用户名: 密码: 验证码:
多子阵波束域高分辨水声成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效地开展海洋资源开发、海洋工程以及相关领域研究的前提是获取可靠的水下场景信息,而反应这些信息最直观的手段就是水声图像。因此,具有三维地形测量能力的多波束测深仪和二维地貌成像能力的侧扫声纳成为上述领域使用最为广泛的海洋勘查仪器,而国际上这两类仪器又都朝着相互融合能够同时提供地形和地貌信息的方向发展。本文以国家863计划海洋技术领域目标导引类课题“浅水宽覆盖多波束测深系统”和黑龙江省中小企业创新基金资助项目“高分辨浅水多波束测深系统”等科研项目为背景,在多波束测深仪的理论基础上研制具有水下场景二维/三维成像能力的高分辨海底地形地貌探测系统,并对其相关技术展开研究,因此论文的研究内容可以分为理论研究和工程实践两大部分。理论研究部分主要包括多子阵波束域海底探测算法实现对海底散射回波信号的方位-强度联合估计以及在海底地形地貌探测中的适用性研究和基于MRF模型的声纳图像分割方法的研究。工程实践部分主要包括:多子阵波束域海底探测算法实时实现以及高分辨海底地形地貌探测系统的设计、实现和试验验证。
     首先,在对水下声学图像处理相关领域的研究进展分析的基础上,探讨了实现高分辨地形地貌探测所需解决的关键问题。随后针对海底散射回波信号的方位-强度联合估计问题,引入两种新的信号处理方法,多子阵波束域CAATI(Multiple Sub-array Beamspace-CAATI,简称MSB-CAATI)算法和多子阵波束域求根MUSIC (Multiple Sub-array Beamspace-Root-MUSIC,简称MSB-RMU)。通过计算机仿真研究了两种算法在低信噪比和小快拍数情况下的方位和强度估计性能,并利用根据IHO测量规范建立水下场景和实际海试数据验证算法的实用性。
     在声纳图像分割方面,针对传统的基于Markov随机场模型的图像分割方法存在模型参数估计不准确、求解速度慢、且容易陷入局部最优解等缺陷,提出一种固定参数的简化模型,通过对合成的纹理图像和实际声纳图像分割对算法的可行性和分割效果进行了理论分析。
     在工程实践方面,针对直接影响算法并行实现效率的两个因素,即并行处理平台的结构和算法的可并行性,展开研究。在并行处理平台结构方面,在对k元n立方网络研究的基础上提出了一种适用性更广的广义K元n立方网络,并对新网络的拓扑性质和路由算法进行研究。在算法可并行性方面,通过对MSB-RMU算法运算量的分析确定平均协方差矩阵的特征分解是运算量相对集中的部分,为此研究了基于并行Jacobi方法的特征值分解方法以及在FPGA上的实现方案,设计并实现了一套基于高速DSP和FPGA的并行信号处理系统。
     最后完成了高分辨海底地形地貌探测系统的工程实现,并对系统性能和各项技术指标进行了全面验证试验和考核。
The precondition of the efficient research in ocean exploring resource, ocean engineering and other correlated fields is acquiring the credible information of underwater scene. As the most obvious measure to reflecting the information is underwater acoustic image, the multibeam bathymetry system with the capability of 3-D imaging and the side scan sonar with the capability of 2-D imaging become the ocean survey instruments used in above fields most broadly. And internationally the two kinds of instruments are all developing toward the direction that they can combine and provide information of terrain and physiognomy at the same time. The background of this paper is the project supported by National High Technology Research and Development Program of China, "Shallow Water Wide-coverage Multibeam Bathymetry System" and the project supported by Small and Medium-sized Enterprise Innovation Funds of Heilongjiang province, "High Resolution Shallow Water Multibeam Bathymetry System", etc. The purpose of this paper is to develop a set of high resolution seafloor terrain and physiognomy detection system that has the ability of underwater scene 2-D/3-D imaging on the basis of the theory of multibeam bathymetry system, and to research the correlated techniques. So the paper can be divided into two parts that theory research and engineering realization. The theory research includes:estimation of direction of arrival (DOA) and intensity of arrival (IOA) of seabed backscattering using multiple sub-array beam-space seafloor detection algorithm and the usability of the algorithm in the seafloor terrain and physiognomy detection system and sonar image segmentation algorithm based on Markov random field model. The engineering realization includes:the real-time realization of multiple sub-array beam-space seafloor detection algorithm and the design, realization and test proof of high resolution seafloor bathymetry and physiognomy detection system.
