用户名: 密码: 验证码:
具备智能特征的开放式数控系统构建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代制造领域,数控系统的广泛应用极大推动了制造技术的进步。随着市场需求的不断提升以及相关支撑技术的发展,数控系统正在经历一次以开放性与功能复合化为突出特征的技术变革,由此必将引起系统体系架构与控制策略的变革性发展。针对于此,本文在数控系统开放式体系、结构建模、动态分析以及系统智能策略四个方面进行了深入探讨。
     基于对数控系统功能模块的综合规划,提出了一种四层结构的数控系统开放体系参考模型。给出了一种层级链式模块注册策略及注册单元体的形式化结构定义,可实现系统局部结构调整。完成了基于功能组件的用户专有技术配置机制的分析。分析表明该参考模型可支持三级程度的系统配置。
     提出了基于面向对象技术的数控系统建模方案及其标准化建模流程。在对系统用例深入分析的基础上,重点建立了系统的核心用例包—运动控制包对应的子系统的类图模型。基于此对类对象行为进行了分析,构建了通道伺服控制序列图及通道状态图模型,进而通过活动图对系统操作逻辑进行了建模分析。
     引入网论进行数控系统运行时动态性能分析。提出了决策库所的形式化定义以解决环境信息外延不完整带来的冲突问题,进而完成了对系统总体结构的仿真验证。引入形式化数学分析方法对DNC过程进行了分析。提出了带抑制弧赋时Petri网的等效模式以降低模型维度与分析复杂度,基于此进行了实例仿真分析并给出了相应的系统结构调整规划。基于着色Petri理论对多轴伺服控制的分析模型进行了压缩,表明该方法可有效精简具有相似结构的系统分析模型。
     对系统智能策略的信息作用范围及加工作业周期内各阶段智能策略的实施目标进行了探讨,提出了系统运行时分类智能控制策略。基于自适应遗传算法给出了加工参数预优化方案及算例。提出了基于电流与电压综合监测的加工过程模糊自适应控制方案并建立了控制模型,进而引入径向基网络进行了加工自适应控制过程的仿真分析。结果表明所建立的模糊自适应控制系统能够以较高的辨识与控制精度实现数控加工的智能自适应控制。
     基于上述研究成果,已开发出五联动数控系统功能样机,并完成了与五轴加工中心的配套工作,初步实现了对相关理论成果的实例化验证。
In the field of modern manufacturing, promotion of manufacturing technology is significantly encouraged by the wide application of CNC system. With the increase of market requirements and the development of relevant supporting technologies, CNC system is now undergoing a technological innovation that is characterized mostly by openness and functional composition, which will certainly result in the innovation of structure and control strategy of the CNC system. According to this situation, this dissertation makes deep research on open architecture, structure modeling, dynamic analysis and intelligent strategy.
     Based on the comprehensive planning of function module of CNC system, a four-layer open architecture reference model is proposed. A hierarchical chain-typed registration strategy of function module is given, and the definition of registration unit structure is presented. With this strategy, local structure of the CNC system can be adjusted. User-defined configuration of specialized technology can be archived by the presentation of function component. Further analysis shows that the reference model supports three deferent degrees of system configuration.
     A modeling strategy of the CNC system based on object-orient technology is proposed, and a standard modeling flow is discussed. On the basis of deep research on use-case of the system, a class diagram model of the kernel use-case package, in other words, the motion control package of the system is built. Behavior of each class is discussed, on the basis of which, a sequence diagram of channel servo-control system under auto-mode is built, and a state machine diagram is presented. Finally, operation logic of the system is analyzed with an activity diagram.
     Net theory is introduced to the analysis of dynamic performance of the CNC system. A decision place is defined to get rid of conflicts caused by the imperfection of extension of environment information. With this definition, simulation is carried out to verify the general structure of the system. Analysis method based on formalized mathematics is introduced to analyze DNC process. An equal transformation of timed transition Petri net with inhibitor arc is proposed to descend its dimension and to decrease analyzing difficulty. On the basis of this, a simulation example is carried out and a strategy of structure adjusting is given according to analysis conclusions. Further simulation illustrates the effect of the adjustment. Theory of colored Petri net is introduced to condense the Petri net model of multi-axis servo control progress. Analysis shows that with this technology, the system’s Petri net models with similar structure units can be simplified effectively.
