用户名: 密码: 验证码:
基于SOFC的变压器油中溶解气体检测机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油中溶解气体是表征运行充油型电气设备早期潜伏性故障的重要特征量之一,油中溶解气体在线监测技术在充油型电气设备运行状态的在线评估及剩余寿命的预测领域具有良好的应用前景。固体氧化物燃料电池(solid oxide fuel cell,简称SOFC)具有灵敏度高、检测气体种类丰富及使用寿命长等优点,其在变压器油中溶解气体检测领域具有巨大的应用潜力。论文从SOFC的多组份气体检测理论分析、SOFC气体传感器的研制、SOFC变压器油中溶解气体在线监测系统设计及应用四个方面着手,系统地研究了油中溶解气体的SOFC检测原理及技术。主要研究内容如下:
     1.提出了适用于多组份气体的SOFC检测理论。通过热力学和动力学理论的分析证明了SOFC对H2, CO, CH4, C2H6, C2H4和C2H2等故障气体具有线性响应特性,但对N2无响应。设计了结合色谱分离的SOFC多组份气体实验方案,实验结果验证了理论分析的正确性。
     2.构建了SOFC气体检测器的应用模型。综合考虑检测过程中的各种损耗因素,通过改进SOFC发电模型,建立了SOFC气体检测的应用模型。详细分析了模型中的热力学和动力学参数,发现恒定的温度是热力学稳定的重要条件、动力学极化损耗随待测气体浓度的变化而变化,而欧姆损耗仅取决于材料本身。
     3.研制了管状SOFC气体传感器。通过气体燃烧损耗的流体力学分析,优化了通道结构设计和流速控制。设计了基于PID控制算法的双路温度控制系统,该设计既能保证管状SOFC传感器温度稳定在700±1℃,又使色谱柱温度稳定在70±0.1℃。实验结果表明:SOFC气体传感器较其它传感器精度高、寿命长、需要的载气种类少。
     4.研制了基于SOFC的变压器油中溶解气体在线监测系统。设计了基于高分子膜油气分离和多柱联用气体分离的预处理单元,使脱气的最高效率可以达到每小时一次;设计了基于ARM加CPLD的主控制单元,不仅保证了测量精度、通讯的可靠性,而且实现了开关量的实时控制;设计了当地控制台、当地手动检测和计算机自动检测流程为一体的综合嵌入式软件系统,为系统的运行提供了高可靠的、人性化的及便捷的多功能操作模式;提出了一种结合平滑滤波和增加斜率检索法的自动寻峰算法,保证了数据处理的正确性。最后,模拟实验验证了系统对设备故障诊断的正确性。
     5.将基于SOFC的变压器油中溶解气体在线监测系统应用于某500kV三相一体变压器。通过采用高性能连接材料和精密齿轮泵,保证了油路的可靠性,避免了油流带电现象的发生;通过机械和电气的优化设计保证了设备长期运行的可靠性以及数据融合的灵活性;挂网运行数据结果显示:该变压器油中溶解气体在线监测系统运行稳定,测量数据精度高,为电气设备的安全运行提供了强有力的保障。
Gases dissolved in transformer oil are important characteristic values which reflect the types of incipient faults of oil-immersed power apparatus, and on-line monitoring of dissolved gases has fine application prospects in the application to on-line evaluation of the running state of oil-immersed power apparatus and on-line forecast of their residual lives. As a new type of fuel cell, solid oxide fuel cell (SOFC) has some advantages including high sensitivity, response to kinds of gases, and long service life, which make it has great application potential in the field of dissolved gases evaluation. This dissertation investigates systematically the detection mechanism and technology of gases dissolved in transformer oil based on SOFC. The main researches as follows:
     1. Detection theory of SOFC about multicomponent gases has been put forward. Thermodynamics and kinetics analyses show that SOFC has linear response to some fault gases, such as H2, CO, CH4, C2H6, C2H4and C2H2, but not to N2. Combined with chromatographic separation, SOFC multicomponent gases experimental scheme has been designed, from which the correctness of the theoretical analyses is test.
     2. Application model of SOFC gas detector has been built. This model is an improved one of SOFC power model. Through the analyses of thermodynamics and kinetics parameters of it, constant temperature is found to be very important for thermodynamic stability. Results of the analyses still indicate that polarization loss is a parameter which varies with the change of gas concentration, and ohmic loss is affected only by the materials and construction.
