用户名: 密码: 验证码:
船用齿轮箱抗冲击计算方法分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下非接触爆炸产生的冲击对舰船设备的威胁越来越大,齿轮箱作为主要部件之一,其抗冲击能力直接关系到舰船的生命力。因此,对齿轮箱进行抗冲击性能及数值模拟方法的研究具有重要意义。
     本文针对现有的齿轮箱抗冲击分析方法,即等效静力法、动态设计分析方法和时域模拟法,分别从理论和数值模拟的角度进行研究,并对三种方法进行分析比较,以期给出较系统的数值实验方法,同时研究齿轮箱动态响应特性与结构特点、冲击载荷参数之间的关系,寻求同类型箱体的动态响应特性规律;开发齿轮箱抗冲击分析软件,可对齿轮箱在不同设计阶段进行冲击性能评估。
     首先,分析了舰船设备抗冲击等效静力法、动态设计分析方法和时域模拟法三种计算方法的相关理论,以同一齿轮箱为例,诠释了应用三种抗冲击方法的冲击仿真实现过程,同时分析了该齿轮箱的动态响应特性,在此基础上,对三种抗冲击方法进行对比分析,提出其特点和适用性;
     其次,在研究齿轮箱时域模拟抗冲击分析方法的基础上,分析不同冲击方向上,加速度冲击强度、冲击时间对齿轮箱动态响应特性的影响,以三个同类型箱体为计算模型,寻求其动态特性响应规律,为此类齿轮箱抗冲击设计提供参考;
     第三,编制齿轮箱抗冲击校核评估软件,对齿轮箱等效静力抗冲击分析方法,动态抗冲击分析方法及时域模拟法三种抗冲击计算方法进行集成,实现可视化输出及直接调用功能。
The non-contact underwater explosions threaten the warship survivability more and more fiercely at present. Gear box is one of the important components in the ship, whose shock resistance is related to vitality directly. Therefore, the research on shock resistance of gear box and numerical simulation of gear box is of great significance.
     Based on the existing shock resistance methods, namely, the static equivalent method, dynamic design analysis method and time-domain simulation method, researches are carried out separately from the shock dynamic response theory and numerical simulation in order to obtain a systematic numerical experiment method for engineering applications by comparing three methods. At the same time, the relationships between marine gearbox dynamic response characteristics and structural features, the load parameters are researched, and the same discipline of dynamic response of the same type gearbox. A resistance checking evaluation software is developed which can evaluate the shock resistance of gearbox in different design stages.
     Firstly, the basic theory of static load method, dynamic design analysis method and shock analysis of marine equipment in frequency domain are studied in this paper. Shock resistance numerical simulation process of three methods of anti-shock simulation is implemented by taking a gear box as example, whose dynamic response characteristics is analyzed.
     Secondly, based on the study of time-domain simulation method, the impact strength and shock duration time to the gearbox dynamic response is evaluated in different directions. The dynamic response characteristic disciplines are summarized by analyzing shock resistance response results of three similar structure gearboxes to give reference to the shock resistance design of gearboxes of this type.
     Thirdly, shock resistance checking evaluation software is developed which is an integration of static load method, dynamic shock resistance analysis method and time-domain simulation method, the output visualization can be achieved and functions can be transferred directly.
引文
[1]汪玉,华宏星.舰船现代冲击理论及应用.北京:科学出版社,2005:1-7页,34页,76-81页
    [2]Keil, A.H. The response of ships to underwater explosions. Transaction SNAME,1961:69P
    [3]William T F.UNDEX testing:When, why & how it began. Proceeding of the 70th Shock and Vibration Symposium,1999:251-262P
    [4]Oberon trials-naval annual. United Kingdom. Portsmouth,1885:25-31p
    [5]Hollery, S.R.. Direct Shock Wave Damage to Merchant Ship from Non-contact Underwater Explosion.SNAME,1959:67-73P
    [6]Bort, L.R..1962 Assessment of Shock Design Method and Shock Specification SNAME,1962:70-84P
    [7]Oleson, W.M, Belsheim, O.R..1977 Shipboard shock Environment and Its Measurement. The shock and Vibration Digest,1977:9-17P
