例分析与二次开发[M].北京:中国水利水电出版社,2005:147
    [130]陈火红. MARC有限元实例分析教材[M].北京:机械工业出版社,2002:19-21
    [131]陈火红,于军泉,席源山. MSC.Marc/Mentant2003基础与应用实例[M].北京:科学出版社,2004:242
    [132]郑岩,顾松东,吴斌. MARC2001从入门到精通[M].北京:中国水利水电出版社,2003:333-336
    [133]孙家昶,张林波,迟学斌,等.网络并行计算与分布式编程环境[M].北京:科学出版社,1996:41-57
    [134] MSC.Software. MSC.Marc2005r2(Volume D): User Bubroutines and SpecialRoutines[Z]. MSC.Software Corporation,2005:401-406
    [135]赵宪明,吴迪,吕炎.筒形件强力旋压变形机理的有限元分析[J].塑性工程学报,1998,5(3):61-65
    [136]彭加耕.薄壁锥形件一次拉深成形极限条件研究[D].秦皇岛:燕山大学,2005
    [137] Quigley E., Monaghan J.. Metal forming: an analysis of spinning process [J]. Journal ofMaterials Processing Technology,2000,103(1):114-119
    [138] Kang Da-chang, Gao Xi-cheng, Meng Xiao-feng, et al. Study on deformation mode ofconventional spinning of plates[J]. Journal of Materials Processing Technology,1999,91(3):226-230
    [139]叶山益次郎.旋压加工原理及工艺讲义[M].北京有色金属研究总院,1983:25-26
    [140]贾文.“偏离正弦率”影响剪旋过程的机制[J].航空制造技术,1985,(12):19,21-24
    [141]黄长艺,卢文祥,熊诗波.机械工程测量与试验技术[M].北京:机械工业出版社,2000:232-235
    [142]冯万林,夏琴香,程秀全,等.旋压力的测试方法及试验研究[J].锻压装备与制造技术,2005,(4):88-92
    [143] Ammar A.A., Jallouli M., Bouaziz Z.. Design and development of a dynamometer forthe simulation of the cutting forces in milling[J]. Int. J. Automation and Control.,2011,5(1):44-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700