     By discussing the influencing range of intelligent strategy and control target of each stage of machining cycle, a runtime intelligent strategy based on information classification is proposed. Adaptive GA is introduced to find optimization cutting parameters at the earlier stage of machining cycle. A fuzzy adaptive machining control strategy based on the synthetic monitoring on current and voltage of spindle motor is put forward, and the relevant control model is given. On the basis of that fuzzy control model, RBF neural network is introduced to build a simulation model of the adaptive control system. Simulation analysis proves that the fuzzy adaptive control system is able to realize intelligent control of NC machining with higher identification as well as control precision.
     A CNC system prototype with five-axis simultaneous control power is developed based on the foregoing research achievements, and is integrated to a five-axis machining center, which presents a preliminary practical verification of relevant theoretical achievements.
引文
[1]韦东远,龚钟明,张俊祥等,我国先进制造领域的核心技术发展预测,海峡科技与产业,2006,1:3~7
    [2]2008年中国数控机床市场分析及投资咨询报告,中国投资咨询网,http://www.ocn.com.cn/reports/2006344shukongjichuang.htm,2008.01
    [3]2008年机床业和造船业处于持续上升中期,中华机械网,http://news.machine365.com/arts/080130/2/245756.html,2008.01
    [4]世界数控机床产业市场及消费需求,机电商情网,http://www.jd37.com/news/20079/28255.html,2007.09
    [5]陆洲,去年机床工业产值增三成,进口增幅首次下降,中国证券报,2008.1.11
    [6]中国数控机床产业发展状况及当前市场需求分析,中国数控机床网,http://www.c-cnc.com/news/newsfile/2007/7/5/343.shtml,2005.03
    [7]叶佩青,王立平,尹文生,走中国特色的数控技术发展之路,计算机辅助设计与制造, 2000,5:3~6
    [8]胡兴军,屈平,我国数控机床产业发展现状,中国设备工程,2005,2:19~21
    [9]林胜,林春庭,高速数控机床现状和发展趋势,精密制造与自动化,2004, 1:5~8,14
    [10]张承瑞,数控技术发展趋势,现代制造技术与装备,2007,2:3~6
    [11]王哲,田稷,数控技术的发展方向,机械研究与应用,2004,17(3):7~8
    [12]张曙,开放式数控系统的现状与趋势,世界制造技术与装备市场,2007, 1:84~87
    [13]蕊阳,机床工业亟须发展五轴数控技术,机电新产品导报,2003,4:44~46
    [14]周延佑,陈长年,多品种、单件、小批量生产和少品种、大批量生产解决方案的新发展—IMTS 2006观后感之二,制造技术与机床,2007,5:28~36
    [15]孙淑媛,数控技术发展趋势的研究,山西电子技术,2002,6:38~41
    [16]张杨林,我国数控技术的进展及发展趋势,轻工机械,2006,24(1):6~8
    [17]李宏胜,现代数控系统的技术特点与发展趋势,制造业自动化,2002, 24(11):1~2,6
    [18]朱同兴,国内外数控技术发展动向,兵工自动化,2001,20(3):10~12
    [19]陈长年,周延佑,技术新发展与e制造(下)—2002美国芝加哥机床展观后,制造技术与机床,2003,2:5~10
    [20]李培根,张洁,敏捷化智能制造系统的重构与控制,北京:机械工业出版社,2002.12,2
    [21]张俊,魏红根,数控技术发展趋势-智能化数控系统,制造技术与机床,2000,4:7~9
    [22]赵宇龙,数控系统要升级,标准化须先行,机械工人,2007,2:14~16
    [23]彭平生,数控系统现状及其发展趋势,装备机械,2004,3:13~23,28
    [24]étienne Fortin, Jean-Fran?ois Chatelain and Louis Rivest, An innovative software architecture to improve information flow from CAM to CNC, Computers & Industrial Engineering, 2004, 46(4):655~667
    [25]X.W. Xu and S.T. Newman, Making CNC machine tools more open, interoperable and intelligent-a review of the technologies, Computers in Industry, 2006, 57(2):141~152.
