用户名: 密码: 验证码:
大换气量房间冬季室内热环境舒适性与节能效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
房间换气次数的增加势必导致供暖房间能耗加大,顶棚辐射、散热器和热风等三种采暖方式由于供暖机理不同,形成的室内热环境特征不同,通风换气时产生的通风热损失也有所区别,为了提高大换气量房间的供暖节能效果,必须对不同供暖方式在大换气量情况下的热舒适性与节能效应进行研究。本文通过实测、理论分析与数值模拟结合的方法,讨论了现有供暖方式在卫生要求较高的工业厂房和民用公共建筑中的适用性。
     实测结果表明,尽管冬季供暖通风带走大量热量,但对墙体壁面温度影响较小。顶棚辐射供暖墙体具有一定蓄热能力,使其节能性优于散热器供暖和热风供暖。在相同的能耗条件下,辐射供暖比散热器供暖和热风供暖的PMV值要高。此外,三种供暖方式的室内空气温度垂直分布规律与封闭房间内的情况差别较大,房间通风量较大时,人体活动区域内沿高度方向三种采暖方式产生的空气温度变化基本相同。可以认为,大换气量房间空气温度垂直分布状况主要与通风气流组织有关,而与供暖方式无关。
     实测还指出,当通风量一定时,如何保证人体热舒适度不变而减少室内外气温差将成为大通风量房间节约采暖能耗的关键,本文结合围护结构传热机理,在对三种方式的能耗状况进行理论分析的基础上,提出了换气次数的节能临界值,若换气次数高于此值,则辐射供暖是较好的选择,否则,散热器供暖是较好的方法。
     结合对实测数据的分析,本文对大通风量房间不同供暖方式下室内温度场和PMV分布进行了数值模拟。对三种供暖方式在不同换气次数条件下的温度场和PMV分布模拟结果显示,大换气量将造成室内一部分区域的不舒适性。分析结果后认为,PMV和室内温度分布是评价大换气量房间不同供暖方式室内热环境的重要参数,在这类房间中,辐射供暖和散热器供暖将各有优点,而热风供暖则是一种不宜采用的供暖方式。
Energy consumption of heating rooms will increase when air exchange rate become large. Because the mechanisms of heating methods used currently, such as radiator heating, ceiling heating and warm-air heating, are different from each -other, the indoor thermal environment is not the same when each one of them employed for room heating. For enhancing energy efficiency of heating rooms, indoor thermal comfort and energy saving effects should be investigated when natural ventilation is used to make a good air quality indoors. In order to obtain the suitabilities of different heating methods in industrial and residential buildings, experimental and theoretical studies, and numerical simulations have been carried out in the present paper.
    The experimental data show that the inner surface temperature distributions of the testing room are affected lightly by ventilation process. The walls of the room heated by ceiling heating have energy storage ability, which makes its energy saving effect superior to conventional radiator heating and warm-air heating. The average PMV value indoor by ceiling heating is higher than the other two be used for room heating under same energy consumption, and the vertical distribution of indoor temperature results by either of the method in a heating room is different from that in a closed room. When air exchange rate is high, The vertical variations of temperatures in the zone of occupant action are similar by the three methods. Thus, the vertical indoor air temperature distribution in the high air exchange room is not mainly determined by heating method, but the way of air current.
    The experimental results indicate that when the air flow rate is determined, the key problem for energy saving is how to keep the indoor thermal comfort at a suitable level and reduce the difference between the internal and external temperature of the room. A formula is gained for calculating the critical values of air exchange rate. When ventilating rate is greater than the value, radiating heating is the better way for energy saving, or else, convection method in heating is more suitable.
    Numerical simulations are carried out by analyzing on the experimental data for discussing the indoor temperature field and PMV distribution under different ventilating rate and different heating method. Compared with the common situation, The result of numerical simulation shows that the cold air will result in an uncomfortable area indoors by using either of the method mentioned above. PMV and the indoor temperature field can
    
    
    
    be used to evaluate the effect of heating in a large amount air current condition. The result of analysis indicate that the radiation heating and radiator heating have some advantages in such rooms, and hot-air heating is an unsuitable way for room heating.
引文
[1] 狄洪发,葛庆昆等.辐射吊顶的实验研究.暖通空调,2000,30(4):5~8
    [2] 刘国丹,于慧俐等.民用住宅建筑低温辐射供暖特性参数的实验研究.暖通空调,2001,31(4):1~3
    [3] 亢燕铭,沈恒根等.地板辐射供暖的节能效应分析.暖通空调,2001,31(4):4~6
    [4] [英]D.A.麦金太尔,室内气候,龙惟定等译,上海科技出版社,1988年第一版
    [5] 魏润柏,徐文华.编著.热环境.中国上海:同济大学出版社,1994.4
    [6] T.A.马克斯,等著.陈士辚译.建筑物·气候·能量.北京:中国建筑工业出版社,1990
    [7] 贾衡,人与建筑环境.北京工业大学出版社,2001
    [8] Fanger, P. O. & McGraw-Hill, Thermal Comfort, New York, 1912
    [9] 巴格斯罗夫斯基B H.建筑热物理学.单寄平,译,北京:中国建筑工业出版社,1988
    [10] (匈)L.巴赫基著,傅忠诚等译.房间的热微气候.北京:建筑工业出版社,1987
    [11] M. E. Fountain. Laboratory study of the effect of air movement on thermal comfort: A comparison and discussion of methods. ASHRAE Trans, Vol97, Part Ⅰ, 1991
    [12] 巨永平,马九贤.气体流动及其与热舒适关系研究的进展与评述.暖通空调, 1999,29(4):27~30
    [13] Fanger, P. O., Radiation and discomfort, ASHRAE Journal No. 2, 1986
    [14] Gagge, A P, Fobelets, A, and Berglund, L G. A standard predictive index of human response to the thermal enviornment. ASHRAE Trans. 2B, 1986: PO-86~14
    [15] Abdulvahap Yigit. Combining thermal comfort models. ASHRAE Trans, 1999P: 143~156
    [16] Fanger, P. O., Comfort limits for asymmetric thermal radiation, Energy and Buildings, Vol. 8, No. 3, 1985
    [17] Mclntyre, D. A., Overhead radiation and comfort, Building Services Engineer, Vol. 44, P. 226~234
    [18] Tyrrell S. Burt. Climate and Buildings: The sick building syndrome in offices. [Thesis for licentiate of engineering]. Stockholm: The royal institute of technology. 1993
    [19] 王昭俊,张志强等.热舒适评价指标及冬季室内计算温度探讨.暖通空调,2002,32(4):26~28
    [20] 许刚.低温热水地板辐射采暖系统的工程应用浅析.建筑热能通风空调,2002,21(2):56~58
    [21] 方修睦,王伟等.电热膜供暖的热舒适性分析.暖通空调,2002,32(4):94,111
    