     Firstly, based on analysis of researching course of the correlated fields of underwater acoustic image processing, the key problems, which need to be resolved when realizing the high resolution seafloor terrain and physiognomy detection system, are discussed. And then to solve the problem of the estimation of DOA and IOA of the seabed backscattering signal, two kinds of new algorithm of signal processing, Multiple Sub-array Beam-space CAATI and Multiple Sub-array Beam-space Root-MUSIC, have been proposed. The estimation performance of two kinds of algorithm in the case of low SNR and few snaps has also been studied by computer simulation. And the processing of the sea test data and the simulation underwater scene data according to the IHO standard confirms the usability of the algorithm further more.
     In the part of sonar image processing, to the problem of traditional image segmentation algorithm based on Markov random field model, such as inaccurate model parameter, long resolving time and easy to trap in local optimum solution etc, a simplified model with fixed parameters is proposed. By applying the algorithm to the synthesized texture image and actual side scan sonar image, the practicability and segmentation performance of the algorithm have been analyzed theoretically.
     At the aspect of the architecture of the parallel processing platform, a new direct interconnect networks topology, generalized K-ary n-cubes networks based on k-ary n-cubes networks is proposed and the topological properties and routing algorithms have been researched too. After analyzing the algorithm computation load, a theory has been known that the Eigenvalue decomposition (EVD) of average covariance matrix is the part in which most computation load concentrates. So the method of EVD based on parallel Jacobi and the realization on FPGA have been studied. A parallel signal process system based on FPGA and DSP has also been designed and actualized.
     At last, the engineering realization and performance testing of high resolution seafloor terrain and physiognomy detection system have been completed.
引文
[1]Murino V and Trucco A.Three-dimensional image generation and processing in underwater acoustic vision. Proceedings of the IEEE. Dec.2000,88(12): 1903-1948P
    [2]Sutton J L.Underwater acoustic imaging.Proceedings of the IEEE. April 1979, 67(4):554-566P
    [3]张小平.高分辨率多波束成像声呐关键技术研究.哈尔滨工程大学博士学位论文.2005
    [4]Glenn M F. Introducing an Operational Multibeam Array Sonar. Int. Hydr.Rev. 1961,38(2):25-32P
    [5]李海森.多波束条带海底地形测绘系统研究.哈尔滨工程大学博士学位论文.1999
    [6]周天.超宽覆盖海底地形地貌高分辨探测技术研究.哈尔滨工程大学博士学位论文.2005
    [7]李蕾.基于FFT波束形成的高精度测深方法研究.哈尔滨工程大学说是学位论文.2000
    [8]陈嵩锐.便携式多波束测深仪多通道数据采集与处理系统.哈尔滨工程大学硕士学位论文,2005
    [9]陈友元.便携式多波束测深仪实时测控与数据可视技术研究.哈尔滨工程大学硕士学位论文,2005
    [10]Somers M L and Stubbs A R. Sidescan sonar. IEEE PROCEEDINGS. JUNE 1984,131(3),Part F
    [11]Wright A S C. Deep towed sidescan sonars. OCEANS'93.'Engineer-ing in Harmony with Ocean'. Proceedings 18-21 Oct.1993(3):Ⅲ478-Ⅲ483
    [12]Denbigh P N. Swath bathymetry:principles of operation and an analysis of errors. IEEE Journal of Oceanic Engineering.1989,14(4):289-298
    [13]Masnadi-Shirazi M A, De Moustier C,Cervenka P and Zisk S H. Differential phase estimation with the SeaMARC II bathymetric sidescan sonar system.IEEE Jounal of Oceanic Engineering.1992,17(3):239-251P
