用户名: 密码: 验证码:
氯离子在混凝土中的渗透性能与钢筋腐蚀临界浓度的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文着重研究了全浸泡条件下和干湿循环条件下,氯离子在不同水胶比和不同掺量的粉煤灰、矿渣粉混凝土中的渗透性能,以及混凝土内钢筋腐蚀的氯离子临界浓度。
     通过取样测得不同技术条件混凝土各层氯离子含量,得到氯离子扩散系数与时间成幂函数关系,据此推出氯离子在混凝土中扩散的数学模型式为:
     试验结果表明,氯离子的扩散系数随着水胶比的减小而降低,适当地掺入粉煤灰或矿渣粉可以有效地降低氯离子的扩散系数。氯离子在混凝土中的扩散系数还与实验条件有关,干湿循环条件下的扩散系数均大于全浸泡条件下的。
     本文利用半电池电位法、交流阻抗法和时间电位法三种电化学无损检测技术判断评估试件在试验过程中钢筋腐蚀状况,当钢筋由钝化状态转为活化状态时,取样分析钢筋周围氯离子含量,得到了不同技术条件混凝土的氯离子临界浓度。结果表明,同技术条件的混凝土试件,在全浸泡条件下的氯离子临界浓度均要大于干湿循环条件下的,即临界浓度大小受到试验条件的影响;相同的试验条件下,水胶比对氯离子临界浓度大小有显著地影响,而掺入适量的粉煤灰或矿渣粉对氯离子临界浓度无明显地影响。
     对氯离子临界值占胶凝材料百分比含量进行线性拟合,得到了全浸泡条件下和干湿循环条件下氯离子临界浓度随混凝土水胶比变化的关系式。
     研究结果表明,利用交流阻抗谱不仅可以快速、准确的判断混凝土中的钢筋腐蚀状态,而且对工作电极的扰动小,还可得到关于混凝土和钢筋表面的诸多信息。因此,交流阻抗技术是研究混凝土内钢筋腐蚀状态的有力工具。
In this paper, it was mainly studied that the penetration capacity and critical content of chloride ions in concrete with different water/binder ratio, fly ash and slag under immersion and cycle of dry and wet conditions.
    The relationship of chloride ions diffusion coefficient with time conforms to power function according to chloride ions' content in each layer of different concrete. Based on the relationship, a mathematical model equation of chloride ions diffusion in concrete was deduced as follow:
    Test results show that chloride ions diffusion coefficient decreases with the water/binder ratio reducing. When fly ash or slag is properly blended, chloride ions diffusion coefficient will also drop. Chloride ions diffusion coefficient is related with test conditions, the diffusion coefficient in cycle of dry and wet conditions is always larger than that in immersion conditions.
    In this paper, rebar corrosion state was judged with three electrochemical nondestructive measuring technologies, i.e. half-cell potential, A.C. impedance and time potential. When the rebar was transformed from passivation to depassivation, it can obtain the chloride ions corrosion critical content through taking and analyzing chloride ions content around the rebar. Test results show chloride ions critical content in immersion conditions is always larger than that in cycle of dry and wet for the same concrete, that is, test conditions affects chloride ions critical content value. In the same conditions, water/binder ratio obviously affects chloride ions critical content, but the influence of fly ash or slag on chloride ions critical content is not obvious.
    It is obtained the equation that chloride ions critical content change with water/binder ratio through linear fitting experiment data.
    The studied results also show A.C. impendence spectrum not only can quickly
    