    [8]王官祥,汪玉.模态分析在冲击动力学分析中的应用.噪声与振动.2001,3(5):10-12页
    [9]Biot, M.A.. Analytical and experimental methods in engineering seismology. Transaction ASCE,1943:108-365P
    [10]O'Hara, G.J.. Shock Spectra and Design Shock Spectra. NRL Rep.5386, 1959:124-167P
    [11]O'Hara, G.J., Belsheim,R.O.. Interim Design Values for Shock Design of Shipboard Structures. NRL-MR-1396,1963:83-101P
    [12]Belsheim, R.O., O'Hara, G.J.. Shock design of shipboard equipment dynamic design analysis method. NAVSHIPS 250-423-30,1961:69-82P
    [13]Belsheim, R.O., O'Hara, G.J.. Experimental evaluation of the dynamic design analysis method. NRL Rep.5915,1967:103-143P
    [14]Harrington, R.L., Vorus, W.S.. Dynamic shock analysis of shipboard equipment. Marine Technology 4,1967:331-354P
    [15]Hurwitz, M:M..The Dynamic Design Analysis Method (DDAM) in Nastran. David Taylor Naval Ship Research and Development Center,1983:27-38P
    [16]Mark, S.W.. Numerical Analysis of the Elastic Shock Response of Submarine Installed Equipment. NTIS Rep. AD-A1,1984:52-564P
    [17]汪玉,王官祥.舰船系统和设备的抗冲击性能动力学仿真.计算机仿真.1999,16(1):22-25页
    [18]刘永明,孙焕新,杨裕根.多自由度系统冲击谱研究.上海铁道大学学报.1998,19(6):52-57页
    [19]刘建湖.舰船非接触水下爆炸动力学的理论与应用.中国船舶科学研究中心博士学位论文.2002:72-89页,99-103页
    [20]Edward Alexander J. A nonlinear DDAM procedure. SAVIAC Proceeding of the 66th Shock and Vibration Symposium,1995,3(1):251-262P
    [21]Edward Alexander J. Structural analysis of a nonlinear system given a shock response spectrum input. SAVIAC Proceeding of the 69th Shock and Vibration Symposium,1998:36-42P
    [22]Edward Alexander J. Nonlinear system mode superposition given a prescribed shock response spectrum input. IMAC-XX:A Conference on Structural Dynamics. Los Angeles. California,2002:346-355P
    [23]江国和,尹立国,沈荣瀛.带限位器双层隔振系统的冲击响应研究.华东船舶工程学院学报.2004,18(2):86-89页
    [24]江国和,尹立国,吴广明,沈荣瀛.筏体和基础弹性对设备冲击响应影响的有限元分析.噪声与振动控制.2004,24(6):11-14页
    [25]江国和,尹立国,沈荣瀛,吴广明.利用伪力法计算带限位器的船舶设备隔振系统冲击响应.中国造船.2005,46(1):36-43页
    [26]王秋颖.舰用蒸汽管路抗冲击分析.哈尔滨工程大学硕士论文.2007
    [27]姚熊亮,冯麟涵,张阿漫.利用DDAM方法分析舰用增压锅炉抗冲击特性.舰船科学技术.2009,31(5):67-72页
    [28]严济宽,沈荣瀛.冲击隔离及冲击减振器设计研究.上海交通大学学报.1995:25-30页
    [29]贺华,冯奇.舰船机电设备在冲击环境下的离散模型.噪声与振动控制.2001(5):1-6页
    [30]韩祖舜,陈善鸿.舰用燃气轮机抗冲击计算模型及实验研究.振动与冲击.2001,11(1):49-54页
    [31]程畅,吕勇.MSC/PATRAN DYTRAN软件在机电产品结构件抗冲击强度.仿真分析中的应用机电元件.2002,22(3):15-17页
    [32]周璞,许庆新,华宏星.舰船设备冲击动力响应在不同边界条件下的比较.噪声与振动控制.2003,(4):19-21页
    [33]汪玉,胡刚义,华宏星等.带限位器的船舶设备非线性冲击响应分析.中国造船.2003,44(2):39-44页
    [34]林道福,余永丰,华宏星.带限位器的浮筏隔振系统的冲击响应分析.噪声与振动控制.2004,46(1):36-43页
    [35]赵应龙,何琳,黄映云,汪玉.限位器对隔振系统抗冲击性能的影响.振动与冲击.2005,24(2):71-76页
    [36]周其新,姚熊亮,张阿漫,赵新.舰用齿轮箱抗冲击能力时间域计算.中国舰船研究.2007,2(3):44-49页
    [37]赵经文,王宏钰.结构有限元分析.北京:科学出版社,2001:137-139页
    [38]徐敏,骆振黄,严济宽.船舶动力机械的振动、冲击与测量.北京:国防工业出版社,1981:339-340页
    [39]濮良贵,纪名刚.机械设计.第七版.北京:高等教育出版社,2001:66页
    [40]李兆俊,汪玉,陈学德,吕襄波,刘新凯,伍克德.管路系统冲击设计方法分析.振动与冲击.2008,27(9):171-174页
    [41]GJB1060.1-91,舰船环境条件要求机械环境.北京:中国标准出版社,1991:18-32页
    [42]曹树谦,丁千,陈予恕,张宁,金宗武.具有滑动轴承的稳态转子系统有限元建模分析.汽轮机技术.1999,41(6):347-354页
    [43]张文元.ABAQUS动力学有限元分析指南.香港:中国图书出版社,2005:130-132页
    [44]赵应龙,何琳,黄映云.船舶浮筏隔振系统冲击响应的时域计算.噪声与振动控制.2005,4(2):14-17页
    [45]BV0430-85,德国国防军舰艇建造规范-冲击安全性.科布伦茨:联邦德国国防装备技术和采购局,1987
    [46]李之光.锅炉强度计算标准应用手册.北京:中国标准出版社,1999:70-95页
    [47]姚雄亮,冯麟涵,张阿漫.舰船设备抗冲击时域模拟研究.汽轮机技术.2009,51(3):10-14页
    [48]王旭东.船用齿轮箱振动分析及结构噪声预估.重庆大学硕士论文.2006:24-29页
    [49]蒋加伏,张林峰.Visual Basic程序设计教程.第四版.北京:北京邮电大学出版社,2009:2页
    [50]孙广磊.Python语言基础与典型应用.北京:人民邮电出版社,2007:3页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700