    [14]Matsumuoto H. Characteristics of SeaMARC II phase data. IEEE Journal of Oceanic Engineering.1999,15(4):350-360P
    [15]朱维庆,张彬铨,魏建江等.双侧侧扫声纳.海洋技术.1982,(01)
    [16]魏建江,尹东源,刘桂兰等.CS-1型侧扫声纳系统.1997,16(1)
    [17]许枫,马维成.探雷用侧扫声呐的研制.声学技术.1999,18(A11)
    [18]朱维庆,刘晓东,张东升等.高分辨率测深侧扫声纳.海洋技术.2005,24(4)
    [19]Weiqing Zhu, Min Zhu, Xiaodong Liu et al. High resolution bathymetric sidescan sonar. Oceans '02 MTS/IEEE.29-31 Oct.2002(1):223-227P
    [20]孙大军,田坦.合成孔径声呐技术研究(综述).哈尔滨工程大学学报.2000,21(1)
    [21]Gough P T and Hawkins D W. A Short History of Synthetic Aperture Sonar. International Geoscience and Remote Sensing Symposium (IGARSS). 1998(2):618-620P
    [22]Sherwin C W. Some early development in synthetic aperture radar system. IRE.1962,6(2):111-115P
    [23]Waksh G M. Final report, feasibility study:synthetic aperture array techniques for high resolution ocean bottom mapping[R]. New York: AD851498,1967
    [24]张春华,刘纪元.合成孔径声纳成像及其研究进展.物理.2006,35(5)
    [25]Chatillon J, Adams A E, Lawlor M A and Zakharia M E. SAMI:A Low-Frequency Prototype for Mapping and Imaging of the Seabed by Means of Synthetic Aperture. IEEE Journal of Oceanic Engineering. January 1999,24(1):4-15P
    [26]Dominique Brechet.IMBAT3000:A New Deep Towed Fish System for the Offshore Oil Industry. Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference, Blest, France, May 30-June 4, 1999
    [27]Nelson M A. DARPA Synthetic Aperture Sonar. Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop. May 1998(1):
    [28]Jinsong Tang, Chunhua Zhang, Shuqiu Li et al. Progress of synthe-tic aperture sonar in China. Acoustical Science and Technology.2004, 25(1):95-99P
    [29]田杰.863合成孔径声纳项目通过验收.应用声学.2006,25(4)
    [30]Loggins C D. A comparison of forward-looking sonar design alterna-tives. OCEANS,2001.MTS/IEEE Conference and Exhibition.5-8 Nov.2001(3): 1536-1545P
    [31]聂良春.多波束相位差法海底TOA估计理论分析及实用性研究.哈尔滨工程大学硕士学位论文.2003
    [32]Pail C. Etter著,蔡志明等译.水声建模与仿真.电子工业出版社,2005
    [33]B.B.奥里雪夫斯基著.海洋混响的统计特性.科学出版社,1977
    [34]Kenneth M Houston. Three-dimensional acoustic imaging using micromechanical hydrophones. Oceans'95.1995(2):1174-1182P
    [35]Edward O B. Application of Thin, Acoustic Lenses in a 32-Beam, Dual-Frequency, Diver-Held Sonar. OCEANS'96.MTS/IEEE.'Prospects for the 21st Century'.Conference Proceedings.23-26 Sept.1996(2):767-772P
    [36]Belcher E O. Thin, acoustic lenses applied in 64-beam,750-kHz diver-held sonar. OCEANS'97. MTS/IEEE Conference Proceedings.6-9 Oct.1997(1): 451-456P
    [37]Belcher E O, Lynn D C, Dinh H Q and Laughlin T J. Beamforming and imaging with acoustic lenses in small, high-frequency sonars. OCEANS'99 MTS/IEEE. Riding the Crest into the 21st Century.13-16 PSept.1999(3): 1495-1499P
    [38]Belcher E, Hanot W, Burch J. Dual-Rfequency Identification Sonar (DIDSON).Underwater Technology,2002.Proceesings of the 2002 Internat-ional Symposium on.16-19 April 2002:187-192P
    [39]Negahdaripour S. Calibration of DIDSON forward-scan acoustic video camera. OCEANS 2005. Proceedings of MTS/IEEE.17-23 Sept.2005(2): 1287-1294P
    [40]谢良富,张鸿海.球面声透镜的研磨加工.机械工艺师.1993(8):21-22页
    [41]余雅松,王锦柏.柱面型声透镜设计及验证.声学技术.2008,27(2):150-155页