    
    
    and exactly judge the rebar state in concrete, but also hardly disturb the work electrode, in addition, much message of the concrete and rebar surface can be obtained. Therefore, A.C. impendence technology is a promising method in studying the rebar corrosion state in concrete.
引文
[1] 竺存宏、李颖等,港口水工建筑物中氯离子分布规律德研究,交通部天津水运工程科学研究所、天津港务局,1999
    [2] 洪乃丰,腐蚀科学与防腐蚀工程新进展,中国腐蚀与防护学会主编,1999.
    [3] 洪定海编著,混凝土中钢筋的腐蚀与保护,中国铁道出版社,北京,1998.10.
    [4] 洪定海、潘德强等,华南海港钢筋混凝土码头锈蚀调查报告,水运工程,1982,第二期
    [5] 范卫国、潘今岱、罗德宽等,北仑港码头钢筋混凝土上部结构腐蚀破坏调查报告,海岸工程两岸研讨会论文集,西安,1997
    [6] S.E. Hussain, Rasheeduzzafar, A.Al—Musallam and A.S.Al-Gahtani, Factors
    
    affecting threshold chloride for reinforcement corrosion in concrete, C. C. R., 1995,25(7)
    [7] Wolfgang Breit, Aachen, Corrosion of steel in concrete—The question of corrosion initiated by the critical chloride content, Concrete Precasting Plant and Technology, 1998, 11: 37~45
    [8] 杨建森,氯盐对混凝土中钢筋的腐蚀机理与防腐技术,混凝土,2001,(7):52~56
    [9] 王胜先、林薇薇、李悦等,新型阻锈剂对钢筋混凝土作用的研究(Ⅰ),建筑材料学报,2000,3(4):310~315
    [10] 朱雅仙、洪定海、肖权等,钢筋混凝土耐久性海港暴露试验。第四界全国混凝土耐久性学术交流会论文集,1996
    [11] M.R.Jones,R.K.Dhir and J.P.Gill, Concrete surface treatment: effect of exposure temperature on chloride diffusion resistance,C.C.R.,1995, 25(1): 197~208
    [12] Anik Delagrave,Jacques, et al, Chloride binding capacity of various hydrated cement paste systems, Advn Cem Bas Mat, 1997, (6): 28~35
    [13] G.Balabanic,N.Bicanic and A.Durekovic, The influence of w/c ration, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete, C.C.R., 1996, 26(5): 761~769
    [14] 樊粤明、文梓芸、李志诚等,用复合添加剂配制高抗渗抗蚀混凝土,华南理工大学学报(自然科学版),1999,27(7):61~67
    [15] 黄士元、孙复强、王善拔等译,混凝土科学—有关近代研究的专论,中国建筑工业出版社,1986.9
    [16] 朱雅仙,混凝土结构中钢筋腐蚀与防护对策,南京水利科学研究院,1996.12
    [17] 王胜先,新型钢筋缓蚀剂的合成及缓蚀机理的研究[博士学位论文],1999.3
    [18] 魏宝明主编,金属腐蚀理论及应用,化学工业出版社,北京,1984.12
    [19] 曹楚南编著,腐蚀电化学,化学工业出版社,北京,1994.9
    [20] 汪鹰,缓蚀剂对钢筋锈蚀的抑制及其机理的研究[硕士论文],1997.5
    [21] 王绍东、黄煜镔、王智,水泥组分对混凝土固化氯离子能力的影响,硅酸盐学报,2000,28(6):570~574
    [22] S.E.Hussian, et al, Factors affecting threshold chloride for reinforcement corrosion in concrete,C.C.R.,1995, 25(7): 1543~1995
    [23] 胡智农,粉煤灰水泥砂浆及混凝土氯离子扩散性研究[硕士论文],1989.6
    [24] D.Higgins, The effect of GGBS on the durability of concrete, Concrete, September/October, 1991
    [25] 罗睿,磨细矿渣(GGBS)高性能混凝土抗氯离子扩散的机理研究[硕士论文],2000.2
    [26] Thomas M D A, Mathews J D, Performance of fly ash concrete in UK structure, ACI Materials Journal, 1993, 90(6): 586~593
    [27] Rasheeduzzafar, Al-Saadaum S S, Al-Gahtani A S, Corrosion cracking in relation to bar diameter, cover, and concrete quality, Journal of Materials in Civil
    