    [26]Sanjeev Kumar, Aydin Nassehi, Stephen T. Newman, et al, Process control in CNC manufacturing for discrete components: A STEP-NC compliant framework, Robotics and Computer-Integrated Manufacturing, 2007, 23(6): 667~676
    [27]X.W. Xu, Realization of STEP-NC enabled machining, Robotics and Computer-Integrated Manufacturing, 2006, 22(2):144~153
    [28]Suk-Hwan Suh, Dae-Hyuck Chung, Byeong-Eon Lee, et al, STEP-compliant CNC system for turning: Data model, architecture, and implementation, Computer-Aided Design, 2006, 38(6): 677~688
    [39]X. W. Xu and Q. He, Striving for a total integration of CAD, CAPP, CAM and CNC, Robotics and Computer-Integrated Manufacturing, 2004, 20(2):101~109
    [30]A. Nassehi, S.T. Newman and R.D. Allen, STEP-NC compliant process planning as an enabler for adaptive global manufacturing, Robotics and Computer-Integrated Manufacturing, 2006, 22(5-6):456~467
    [31]Hardwick, Martin, Loffredo, et al, STEP into NC, Manufacturing Engineering, 2001, 06:38~50
    [32]张明亮,解旭辉,李圣怡,开放性数控技术的发展,机电工程,1999, 16(4):65~67
    [33]张明亮,解旭辉,李圣怡,开放式数控体系结构的初步研究,中国机械工程,2001,12(11):1242~1245
    [34]OMAC API Specification Part 1 - General Introduction, http://www.isd.mel.nist.gov/projects/omacapi/, 1996
    [35]周祖德,魏仁逸,陈幼平,开放式控制系统的现状、趋势与对策,中国机械工程,1999,10(10):1090~1093
    [36]徐守祥,开放式控制系统─欧洲数控业的发展策略,制造技术与机床,1997,3:4~6
    [37]Specifications for the industrial implementation of OSACA ,http://www.osaca.org/index.htm,1998
    [38]卞立乾,高起点统筹规划,抓重点集中支持:关于我国数控技术发展战略初探,中国机械工程,1999,10(10):1094~1099
    [39]OSEC-II Project Technical Report, http://www.sml.co.jp/osec/welcome.html, 1998
    [40]Nacsa J, Comparison of three different open architecture controllers, Proceedings of IFAC MIM, 2001, 134~138
    [41]梁宏斌,王永章,李霞,开放式数控系统与标准化,计算机集成制造系统,2004,10(9):1134~1138
    [42]王恒,开放结构控制器的研究及其在活塞加工中的应用:[博士学位论文],山东:山东大学,2003.10
    [43]王世寰,王永章,付云忠,开放式软CNC发展趋势及其体系结构的研究,机床与液压,2004,2:7~9
    [44]梁宏斌,李霞,王永章,基于接口标准的开放式数控系统的研究与实现,计算机集成制造系统,2006,12(9):1483~1489
    [45]Ma Xiongbo, Han Zhenyu, Wang Yongzhang, et al, Development of a PC-based Open Architecture Software-CNC System, Chinese Journal of Aeronautics, 2007, 20:272~281
    [46]李霞,王永章,郑佳昕等,开放式软数控系统的关键技术研究及实现,组合机床与自动化加工技术,2003,10:6~8
    [47]Chengrui Zhang, Heng Wang, Jingkun Wang, An USB-based software CNC system, Journal of Materials Processing Technology, 2003, 139: 286~290
    [48]王恒,张承瑞,刘日良,基于CORBA的软件化开放式数控系统体系结构,机械工程学报,2002,38(Supp):104~107
    [49]李斌,周云飞,唐小琦,基于COM技术和OPC规范的开放式结构数控系统研究,中国机械工程,2003,14(4):312~315
    [50]Li Bin, Zhou Yunfei, Tang Xiaoqi, A research on open CNC system based on architecture component software reuse technology, Computers in Industry, 2004, 55: 73~85
    [51]李斌,基于构架/构件复用的开放式数控系统研究:[博士学位论文],武汉:华中科技大学,2004.4
    [52]曹豪英,王小椿,张彬,一种高速CNC雕铣机数控系统的设计,组合机床与自动化加工技术,2005年12期:64~66
    [53]谷安,四轴电火花数控系统的开发及研究:[博士学位论文],南京:南京航空航天大学,2001.11
    [54]夏俊昇,何永义,基于PC的开放式控制系统的研究与开发,机电工程,2001,18(6):7~9