    [42]卞红雨,桑恩方,纪祥春,赵景义.声透镜波束形成技术仿真研究.哈尔滨工程大学学报.2004,25(1):43-45页
    [43]李颂文.声透镜波束形成技术.声学技术.2007,26(5):771-774页
    [44]王晓峰,桑恩方,卞红雨,归美.96通道图像声纳测试系统的设计与实现.电子测量技术.2008,31(9):54-57页
    [45]吴德明.一种用于声线修正的迭代法.声学学报.1992,17(2):104-110页
    [46]丁继胜,周兴华,唐秋华,刘忠臣,陈义兰.基于等效声速剖面法的多波束测深系统声线折射改正技术.海洋测绘.2004,24(6):27-29页
    [47]刘胜旋,屈小娟,高佩兰.声速剖面对多波束测深影响的新认识.海洋测绘.2008,28(3):31-34页
    [48]赵建虎.多波束深度及图像数据处理方法研究.武汉大学博士学位论文.2002
    [49]Okino M and Higashi Y. Measurement of seabed topography by multibeam sonar using CFFT.IEEE J. Oceanic Eng.Oct.1986(OE-11)
    [50]Sauter D and Parson L. Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images. IEEE J. Oceanic Eng.Oct,1994,19(4):563-576 P
    [51]Alexandrou D and Moustier C D. Adaptive noise canceling applied to sea beam sidelobe interference rejection. IEEE J. Oceanic Eng. Apr.1988,13(2): 70-76P
    [52]Malinverno A, Edwards M H and Ryan W B F. Processing of SeaMARC swath sonar data. IEEE J.Oceanic Eng. Jan.1990,15(1):14-23P
    [53]Sauter D and Parson L. Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images. IEEE J. Oceanic Eng.Oct.1994,19(4):563-576P
    [54]JING Xiaojun, YU Nong, SHANG Yong. Image Filtering Based on Mathematical Morphology and Visual Perception Principle. Chinese of Journal Electronics.2004,13(4):612-616P
    [55]任淑艳,浦昭邦,庄志涛.基于模糊神经网络的图像滤波算法.仪器仪表学报.2006(1)
    [56]刘权,吴陈.基于小波变换的边缘保留图像滤波法研究.江苏科技大学学报:自然科学版.2007,21(4):46-49页
    [57]田晓东,刘忠.基于属性直方图的迭代自适应图像处理算法.声学与电子工程.2006(1)
    [58]田晓东.声纳图像滤波方法的比较分析.声学与电子工程.2007(1)
    [59]Gross P and Andrew P. The application of sector scanning sonar and multibeam imaging sonar for underwater security. Oceans 2007. Sept.29-Oct.4 2007:1-7P
    [60]Petillot Y, Tena Ruiz I and Lane D M. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. Oceanic Engineering, IEEE Journal of 2001,26(2):240-251P
    [61]Dugelay S, Graffigne C and Augustin J M. Segmentation of multibeam acoustic imagery in the exploration of the deep sea bottom.in 13th Int.Conf. Pattern Recognition, Vienna, Austria, Aug.1996:437-445P
    [62]Collet C, Thourel P, Perez P, Bouthemy P. Hierarchical MRF modeling for sonar picture segmentation. Image Processing,1996. Proceedings., Interna-tional Conference on.Sept.1996(3):979-982P
    [63]Mignotte M, Collet C, Perez P, Bouthemy P. Unsupervised Markovian segmentation of sonar images. Acoustics, Speech, and Signal Processing, 1997. ICASSP-97.,1997 IEEE International Conference on.21-24 April 1997(4):2781-2784P
    [64]Mignotte M, Collet C, Perez P and Bouthemy P. Sonar image segmentation using an unsupervised hierarchical MRF model. Image Processing, IEEE Transactions on.July 2000,9(7):1216-1231P
    [65]Xiaodong Tian, Zhong Liu,Lu Li.Study of Sonar Image Segmentation Based on Markov Random Field. Intelligent Control and Automation 2006.WCICA 2006.The Sixth World Congress on.2006(2):9618-9622P
    [66]Jean-Christophe CEXUS, Abdel-Ouahab BOUDRAA.Multi-channel Model for Sonar Image Segmentation. Signal Processing and Its Applica-tions, 2003.Proceedings.7th International Symposium on.July 2003
    [67]GUO Hai-tao,TIAN Tan,ZHANG Chun-tian.The Sonar Image Segmentation for Multi-Regions Based on Fuzzy Clustering. OCEAN TECHNOLOGY. Sept.2004,23(3)
    [68]SANG Enfang,LIU Zhuofu. Underwater acoustic image segmentation based on deformable template. ACTA ACUSICA.