     3. A tubular SOFC gas sensor has been developed. Its channel structure and flow control have been optimized through the analysis of gas combustion loss and hydrodynamic. A dual temperature control system bas been designed, which can ensure the temperature of tubular SOFC sensor and chromatographic column to be stable at700±1℃and70±0.1℃.The experiment results show that the SOFC gas sensor has advantages of high precision, long service life and less carrier gas kinds need.
     4. An on-line monitoring system for gases dissolved in transformer oil based on SOFC has been developed. In this system, the pretreatment unit based on polymer membrane gas\oil separation and multicolumn gas separation makes the peak degassing efficiency reach once per hour; the main control unit based on ARM and CPLD will ensure the measuring accuracy, communication reliability and realtime control of the system as well. And the integrated embedded software system, which includes local console,local manual detection and computer automatic detection, offers high reliability, humanization and convenient multifunctional operate mode for the system. At last, an automatic peak-seeking algorithm combined with median filtering and increasing slope retrieval method has been put forth, which ensures the correctness of data processing.At last, fault simulation tests verify the accuracy of this system on fault diagnosis.
     5. The designed on-line monitoring system for gases dissolved in transformer oil based on SOFC has been applied in a500kV integrated three-phase transformer. By adopting of high performance connections materials, precision gear pump and the optimized design of mechanic and electric, the oil electrification phenomenon can be avoided and the long running reliability of equipment, the flexibility of data fusion can be guaranteed. Running results show that this system runs stably, measures accurately. So it can ensure the safe running of the transformer.
引文
[1]王梦云.2004年度110kV及以上变压器事故统计分析[J].电力设备,2005,6(11):31-37.
    [2]王梦云.110kV及以上变压器事故与缺陷统计分析[J].供用电,2007,24(1):1-5.
    [3]黄树红,李建兰.发电设备状态检修与诊断方法[M].北京:中国电力出版社,2008.
    [4]操敦奎.变压器油中气体分析诊断与故障检查[M].北京:中国电力出版社,2005.
    [5]孙才新,陈伟根,李俭,等.电气设备油中溶解气体在线监测与故障诊断技术[M].科学出版社,2003.
    [6]中国电能成套设备总公司.500 kV变压器质量情况汇编[M],电力部电力科学研究院,1996.
    [7]DL/T 596-1996.电力设备预防性试验规程[S].北京:中国电力出版社,1997.
    [8]齐辉.变压器油中六种溶解气体在线监测传感器阵列法研究[D].重庆:重庆大学,2009.
    [9]李红雷,周方洁,谈克雄,等.用于变压器在线监测的傅立叶红外定量分析[J].电力系统自动化,2005,29(18):62-65.
    [10]陈伟根,云玉新,潘翀,孙才新.光声光谱技术应用于变压器油中溶解气体分析[J].电力系统自动化,2007,31(15):94-98.
    [11]吴烈钧.气相色谱检测方法[M].北京:化学工业出版社,2000.
    [12]王浩宇,曹建,安晨光.基于MEMS技术的气体热导传感器的应用研究[J].传感技术学报,2009,22(7):1050-1054.
    [13]黄德祥,曹建,王会海,等.基于MEMS技术的热导池检测器在变压器油中气体在线检测系统中的应用研究[J].化工自动化及仪表,2004,31(6):48-50.
    [14]许国旺.现代实用气相色谱法[M].北京:化学工业出版社,2004.
    [15][美]Ryan 0'Hayre,[韩]车硕源,[美]Whitney Colella,等.燃料电池基础[M].北京:电子工业出版社,2007.
    [16]Z. P. Shao, W.Zhou, Z. H. Zhu. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells[J]. Prog Mater Sci (2011), doi:10.1016/j. pmatsci.2011.08.002
    [17]V. Vittorion, C. Q. Michele. Solid oxide fuel cell system for distributed power generation and cogeneration [J]. International Journal of Hydrogen Energy,2008,33(2):2087-2096.
    [18]陈化刚.电力设备预防性试验方法及诊断技术[M].北京:中国水利水电出版社,2009.
    [19]贵州电力试验研究院.电力设备诊断手册[M].北京:中国电力出版社,2001.
    [20]R. J. Liao, H. B. Zheng, S. Grzybowski, et al. Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers[J]. Electric Power Systems Research,2011,81(12): 2074-2080.
    [21]中国电力企业联合会科技服务中心.2009年全国输变电设备状态检修技术交流研讨会[M].西安:电世界杂志社,2009.