    [55]于东,郭锐锋,刘明烈等,开放式数控系统域建模研究,小型微型计算机系统,2000,21(7):729~732
    [56]周建辉,陈统坚,李伟光,开放式数控系统的UML建模,现代制造工程,2004,5:20~22
    [57]程涛,吴波,杨叔子等,支持分布式网络化制造的智能数控系统的研究,中国机械工程,2004,15(8):688~693
    [58]姚鑫骅,潘雪增,傅建中等,微制造数控系统的实时有限状态机建模研究,浙江大学学报(工学版),2005,39(12):1965~1968,1997
    [59]Wang Yuhan, Hu Jun, Li Ye, Study on a reconfigurable model of an open CNC kernel, Journal of Materials Processing Technology, 2003, 138: 472~474
    [60]史晓娟,王小椿,智能化数控系统的建模分析,仪器仪表学报,2003,vol 24(6),PP:640~642
    [61]田文超,基于控制器局域网总线的开放体系结构数控系统的研究:[博士学位论文],武汉:华中科技大学,2001.12
    [62]向华陈吉红周云飞陈立新,基于PC数控实时检测系统建模方法研究,中国机械工程,2003,14(2O),1777~1779
    [63]Z.Kasirolvalad, M.R.Jahed Motlagh and M.A.Shadmani, An intelligent modular modelling approach for quality control of CNC machines product using adaptive fuzzy Petri nets, 8th International Conference on Control, Automation Robotics and Vision, 2004, 1342~1347
    [64]周延佑,智能机床—数控机床技术发展新的里程碑—IMTS2006观后感之一,制造技术与机床,2007,4:43~46
    [65]ePS Network Services, SIEMENS, 2006.2
    [66]陈吉红,李斌,朱志红,由汉诺威EMO 2005看数控系统的发展趋势及思考,世界制造技术与装备市场,2006,1:96~103,110
    [67]黄增双,李斌,叶伯生等,基于网络环境的数控设备故障诊断系统,制造技术与机床,2006,1:78~80
    [68]K. Hans Raj, Rahul Swarup Sharma, Sanjay Srivastava, C. atvardhan, Modeling of manufacturing processes with ANNs for intelligent manufacturing, International Journal of Machine Tools & Manufacture, 2000, 40: 851~868
    [69]N.Ghosh, Y.B.Ravi, A.Patra, et al, Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mechanical Systems and Signal Processing, 2007, 21: 466~479
    [70]S.Kurada, C.Bradley, A machine vision system for tool-wear measurement, Tribology International, 1997, 30(4): 295~304
    [71]S. Kurada, C. Bradley, A review of machine vision sensors for tool condition monitoring, Computers in Industry, 1997, 34: 55~72
    [72]Y.S. Wong, A.Y.C. Nee, X.Q. Li, et al, Tool condition monitoring using laser scatter pattern, Journal of Materials Processing Technology, 1997, 63: 205~210
    [73]C. Chungchoo, D. Saini, On-line tool wear estimation in CNC turning operations using fuzzy neural network model, International Journal of Machine Tools & Manufacture, 2002, 42: 29~40
    [74]Zuo Li, Cheng Tao, Zuo Jing, A hierarchical intelligent control system for milling machine, 1997 IEEE International Conference on Intelligent Processing Systems, 1997: 813~817
    [75]Fuzzy estimation of feed-cutting force from current measurement-a case study on intelligent tool wear condition monitoring, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, 2004, 34(4): 506~512
    [76]P.C. Tseng, A. Chou, The intelligent on-line monitoring of end milling, International Journal of Machine Tools & Manufacture, 2002, 42: 89~97
    [77]Xu Chuangguang, Wang Xinyi, Xing Jishou, et al, Multi-Sensor Intelligent System for On-Line and Real-Time Monitoring Tool Cutting State in FMS, Journal of Beijing Institute of Technology, 1997, 6(3): 258~266