    [69]Attali D,Chanussot J,Areste R,Guyonic S.3D snakes for the segmentation of buried mines in 3D acoustic images. Oceans 2005-Europe.20-23 June 2005(1):442-446P
    [70]Murino V and Trucco A. A geometric approach to the surface fitting problem in underwater 3-D acoustic images:Meas. Sci. Technol. Dec.1999(10):1135-1141P
    [71]Sutton Jeffreyetal. Enhaneing mine using nested neural net works. Proceed-ings of SPIE-The International Society for Optical Engineering.1999,37(1): 570-577P
    [72]Foresti G L, Gentili S. A vision based system for object detection in underwater images. International Journal of Pattern Recognition and Artificial Intelligence.2001,14(2):167-188P
    [73]Calder B R, Linnett L M, Carmichael D R. Bayesian approach to object detection in sidescan sonar. IEE Procedings:Vision, Image and Signal Processing.1998,145(3):221-228P
    [74]Vittorion M, Andrea T. Confidence-based approach to enhancing underwater acoustic image formation. IEEE Trans. On Image Processing.1999,8(2): 270-285P
    [75]Linnett L M et al.Texture classification using a spatial-point process model.IEEE Proceedings:Vision, Image and Signal Processing.1995,142(1): 1-6P
    [76]Murino V. Acoustic image reconstruction by Markov random fields. Electroics Letters.1996,32(7):697-698P
    [77]Daniel S et al. Side-scan sonar image matching. IEEE Journal of Oceanic Engineering.1998,23(3):245-259P
    [78]Slater R, Robinson C, Lingsch S. Object detection and discrimination in side-scan sonar by means of intensity contouring. Proceedings of SPIE-The International Society for Optical Engineering.1999,10(1):496-503P
    [79]刘卓夫.基于图像内容的水下目标识别技术研究.哈尔滨工程大学博士学位论文.2003
    [80]Stewart W K. Visualization resources and strategies for remote subsea exploration.in Scientific Visualization of Physical Phen-omena, N.M. Patrikalakis, Ed.Berlin, Germany:Springer,1991:85-108P
    [81]Kraeutner P H. Small aperture acoustic imaging using model based array signal processing:[dissertation]. Burnaby, B.C., Canada:Simon Fraser University,1998
    [82]Tian ZHOU, Haisen LI, Zisheng LI, Yanyi YUAN. Multi-beam bathymetry system using MSB-MUSIC algorithm. The Proceedings of the 9th Western Pacific Acoustics Conference (WESPAC IX 2006), Seoul, Korea, June 2006: Session uw-2-2,No.307
    [83]Krim H and Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magazine.1996,13(4):67-94P
    [84]Burg J P. Maximum entropy spectral analysis. Proc. Of the 37th meeting of the Annual Int. SEG Meeting, Oklahoma City, OK,1967
    [85]Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. Of IEEE.1969,57(8):1408-1418P
    [86]Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. on AES,1983,19(1):134-139P
    [87]Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation:a signal subspace approach.IEEE Trans. on AES,1989,25(1):31-46P