    [22]IEEE DEIS. International Conference on Condition Monitoring and Diagnosis [M]. Beijing:Electrical Insulation Magazine,2008.
    [23]钱旭耀.变压器油及相关故障诊断处理技术[M].北京:中国电力出版社,2006.58-59.
    [24]顾蕙祥,阎宝石.气相色谱实用手册[M].北京:化学工业出版社,1990.6-8.
    [25]陈伟根,云玉新,潘翀,等.变压器油中溶解气体的红外吸收特性理论分析[J].中国电机工程学报,2008,28(16):148-153.
    [26]张川,王辅.光声光谱技术在变压器油气分析中的应用[J].高电压技术,2005,31(2):84-85.
    [27]周利军,吴广宁,唐平,等.用于绝缘油中气体监测的半导体气敏传感器模型[J].电力系统自动化,2006,30(10):75-79.
    [28]B. C. H. Steele, A. Heinzel. Materials for fuel-cell technologies [J]. Nature,2001,414 (6861):345-352.
    [29]P. S. Khiabani, A. Hosseinmardi, E. Marzbanrad, et al. N02 gas sensor fabrication through AC electrophoretic deposition from electrospun In203 nanoribbons[J]. SENSORS AND ACTUATORS B-CHEMICAL, 2012,162(1):102-107.
    [30]L. W. Wang, Y. F. Kang, X. Liu, et al. ZnO nanorod gas sensor for ethanol detection [J]. SENSORS AND ACTUATORS B-CHEMICAL,2012,162(1):237-243.
    [31]张晓星,张锦斌,唐炬,等.镍掺杂碳纳米管传感器检测变压器油中溶解气体的气敏性[J].中国电机工程学报,2011,31(4):119-124.
    [32]M. DUVAL.New techniques for dissolved gas in oil analysis [J]. IEEE Electrical Insulator,2003,19(2):6-15.
    [33]E.Brel. A new concept for on-line transformer gas monitoring[C]. CIGRE. International Conference on Large Electric Systems. Paris, French,2000:12-15.
    [34]李岩.变压器在线监测系统的研究[D].武汉:华中科技大学,2005.
    [35]吕镇庭,曹建,丁家峰,等.基于水分活度的变压器油中微水在线检测系统[J].仪器仪表学报,2008,29(9):1956-1960.
    [36]丁家峰,罗安,曹建,安晨光.一种新型变压器油中溶解气体在线监测仪的研究[J].仪器仪表学报,2009,30(7):1356-1360.
    [37]黄德祥.变压器油中溶解气体在线监测及故障诊断系统研究[D].长沙:中南大学,2004.
    [38]许坤,周建华,茹秋实,等.变压器油中溶解气体在线监测技术发展与展望[J].高电压技术,2005,31(8):30-32.
    [39]贾瑞君.变压器油中溶解氢气在线监测仪的研制[J].电网技术,1998,22(1):4-7.
    [40]G. L. Marton. The Hydran-a system for the detection and monitoring of failure conditions in power transformers[C]. IEE colloquium on Monitors and condition assessment equipment. IEE, Savoy Place, London WCPR OEL. UK,1996:10-22.
    [41]http://www.serveron.com/products/TG-tga-main.asp.
    [42]崔雪梅,张小平.大型电力变压器油色谱在线监测系统及其应用[J].攀枝花学院学报,2002,19(5):63-66.
    [43]孙毓润.大型变压器油色谱在线监测装置[M].东北电力科学研究院,1994.
    [44]章伟聪,戴征武.变压器油中微量水分在线监测系统的研究[J].煤矿机电,2005,26(5):26-28.
    [45]http://www.lgom.com.cn/cp_1.aspx?nid=22.
    [46]J.O. Archer, R. M. Lautamo. The Pittsburgh Conference Abstracts [R]. New Orleans, LA, USA,2000,109-110.
    [47]宋海华,邬慧雄.燃料电池技术在电催化反应领域的应用[J].化学进展,2004,16(3):400-402.
    [48]彭苏萍,韩敏芳,等,固体氧化物燃料电池[J],物理学与新能源材料专题,2004(2),89-91.
    [49]骆仲秧,张小丹.高温燃料电池技术分析及前景展望[J].经济技术综述,2003,12(1):23-24.
    [50][美Colleen S.Spiegel.燃料电池设计与制造[M].电子工业出版社,2008.