    [78]Zhao Dongbiao, An Intelligent Tool Condition Monitoring System Using Fuzzy Neural Networks , Transactions of Nanjing University of Aeronautics & Astronautics, 2000, 17(2):169~175
    [79]刘志艳,王军,用声发射和电机电流检测技术实现刀具破损的监测,机械,1999,26:4:12~14
    [80]徐春广,王信义,邢济收,刀具切削状态的多传感器信息综合法,北京理工大学学报,1997,17(2):175~180
    [81]郑金兴,张铭钧,孟庆鑫,多传感器数据融合技术在刀具状态监测中的应用,传感器与微系统,2007,26(4):90~93
    [82]翁德玮,邵华,王海丽,多传感器刀具状态监控系统,机械制造,2004,42(478):11~14
    [83]吴学忠,李圣怡,基于多传感器的刀具状态监测系统,数据采集与处理,1999,14(2):200~203
    [84]马平,王珉,基于多传感器的刀具状态模糊识别,数据采集与处理,1996,11(4):260~264
    [85]高宏力,许明恒,傅攀,基于集成神经网络的刀具磨损量监测,西南交通大学学报,2005,40(5):641~644,653
    [86]W.T. Lei, Y.Y.Hsu, Accuracy enhancement of five-axis CNC machines through real-time error compensation , International Journal of Machine Tools & Manufacture, 2003, 43: 871~877
    [87]E. Daniel Kirby, Joseph C. Chen, Julie Z. Zhang, Development of a fuzzy-nets-based in-process surface roughness adaptive control system in turning operations,Expert Systems with Applications, 2006, 30: 592~604
    [88]F.Dweiri, M.Al-Jarrah, H.Al-Wedyan, Fuzzy surface roughness modeling of CNC down milling of Alumic-79, Journal of Materials Processing Technology, 2003, 133: 266~275
    [89]Hao Wu, Hongtao Zhang, Qianjian Guo, et al, Thermal error optimization modeling and real-time compensation on a CNC turning center, Journal of Materials Processing Technology, Available online 27 December 2007
    [90]Myeong-Woo Cho, Gun-Hee Kim, Tae-Il Seo, et al, Integrated machining error compensation method using OMM data and modified PNN algorithm, International Journal of Machine Tools & Manufacture, 2006,46: 1417~1427
    [91]DONG S. YUN and GI J. JEON, Feedrate control of CNC machines by inverse mapping method, Proceedings of the 15th IEEE International Symposium On Intelligent Control, 2000. 279~284
    [92]S.J.LOU and J.C.CHEN, In-process surface recognition of a CNC milling machine using the fuzzy nets method, 21st International Conference on Computers and Industrial Engineering, 1997, 33(1-2):404~404
    [93]Kaan Erkorkmaz, Yusuf Altintas, High speed CNC system design. Part III: high speed tracking and contouring control of feed drives, International Journal ofMachine Tools & Manufacture, 2001, 41: 1637~1658
    [94]R. Ramesh, M.A. Mannan, A.N. Poo, Tracking and contour error control in CNC servo systems, International Journal of Machine Tools & Manufacture, 2005, 45: 301~326
    [95]P.G. Benardos, G.C. Vosniakos, Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments, Robotics and Computer Integrated Manufacturing, 2002,18: 343~354
    [96]O?uz ?olak, Cahit Kurbano?lu and M. Cengiz Kayacan,Milling surface roughness prediction using evolutionary programming methods, Materials and Design, 2007, 28: 657~666
    [97]Chana Raksiri, Manukid Parnichkun, Geometric and force errors compensation in a 3-axis CNC milling machine, International Journal of Machine Tools & Manufacture, 2004, 44: 1283~1291