    [88]Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. on AP,1986,34(3):276-280P
    [89]Rao B D,Hari K V S. Performance analysis of Root-MUSIG. IEEE Trans. on ASSP,1989,37(12):1939-1949P
    [90]Kung S Y, Arun K S, Rao DVB. State space and SVD based approximation methods for the harmonic retrieval problem. J. Opt. Soc. Amer.1983,73(12): 1799-1811P
    [91]Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. On ASSP,1986,34(10): 1340-1342P
    [92]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on ASSP,1989,37(7):984-995
    [93]Stoica P, Nehorai A. MUSIC, Maximum likelihood, and Cramer-Rao bound. In Proc, ICASSP,1988:2296-2299P
    [94]Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources. IEEE trans. on ASSP,1988,36(7): 965-979P
    [95]Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequenc-ies estimation methods compared to the Cramer-Rao bounds. IEEE Trans. on ASSP,1989,37(11):1703-1720P
    [96]Dekeyzer R T, Byme J S, Case J D, Cliford B A and Simmons W S. A comparison of acoustic imagery of sea floor features using a towed side scan sonar and a multi-beam echo sounder. IEEE Oceans'02.2002:1203-1211P
    [97]朱琦.多波束条带测深幅度检测方法研究.哈尔滨工程大学硕士学位论 文,1999
    [98]Farr H K. Multibeam bathymetric sonar:SeaBeam and Hydrochart. Marine Geodesy,1980,4(2):P77-93P
    [99]Morega S D and Sankar. Digital signal processing for precision wide swath bathymetry, IEEE J. Oceanic. Eng.,1984,OE-9(2):73-84P
    [100]Satrano J H., Smith LC, and Ambrose J T. Signal processing for wide swath bathymetric sonars. Proc. IEEE Oceans'91.1,1991:558-561P
    [101]Hammerstad E, Pohner F, Parchiotf, and Bennett J.Filed testing of a new deep water multibeam echo-sonar. Proc. IEEE Oceans'91.2,1991:743-749P
    [102]周天,李海森,朱志德,袁延艺.多波束测深系统中多子阵检测法的改进及其性能分析.声学技术,2005,24(3)
    [103]周天,朱志德,李海森.多子阵幅度-相位联合检测法在多波束测深系统中的应用.海洋测绘.2004,24(2)
    [104]Beaudoin J D, Hughes Clarke J E, Van Den Ameele E J, Gardner J V. Geometric and radiometric correction of multibeam backscatter drived from RESON 8101 systems.2002:1-25P
    [105]Ouibrahim H. Prony, Pisarenko, and the Matrix Pencil:A Unified Presen-tation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989,37:133-134P
    [106]黎子盛.多子阵波束域海底地形地貌高分辨探测技术.哈尔滨工程大学硕士学位论文.2007
    [107]Rao B D, Arun K S, Model based processing of signals:A state space approach. The Proceedings of the IEEE,1992 80(2):283-309P
    [108]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社,清华大学出版社,2004,
    [109]蒋毅,古天祥.基于有限域搜索的MUSIC法快速频率估计.仪器仪表学报.2006,27(11)
    [110]刘君,廖桂生,王洪祥.信源数目过估计和欠估计下MUSIC算法分析.现代雷达.2004,26(2)
    [111]张志军,侯志宾,张浩.信源数目过估计下相干信号的修正MUSIC算法分析.弹箭与制导学报.2007,27(4)
    [112]周天,李海森,么彬.近场源定位算法在水声主动成像系统中的应用.武汉理工大学学报.2008,30(5)
    [113]田坦等.声呐技术.哈尔滨:哈尔滨工程大学出版社,2000