    [51]张雨,徐小林,张建华.设备状态监测与故障诊断的理论和实践[M].长沙:国防科技大学出版社,2000.45-50.
    [52]彭宁云,文习山,陈超强.气相色谱分析变压器潜伏性故障[J].高电压技术,2002,8(8):22-24.
    [53]陈家斌.电气设备故障检测诊断方法及实例[M].北京:中国水利水电出版社,2003:198-199.
    [54]GB/T 7252—2001,变压器油中溶解气体分析和判断导则[S].2001.
    [55]R. R. Rogers. IEEE and IEC Codes to Interpret Incipient Faults in Transformer, Using Gas in Oil Analysis[J]. IEEE Trans. on Dielectrics and Electrical Insulation,1978, E1-13:349-354.
    [56]IEC 60599-1999, Mineral oil-impregnated electrical equipment in service-guide to the interpretation of dissolved and free gases analysis[S],1999.
    [57]郑蕊蕊,赵继印,赵婷婷,等.基于遗传支持向量机和灰色人工免疫算法的电力变压器故障诊断[J].中国电机工程学报,2011,31(7):56-63.
    [58]Z.Y.Wang, Y. L. Liu, P. J. Griffin. A combined ANN and expert system tool for transformer fault diagnosis [J]. IEEE Trans. on Power Delivery, 1998,13(4):1224-1229.
    [59]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报,2003,23(7):88-92.
    [60]宋斌,于萍,廖冬梅,等.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术,2001,27(3):69-71.
    [61]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167.
    [62]Y. C. Huang, C. M. Huang. Evolving wavelet networks for power transformer condition monitoring [J]. IEEE Trans. on Power Delivery,2002,17(2): 412-416.
    [63]黄少荣.资源约束多模式项目调度的遗传算法研究[J].微电子学与计算 机,2011,28(9):165-168.
    [64]白士红,唐辉辉.蚁群算法在故障诊断中的应用[J].中国工程机械学报,2010,8(4):466-469.
    [65]S. J. Ferrito. A comparative study of dissolved gas analysis techniques:the vacuum extraction method verses the direct injection method [J]. IEEE Trans. Power Deli.,1990,5(1):220-225.
    [66]H. Tsukioka, K. Sugawara, E. Mori. Application of polymer membrane as means of separation gases from oil [J]. Inst Elect Engrs,1982,10(2): 295-299.
    [67]K. Keizer, R. Uhlhorn, J.Burggraaf. Gas Separation using inorganic Membranes[J], Elsevier, Amsterdam,1995,17(6):57-58.
    [68]S. P. Kalids, G. C. Kapantaidakis. Solution of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recover from refinery gases[J]. Journal of Membrance Science,2000,17(3):61-69.
    [69]刘先勇,钟秋海,周方洁.从变压器中分离故障特征气体的研究[J].电力系统自动化,2005,29(2):56-60.
    [70]贾瑞君.高分子薄膜在变压器油中溶解气体在线监测中的应用[J].变压器,2001,38(10):37-40.
    [71]郑领英,王学松.膜技术[M].北京:化学工业出版社,2000.
    [72]Marcel Mulder.膜技术基本原理[M].北京:清华大学出版社,1999:18-24.
    [73]陈珊妹,李敖琪.双向拉伸PTFE微孔膜的制备及其性能[J].膜科学与技术,2003,12(2):23-26.
    [74]安晨光.变压器油中溶解气体在线监测关键技术研究[D].长沙:中南大学,2008.
    [75]封越鹏,邱赫男.气相色谱分析中样品介质不同对分析结果的影响[J].环境监测管理与技术,2004,16(2):17-19.
    [76]W. M. Niessen. A State of the art in Liquid Chromatography-Mass Spectrometry[J]. J. of Chromatography A.1999,856(2):179-180.
    [77]G. W. Somsen, C. Gooijer.Liquid Chromatography-Fourier Transform Infrared Spectrometry[J], J of Chromatography A.1999,856(2): 213-214.
    [78]J. Y. Hyeun, H. J. Do, H. Y. Jin, et al. Carbon dioxide gas sensor using a graphene sheet [J]. Sensors and Actuators B,2011,157(1):310-313.
    [79]X. L. Wei, Y. P. Chen, W. L. Liu, et al. Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons[J]. Physics Letters A,2012,376 (4):559-562.