    [98]Zbigniew Lechniak, Andrzej Werner, Konstanty Skalski, et al, Methodology of off-line software compensation for errors in the machining process on the CNC machine tool, Journal of Materials Processing Technology, 1998, 76: 42~48
    [99]Y.S. Tarng, H.Y. Chuang, W.T. Hsu, Intelligent cross-coupled fuzzy feedrate controller design for CNC machine tools based on genetic algorithms, International Journal of Machine Tools & Manufacture, 1999, 39: 1673~1692
    [100]Tan Liu, Tao Yu, Wenbin Wang, INC: a new type of computer numerical control, Computer Supported Cooperative Work in Design, The Ninth International Conference on Computer Supported Cooperative Work in Design Proceedings, 2005, 2: 787~792
    [101]INC: a new philosophy of CNC, Tan Liu; Tao Yu; Shu-Zhen Yang; Wen-Bin Wang;Machine Learning and Cybernetics, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005,3:1338~1344
    [102]Tan Liu, Tao Yu and Wenbin Wang, Research on CAD technology oriented to CNC, Proceedings of the IEEE International Conference on Mechatronics & Automation, 2005, 4: 1750~1755
    [103]Yadong Liu, Xingui Guo, Wei Li, et al, An intelligent NC program processor for CNC system of machine tool, Robotics and Computer-Integrated Manufacturing, 2007, 23: 160~169
    [104]B.S.So, Y.H.Jung, T.R.Kurfess, et al, 5-Axis machining speed enhancement bystep length optimization, Journal of Materials Processing Technology, 2007, 187-188: 2~5
    [105]Joze BALIC, Intelligent Computer Numerical Control Unit for Machine Tools, Journal of Intelligent and Robotic System, 2004, 40(4): 343~358
    [106]Zezhong C.Chen, Zuomin Dong, Geoffrey W.Vickers, Automated surface subdivision and tool path generation for 3??-axis CNC machining of sculptured parts, Computers in Industry, 2003,50:319~331
    [107]M.Kovacic, M.Brezocnik, I.Pahole, et al, Evolutionary programming of CNC machines, Journal of Materials Processing Technology, 2005,164-165: 1379~1387
    [108]Stanislaw Zietarski, System integrated product design, CNC programming and postprocessing for three-axis lathes, Journal of Materials Processing Technology, 2001,109: 294~299
    [109]蒋昇,李爱平,林献坤,基于遗传算法的铣削加工参数模糊优化系统研究,机电一体化,2006,2:35~39
    [110]吴明阳,刘广军,李广慧,基于遗传算法的复杂槽型铣刀片铣削参数优化,机械工程师,2005,3:87~89
    [111]王红军,韩秋实,基于BP的NC凸轮轴磨床磨削参数优化软件设计,现代制造工程,2004,5:26~27,71
    [112]郑华平,李曦,唐小琦,基于自适应预测控制技术的数控铣削加工的研究与应用,机床与液压,2003,3:151~153,249
    [113]李为民,徐安平,黄田,基于多感知信息的数控铣削过程智能控制,河北工业大学学报,2001,3O(5):6~11
    [114]黄华,李爱平,林献坤,基于免疫遗传算法优化的模糊控制方法及其应用,计算机应用,2007,27(7):1737~1740,1750
    [115]雷萍,基于现场总线的恒功率约束切削加工自适应控制,现代制造工程,2007,7:40~42
    [116]应用于数控加工的自适应系统—omat智能自适应控制系统,北京嘉源易润工程技术有限公司,2006,03:101~103
    [117]郑业明,浅析数控铣削加工参数在线优化技术,机械工人,2007,2:63~65
    [118]Raid Al-Aomar, Ala’a Al-Okaily, A GA-based parameter design for single machine turning process with high-volume production, Computers & Industrial Engineering, 2006,50:317~337