    [114]Ronhovde A, Yang L, Taxt T, Holm S. High-resolution beamforming for multibeam echo sounders using raw EM3000 data. The Proceedings of OCEANS'99, Washington, U.S.A.,1999:923-930P
    [115]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社.2002
    [116]徐新盛,张燕,李海森,杨士莪.海底混响仿真研究.声学学报.1998,23(2)
    [117]George O and Bah R. Simulation of backscattering of high frequency sound from complex objects and sand sea-bottom. IEEE J. Oceanic Eng.1995(20): 119-130P
    [118]Henderson T L and Lacker S G. Seafloor profiling by a wideband sonar: Simulation, frequency-response, optimization, and results of a brief sea test. IEEE J. Oceanic Eng.,1989(14):94-107P
    [119]汤渭霖.声纳目标回波的亮点模型.声学学报.1994,19(2):92-100P
    [120]Funk D E and Williams K L.A physically motivated simulation technique for high-frequency forward scattering derived using specular point theory. J. Acoust. Soc. Amer.,1992,91(5):2606-2614P
    [121]Kinney W A, Clay C S and Sandness G A. Scattering from a corrugated surface:Comparison between experiment, Helmholtz-Kirchhoff theory, and the facet-ensemble method. J. Acoust. Soc. Amer.1983,73(1):183-194
    [122]汤渭霖.用物理声学方法计算非硬表面的声散射.声学学报.1993,18(1):45-53页
    [123]汤渭霖.用物理声学方法计算界面附近目标的回波.声学学报.1999,24(1):1-5页
    [124]International Hydrographic Bureau. IHO STANDARDS FOR HYDROGR-A PHIC SURVEYS.5th Edition, February 2008
    [125]Moustier D C and Matsumoto H.Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar system. Marine Geography. (15):27-42P
    [126]孙革.多波束测深系统声速校正方法研究及其应用.中国海洋大学博士生学位论文.2007
    [127]关浩.水下沉底小目标探测与成像研究.哈尔滨工程大学博士论文,1997
    [128]章毓晋.图像分割.北京:科学出版社,2001
    [129]Peli T, Malbh D. A study of edge determination algorithms. CGIP,1982(20): 1-20P
    [130]张小琳.图像边缘检测技术综述.高能量密度物理.2007,3,(1):37-40
    [131]Fu S K, Mu J K.A survey on image segmentation. Pattern Recognition. 1981(13):3-16P
    [132]李政国.基于区域生长法的高空间分辨率遥感图像分割与实现.广西大学硕士学位论文.2008.6
    [133]刘晨晨.数学形态学图像处理算法应用研究.哈尔滨工程大学硕士学位论文.2003
    [134]翟辉琴.基于数学形态学的摇杆影响面状目标提取研究.解放军信息工程大学硕士学位论文.2005
    [135]王保平.基于模糊技术的图像处理方法研究.西安电子科技大学博士学位论文.2004
    [136]刘保利.基于遗传算法的SAR图像多尺度分割.计算机应用.2008,4.28(4):990-992页
    [137]张建伟,罗剑,夏德深.一种基于遗传算法的双T-Snake模型图像分割方法.中国图象图形学报.2005,1.10(1):38-42页
    [138]史春奇,施智平,刘曦,忠植.基于自组织动态神经网络的图像分割.计算机研究与发展.2009,46(1):23-30页
    [139]项海林,贾建,焦李成.基于Contourlet域树状系数的自组织神经网络图像分割.系统工程与电子技术.2008,5.30(5):843-846页
    [140]余鹏,封举富.基于多分辨率小波和高斯混合模型的纹理图像分割.北 京大学学报(自然科学版).2005,5.41(3):338-343页
    [141]钱芸,张英杰.水平集的图像分割方法综述.中国图象图形学报.2008,1.13(1):7-13页
    [142]Runmei Hu, Moustafa M.Fahmy. Texture Segmentation Based on a Hierarchical Markov Random Field Model. Circuits and Systems,1991. IEEE International Sympoisum on. June 1991
    [143]Hideki Noda, Mehdi N.Shirazi, Eiji Kawaguchi. A MRF Model-Based Method for Unsupervised Textured Image Segmentation. Pattern Recog-nition,1996, Proceeding of the 13th International Conference on.