    
    [22] 曹勇,许文发等.供热方式环境评价方法的研究.建筑热能通风空调,2002,21(2):6~7
    [23] 武云甫,任晓燕等.电热膜低温辐射采暖在我国大规模推广的前景分析.建筑热能通风空调,2002,21(4):14~17
    [24] 荣秀惠 萧兰生等,实用供暖工程设计.北京:中国建筑工业出版社,1989
    [25] 贺平,孙刚.供热工程.北京:中国建筑工业出版社,1993
    [26] 赵志强,贾衡等.低温电热地板辐射供暖实验研究.建筑热能通风空调,2002,21(1):20~23
    [27] 范存养.热舒适评价指标PWV及其实际应用.暖通空调,1993.2.
    [28] 张志刚,李秀华.地板辐射供暖对围护结构保温的要求.建筑热能通风空调,2001,20(1):20~22
    [29] Bjarne W. Olesen. Radiant Floor Heating In Theory and Practice. ASHRAE JOURNAL, 2002, 44(7): 19~26
    [30] Kenneth M. Elovitz. Hydronic Heating: Two Systems Compared. ASHRAE JOURNAL, 2001, 43(7)
    [31] Larry G. Berglund. Comfort and Humidity. ASHRAE JOURNAL, 1998, 40(8): 35~41
    [32] M. Steinman, L. N. Kalisperis, L. H. Summers. The MRT-Correction Method: A New Method of Radiant Heat Exchange. ASHRAE TRANSATIONS, 1989, vol. 95(Partl): 1015~1027
    [33] B. W. Olesen, J. Rosendahl etc.. Methods for Measuring and Evaluating the Thermal Radiation in a Room. ASHRAE TRANSATIONS, 1989, vol. 95(Partl): 1028~1044
    [34] S. Tanabe, E. A. Arens, F. S. Bauman. Evaluating Thermal Environments By Using A Thermal Manikin With Controlled Skin Surface Temperature. ASHRAE TRANSATIONS, 1999: 39~48
    [35] 章熙民 梅飞鸣 等.传热学(第二版).北京:中国建筑工业出版社,1993
    [36] 刘泽华.室内热舒适评价及环境参数的影响,全国暖通空调制冷 1992年年会论文集
    [37] 张旭,薛卫华,王宝凯等.供暖房间热舒适模糊分析及最优室内计算温度的研究.暖通空调,1999,2:66~69
    [38] Peter Hoppe. Comfort requirements in indoor climate, Energy and Building, No. 11, 1988
    [39] Gagge, E. A. & Stolwijk, J. A. J& Saltin, B.. An effective temperature scale based on a simple of human physiological requlatory response, ASHRAE Trans., Vol. 77 (1)
    [40] 斯帕罗B M,塞斯R D.辐射换热.顾传宝等译,北京:高等教育出版社,1983.289~308
    
    
    [41] 张旭.常用供暖散热器辐射—对流放热量比例的研究.暖通空调,1994,(6):13~15
    [42] 建设部工程质量安全监督与行业发展公司,中国建筑标准设计研究所编.全国民用建筑工程设计技术措施,暖通空调·动力.中国计划出版社,2003.2
    [43] S.V帕坦卡著.张政译.传热与流体流动的数值计算.北京:科学出版社,1989
    [44] 陈友明.多层平板墙体Z—传递函数的简单计算方法.全国暖通空调制冷 2002年学术年会论文集:1119~1122
    [45] 西安冶金建筑学院,华南工学院,重庆建筑工程学院,清华大学编,建筑物理,中国建筑工业出版社,1980年7月第一版
    [46] 方修睦主编,建筑环境测试技术,中国建筑工业出版社,2002年7月第一版
    [47] 郭宽良,孔祥谦,陈善年编著,计算传热学,中国科技大学出版社,1988年12月第一版
    [48] 陶文铨编著,数值传热学,西安交通大学出版社,1988年7月第一版
    [49] 彦启森,赵庆珠合编,建筑热过程,中国建筑工业出版社,1986年12月第六版
    [50] 陆耀庆.供暖通风设计手册.北京:中国建筑工业出版社,1987
    [51] P.O.范格著.于晓明译.21世纪的室内空气品质:追求优异,暖通空调,2000 (30):32~35
    [52] 钟珂,亢燕铭,吕静,刘加平.辐射采暖房间耗热量分析[J].暖通空调,2004,34(1)
    [53] 采暖通风与空气调节设计规范(GBJ19—87).北京:中国计划出版社,2001
    [54] Chrenko, F. A. Heated ceiling and Comfort. J. HVAC, Vol. 20 & Vol. 21, 1953

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700