    [80]H.Li,Z. Y.Yin, Q.Y.He, et al. Fabrication of Single-and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature[J]. small,8(1):63-67.
    [81]C. C. Cutler. Transmission System Employing Quantization [M]. U.S. Patent,1960.
    [82]F. D. Jager. Delta Modulation Method of PCM Transmission Using the One Unit Code[J]. Philips Res. Rep,1952(7):442-466.
    [83]H. Inose, Y. Yasuda, J. Murakam. A Telerneteling System by Code Modulation ∑-△ Modulation[J]. IRE Trans. Space Electron. Telemetry, 1962(8):204-209.
    [84]陈雷.高精度∑-△ADC的研究[D].西安:西北工业大学,2006.
    [85]J. C. Candy. A Use of Double integration Sigma-Delta Modulation [J]. IEEE Trans. Common,1985:249-258.
    [86]杨媛媛,李晓光.过采样∑-△型ADC中∑-△调制器分析与研究[J].电脑知识与技术,2007,31(4):1631-1632.
    [87]陈家乾,何衍,蒋静坪.基于权值平滑的改良FastSLAM算法[J].浙江大学学报(工学版),2010,44(8):1454-1459.
    [88]宋海英.基于总变分和中值滤波的图像去噪方法[J].现代电子技术,2011,34(14):16-18.
    [89]阎晨,原建平.小波包分解域的超声图像非同态滤波降噪算法[J].声学学报,2011,36(5):476-483.
    [90]G. F. Bin, J. J. Gao, X.J.Li, et al. Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network[J]. Mechanical systems and signal processing,2012,27(1):696-711.
    [91]王海霞,屠恒勇.SOFC阴极材料La0.6Sr0.4CoO3.8的甘氨酸-硝酸盐法合成与表征[J].功能材料,2010,3(41):397-400.
    [92]孙帆,郑勇,高小龙,等.固体氧化物燃料电池电解质和电极材料的研究进展[J].金属功能材料,2010,17(4):75-80.
    [93]Y.W. Sin, K. Galloway, B. Roy, et al. The properties and performance of micro-tubular (less than 2.0 mm 0. D.) anode supported solid oxide fuel cell (SOFC)[J]. International Journal of Hydrogen Energy, 2011,36:1882-1889.
    [94]S.P.Jiang. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells:a review[J].J Mater Sci 2008:43(21):6799-6833.
    [95]C. W. Sun, U. Stimming. Recent anode advances in solid oxide fuel cells[J]. J Power Sour 2007;171(2):247-260.
    [96]E. V. Tsipis, V. V. Kharton. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review II. Electrochemical behavior vs. materials science aspects[J]. J Solid State Electrochem 2008; 12(11):1367-1391.
    [97]E. V. Tsipis, V. V. Kharton. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review I.Performance-determining factors[J]. J Solid State Electrochem 2008;12(9):1039-1060.
    [98]Z.G.Yang. Recent advances in metallic interconnect for solid oxide fuel cells[J]. Int Mater Rev 2008;53(1):39-54.
    [99]F. Sun, Y. Zheng, X. L. Gao, et al. Research progress of electrolyte and electrode materials for solid oxide fuel cells[J]. Metallic Functional Materials,2010,17(4):75-80.
    [100]K. Wang, D. Hissel.M. C. Pe'ra, et al.A Review on solid oxide fuel cell models[J]. International Journal of Hydrogen Energy,2011,36(1):7212-7228.
    [101]H. B. Huo, X. J. Zhu, W. Q. Hu, et al. Nonlinear model predictive control of SOFC based on a Hammerstein model[J]. Journal of Power Sources, 2008,185(6):338-344.
    [102]X. J. Wu, X. J. Zhu, G. Y. Cao, et al. Dynamic modeling of SOFC based on a T-fuzzy model[J]. Simulation Modelling Practice and Theory,2008, 16(1):494-504.
    [103]H. B. Huo, X. J. Zhu, W. Q. Hu, et al. Nonlinear model predictive control of SOFC based on a Hammerstein model[J]. Journal of Power Sources, 2008,185(7):338-344
    [104]X. J. Wu, X. J. Zhu, G. Y. Cao, et al. Dynamic modeling of SOFC based on a T-fuzzy model [J]. Simulation Modeling Practice and Theory,2008, 16(1):494-504.