    [144]郭海涛,田坦,张春田.基于模糊聚类的声呐图像多区域分割.海洋技术.2004,9.23(3):39-40页
    [145]桑恩方,刘卓夫.基于可变形模板的水下声图像分割.声学学报.2005,7.30(4):362-366页
    [146]Murino V, Trucco A. Markov-based methodology for restoration of under-water acoustic images. Int. J. Imaging Syst. Technol.1997,8(4)
    [147]Stan Z L. Markov Random Field Modeling in Computer Vision. Berlin: pringer-Verlag,1995
    [148]Hammersley J M and Handscomb D C. Monte Carlo Methods. Wiley, New York.1964
    [149]Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B,1974(36):192-236P
    [150]Moussouris J. Gibbs and Markov systems with constraints. Journal of statistical physics.1974,10:11-33P
    [151]Kindermann R. and Snell J L. Markov Random Fields and Their Applica-tions. American Mathematical Society,Providence,R.I.1980
    [152]Santhana Krishnamachari. Hierarchical Markov Random Field Models for Image Analysis. Doctor degree paper of The University of Maryland,1995
    [153]Kirkpatrick S, Gelatt C D and Vecchi M P. Optimization by Simulated Annealing. SCIENCE.1983:671-680P
    [154]Marroquin J, Mitter S and Poggio T. Probabilistic Solution of ill-posed Problems in Computation Vision. Journal of American Statistical Association.1987, (82):76-89P
    [155]Besag J. On the Statistical Analysis of Dirty Picture. Journal of the Royal Statistical Society.1986, (48):259-302P
    [156]Derin H and Elliott H. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(1):39-55P
    [157]Runmei H, Moustafa M F. Texture Segmentation Based on a Hierarchical Markov Random Field Model. Circuits and Systems,1991. IEEE International Sympoisum on. June 1991
    [158]Hideki Noda, Mehdi N.Shirazi, Eiji Kawaguchi. A MRF Model-Based Method for Unsupervised Textured Image Segmentation. Pattern Recog-nition,1996,Proceeding of the 13 th International Conference on.
    [159]Jose Duato, Sudhakar Yalamanchili, Lionel Ni著,谢伦国等译.并行计算机互联网络技术——一种工程方法.电子工业出版社,2004
    [160]Kai Hwang,徐志伟著,陆鑫达等译.可扩展并行计算:技术、结构与编程.机械工业出版社,2001
    [161]Dally W J. Performance analysis of k-ary n-cube interconnection networks. IEEE Transaction on Computers.1990,6.C-39(6):775-785P
    [162]Perparata F P and Vuillemin J. The cube-connected cycles:A versatile network for parallel computation. Communication of the AMC.1981,5.24 (5):300-309P
    [163]Samatham M R and Pradhan D K. The de Bruijn multiprocessor network:A versatile parallel processing and sorting network for LVSI. IEEE Transaction on Computation, Packaging and Manufacturing Technologies. 1994,7.17(2):249-256P
    [164]Akers S B and Krishnamurthy B. A group-theoretic model for symmetric interconnection networks. IEEE Transactions on Computers.1989,5. C-38 (4):555-566P
    [165]Lenoski D et al. The Stanford DASH multiprocessor. IEEE Computer. 1992,3.25(2):63-79P
    [166]Bella Bose, Bob Broeg and Younggeun Kwon et al. Lee Distance and Topological Properties of k-ary n-cubes. IEEE Transaction on Computers. 1995,8.44(8):1021-1030P
    [167]H.SarBazi-Azad, Ould-Khaoua and L. M. Mackenzie et al. On Some Prope-rties of k-Ary n-Cubes.Parallel and Distributed Systems,2001. ICPADS 2001. Proceedings. Eighth International Conference on,2001,6:517-524P
    [168]Khaled Day and Abdel-Elah AI-Ayyoub. The Cross Product of Interconnec-tion Networks. IEEE Transaction on Parallel and Distributed Systems. 1997,2.8(2):109-118 P
    [169]张丽君,金绥更.向量算法与并行算法.国防工业出版社,1993
    [170]Minseok Kim, Koichi Ichige, Hiroyuki Arai.Design of Jacobi EVD processor based on CORDIC for DOA estimation with MUSIC algorithm. Personal, Indoor and Mobile Radio Communications,2002.The 13th IEEE International Symposium on, Lisboa, Portugal,2002:120-124P
    [171]Steffen Paul, Jurgen Gotze, Matthias Sauer.Error Analysis of ORDIC-Based Jacobi Algorithms. IEEE Transaction on Computer.1995,44(7):947-951P
    [172]李小波,薛王伟,孙志勇.一种求解复Hermite矩阵特征值的方法.数据采集与处理,2005,20(4):403-40页
    [173]Weng Ningning, Li Haisen, Zhou Tian, Yao Bin. Tunnel effect in multi-beam bathymetry sonar and its canceling with error feedback lattice recursive least square algorithm. OCEANS 2008 MTS/IEEE Kobe Techno-Ocean, 2008.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700