    Engineering, ASCE, 1992, 4(4): 327~342
    [28] 张伟平、张誉、刘亚芹,混凝土中钢筋锈蚀的电化学检测方法,工业建筑,1998,28(12):21~25
    [29] 常保全、孙百林、白常举,混凝土中钢筋锈蚀的检测技术,建筑技术开发,2001,28(3):44~48
    [30] 许仲梓,水泥混凝土电化学进展——交流阻抗谱理论,硅酸盐学报,1994,22(2):173-180
    [31] McCarter W J and Brousseau R, The A.C. response of hardend cement paste,C.C.R.,1990, 20(6): 891~899
    [32] Brantervik K and Niklasson G A, Circuit models for cement based materials obtained from impedance spectroscopy, C.C.R., 1991, 21(4): 496~503
    [33] Gu Ping, Xie Ping, Beaudion J J, et al. A.C. impendence spectroscopy Ⅰ—a new equivalent circuit model for hydrating cement paste,C.C.R.,1992, 22(5): 833~840
    [34] Gu Ping, Xie Ping, Beaudion J J, et al. A.C. impendence spectroscopy Ⅱ—microstructural characterization of hydrating cement-silica system, C.C.R.,1993, 23(1): 157~168
    [35] Xie Ping, Gu Ping, Xu Zhongzi, et al, A rationalized A.C. impedance model for microsructural characterization of hydrating cement systems, C.C.R., 1993, 23(2): 359~367
    [36] Gu Ping, Xu Zhongzi, Xie Ping, et al, Application of A.C. impedance techniques in studies of porous cementitious materials Ⅰ—Influence of solid phase and pore solution on high frequency resistance,C.C.R.,1993, 23(3): 531~540
    [37] Xu Zhongzi, Gu Ping, Xie Ping, et al, Application of A.C. impedance techniques in studies of porous cementitious materials Ⅱ—Relationship between ACIS behaviors and the porous structure, C.C.R.,1993, 23(4): 853—862
    [38] Xu Zhongzi, Gu Ping, Xie Ping, et al, Application of A.C. impedance techniques in studies of porous cementitious materials Ⅲ—ACIS behavior of very low porosity cementitious systems, C.C.R.,1993,23(5): 1007~1015
    
    
    [39] Gu Ping, Xie Ping, J.J.Beaudoin, Microstructural characterization of the transition zone in cement systems by means of A.C. impedance spectroscopy, C.C.R.,1993,23(3): 581~591
    [40] 赵永韬、钱建华,混凝土中钢筋的腐蚀破坏及其检测,四川化工与腐蚀控制,1999年,2(6):24~27
    [41] 储炜、魏宝明等,钢筋在混凝土模拟孔溶液及水泥净浆中的腐蚀电化学研究,南京化工学院学报,1995,17(3):14~19
    [42] 刘晓敏、史志明、林海潮等,钢筋在混凝土模拟孔隙液中腐蚀电化学行为,腐蚀科学与防护技术,1997,9(2):140~143
    [43] 崔巍、史志明、宋光铃等,钢筋混凝土养护过程中的电化学行为,腐蚀科学与防护学报,1998,10(4):202~207
    [44] 刘晓敏、史志明、许刚等,钢筋在混凝土中腐蚀行为的电化学阻抗特征,腐蚀科学与防护技术,1999,11(3):161~164
    [45] 史美伦、陈志源,硬化水泥浆体孔结构的交流阻抗研究,建筑材料学报,1998年,1(1):30~34
    [46] 史美伦、刘俊彦、吴科如,混凝土中钢筋锈蚀机理研究的交流阻抗方法,建筑材料学报,1998,1(3):206~209
    [47] 吴学礼、许丽萍、杨全兵,氯离子在混凝土中的扩散速度,混凝土,1996,34~41
    [48] 朱雅仙、朱秀娟等,港口水工建筑物耐久性研究,南京水利科学研究院,2000.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700