    [119]F.Cus, M.Milfelner, J.Balic, An intelligent system for monitoring andoptimization of ball-end milling process, Journal of Materials Processing Technology, 2006,175: 90~97
    [120]Sungchul Jee a, Yoram Koren, Adaptive fuzzy logic controller for feed drives of a CNC machine tool, Mechatronics,2004,14:299~326
    [121]M.Hanna, Modeling product quality in a machining center using fuzzy Petri nets with neural networks, Proceedings of the 1999 IEEE International Conference on Robotics & Automation, 1999,2: 1502~1507
    [122]Haber, R.E., Peres, C.R., Alique, A., et al, Toward intelligent machining: hierarchical fuzzy control for the end milling process, IEEE Transactions on Control Systems Technology, 1998, 6(2): 188~199
    [123]H.El-Mounayri, H.Kishawy, J.Briceno, Optimization of CNC ball end milling: a neural network-based model, Journal of Materials Processing Technology, 2005, 166: 50~62
    [124]W.Brian Rowe, Yinnan Chen, J.L.Moruzzi, et al, A generic intelligent control system for grinding, Computer Integrated Manufacturing Systems, 1997, 10(3): 231~241
    [125]Kyung Sam Park and Soung Hie Kim, Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review, Artificial Intelligence in Engineering, 1998, 12: 127~134
    [126]Sunnan Huang, Kok Kiong Tan, Geok Soon Hong, et al, Cutting force control of milling machine,Mechatronics, 2007, 17:533~541
    [127]OPEN SYSTEM ARCHITECTURE FOR CONTROLS WITHIN AUTOMATION SYSTEMS, http://www.osaca.org
    [128]徐宝祥,刘凤勤,张海涛,面向对象方法学的理论基础,情报学报,2001,20(6):757~761
    [129]郭宁,UML及建模,北京:清华大学出版社&北京交通大学出版社,2007,33~133
    [130]陆晓燕,秦朝辉,尹治本,UML建模技术及其应用,成都信息工程学院学报,2004,19(3):414~417
    [131]袁崇义,Petri网原理与应用,北京:电子工业出版社,2005,3~150
    [132]江志斌,Petri网及其在制造系统建模与控制中的应用,北京:机械工业出版社,2004,39~96
    [133]李拥新,陈鸣,蒋序平等,一种用于网络管理的基于逻辑的Policy定义语言,计算机研究与发展,2002,39(11):1491~1497
    [134]吴维敏,董利达,苏宏业等,基于抑制弧Petri网的离散事件系统的监控理论综述,浙江大学学报:工学版,2003,37(1):42~46
    [135]刘隽,系统RMS建模技术研究,[硕士学位论文],北京:北京航空航天大学,2004.03
    [136]胡世广,王太勇,赵丽等,基于网络与状态监测的智能数控技术,计算机工程与应用,2007,43(33):200~202
    [137]机械工程手册-电机工程手册编辑委员会赵明生等,机械工程手册(第2版第8卷),北京:机械工业出版社,1997,1~67
    [138]杨勇,沈秀良,邵华,基于遗传算法的铣削参数优化,机械设计与研究,2001,17(2):60~62
    [139]沈浩,谢黎明,韩莹,数控车削中切削用量的多目标优化,兰州理工大学学报,2005,31(5):47~49
    [140]武关萍,翟建军,廖文和,数控加工切削参数优化研究,中国机械工程,2004,15(3):235~237
    [141]姜彬,郑敏利,徐鹿眉等,数控铣削用量多目标优化,哈尔滨理工大学学报,2002,7(3):67~70
    [142]汪文津,数控车削系统物理仿真建模及其虚拟切削过程的研究,[博士学位论文],天津:天津大学,2005.05
    [143]范胜波,虚拟数控车削加工质量预测系统的研究,[博士学位论文],天津:天津大学,2005.12
    [144]王先逵,孙凤池,王龙山等,机械加工工艺手册(第2版第2卷),北京:机械工业出版社,2007,2_82~2_126
    [145]周泽华,金属切削原理,上海:上海科学技术出版社,1993,185~196
    [146]王小平,曹立明,遗传算法-理论、应用与软件实现,西安:西安交通大学出版社,2002,1~85
    [147]姚海彬,电工技术,北京:高等教育出版社,1999,192~212
    [148]章卫国,杨向忠,模糊控制理论与应用,西安:西北工业大学出版社,2001,1~72
    [149]韩力群,人工神经网络教程,北京:北京邮电大学出版社,2006,127~138
    [150]高隽,人工神经网络原理及仿真实例,北京:机械工业出版社,2007,55~75
    [151]徐丽娜,神经网络控制,北京:电子工业出版社,2003,5~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700