    [105]K. Rambabu, I. Lars, A. F. Bjarne, et al. Modeling and control of a SOFC-GT-based autonomous power system [J]. Energy, 2007,32 (8):406-417
    [106]D. Bhattacharyya, R. Rengaswamy. A review of solid oxide fuel cell (SOFC) dynamic models [J]. Industrial & Engineering Chemistry Research 2009,48(1):19-22.
    [107]R. Bove, S.Ubertini. Modeling solid oxide fuel cells:methods, procedures and techniques[M]. Springer,2008.
    [108]X. Xue, J. Tang, N. Sammes, Y. Du. Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects[J]. Journal of Power Sources,2005,142(2):211-222.
    [109]X. Zhang, J. Li, G. Li, et al. Development of a control-oriented model for the solid oxide fuel cell[J]. Journal of Power Sources 2006,160 (9):258-267.
    [110]李晨,史翔翔.管式固体氧化物燃料电池的数值模拟[J],动力工程,2006,3(10):742-745.
    [111]高执棣.化学热力学基础[M].北京:北京大学出版社,2006.
    [112]严家脲.工程热力学(第4版)[M].北京:高等教育出版社,2006.
    [113]G.S.James. Lange's handbook of chemistry (Sixteenth Edition) [M]. MCGRAW-HILL,2005.
    [114][英]詹姆斯·拉米尼.燃料电池系统-原理·设计·应用(原书第二版)[M].北京:科学出版社,2006.
    [115]韩敏芳.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004.
    [116]安晨光,曹建,丁家峰.基于SOFC的变压器油中溶解气体分析在线监测仪[J].电力系统自动化,2008,32(14):82-85.
    [117]范竞敏.SOFC型气体检测器在DGA中的应用及相关技术研究[D].长沙:中南大学,2008.
    [118]丁家峰,罗安,胡志坤,等.变压器油中溶解气体实时在线监测系统的研制[J].电力自动化设备,2011,6(206):136-139.
    [119]陈卓如,金朝铭,王洪杰,等.工程流体力学(第2版)[M].北京:高等教育出版社,2004.
    [120]孔珑.流体力学1(第2版)[M].北京:高等教育出版社,2011.
    [121]孔珑.流体力学2(第2版)[M].北京:高等教育出版社,2011.
    [122][美]约翰D.安德森.计算流体力学基础及其应用[M].北京,机械工业出 版社,2007.
    [123]田里,张波.双模糊PID柱温箱系统研究[J].电子测量技术,2006,4(5):197-198.
    [124]马爽,孙建军,吴太虎.一种实验用炉温模糊控制器的设计[J].医疗卫生装备,2010,31(5):17-19.
    [125]杜云,吴学礼,孟华.自适应模糊神经网络在炉温控制中的应用[J].仪器仪表学报,2002,23(3):446-448.
    [126]贾瑞君.关于变压器油中溶解气体在线监测的综述[J].变压器,2002,39(9):39-41.
    [127]赵杰,李红雷.新型变压器油色谱在线监测系统的研制[J].高电压技术,2000,26(6):20-22.
    [128]刘新良,丁纲生.主变压器油气相色谱分析方法中自备填充柱的研制[J].机车电传动,2001,4(4):52-54.
    [129]潘松.EDA实用教程[M].北京:科学出版社,2007.
    [130]EDA先锋工作室.Altera FPGA/CPLD设计(基础篇)(第2版)[M].北京:人民邮电出版社,2011.
    [131]EDA先锋工作室Altera FPGA/CPLD设计(高级篇)(第2版)[M].北京:人民邮电出版社,2011.
    [132]丁家峰,罗安,曹建,王会海.一种新型分布式电力设备在线监测通信网络的设计[J].电气应用,2006,25(7):68-70.
    [133][英]萨默维尔.软件工程(原书第9版)[M].北京:机械工业出版社,2011.
    [134]伽玛.设计模式-可复用面向对象软件的基础[M].北京:机械工业出版社,2011.
    [135]雷雄.卡套式管接头与双卡套式管接头的密封性能对比[J].液压气动与密封,2002,92(2):44-45.
    [136]王秀红.微泵进展研究[J].排灌机械,2000,21(1):5-6.
    [137]曾智祥,肖莉.某导弹控制系统单机机箱电磁屏蔽设计分析[J].国防技术基础,2007,12(12):37-38.
    [138]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理(修订本)[M].南京:东南大学出版社,2005.
    [139]张洪涛,胡志坤.大型电气设备在线监测与故障诊断技术[M].长沙:中南大学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700