用户名: 密码: 验证码:
在体胰腺癌3T磁共振质子波谱与扩散加权成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是严重威胁几类生命的癌症之一。在21世纪的今天,胰腺癌的诊治仍然是一个亟待解决的重大医学难题。胰腺癌患者临床预后极差,手术根治性切除是当前治疗胰腺癌唯一有效的治疗手段。但大多数患者在得到诊断时已经处于病情进展期,而仅有10—150%的患者具备接受手术切除的条件。长期以来,国内外学者一直努力致力于提高胰腺癌诊断水平,但包括B超,cT或MRI等各种检查手段对胰腺癌早期诊断的敏感性和特异性仍明显不够。目前,随着高场磁共振成像(MRI)系统、高性能梯度以及并行成像技术的发展,包括磁共振波谱(MRS)和弥散加权成像(【)WI)在内的多项MRI新技术开始越来越多地用于胰腺疾病的诊断评价。本研究中,我们在3T场强条件下对胰腺癌进行了DWI,质子~1HMRS和组织病理学研究,通过与慢性肿块型胰腺炎患者和正常对照组的比较对胰腺癌的I)WI、~1H MRS和病理组织学特征进行了分忻,并初步探讨了应用表观扩散系数(ADc)值和胆碱类代谢物(ccM)定量分忻对预测胰腺癌分化程度和增殖活性的可能性。
     第一部分:胰腺癌在体~1H MRS研究:与肿块型胰腺炎和正常胰腺的比较
     目的通过与肿块型胰腺炎和正常胰腺的比较,分忻胰腺癌的在体~1H磁共振波谱(MRS)特征并探讨胰腺代谢物比值定量分忻对胰腺癌的诊断价值。
     方法经医学伦理委员会批准并在获得患者的知情同意后,共27例胰腺癌(男/女,15/12;年龄,62.2±12.0岁)、11例肿块型慢性胰腺炎(男/女,7/4;年龄,52.5±11.4岁)及20例健康志愿者(男/女,15/5;平均年龄,38.6±17-2岁)被纳入接受单体素’H—MRS研究。胰腺癌、肿块型胰腺炎患者~1H.MRs检查与获得病理诊断的时间间隔不超过2周。分别对胰腺癌、肿块型胰腺炎和正常胰腺组织中的脂质相对含量(rLip,为脂质峰下面积与0—6pM所有峰下面积之比)和胆碱类代谢物(ccM)与各氨酸盐复台物(G1x)比值(ccM/G1x)进行定量分忻与比较,并采用操作者特征曲线(R0c)分忻进一步评价各代谢物指标在胰腺癌与肿块型胰腺炎鉴别诊断中的价值。
     结果与正常胰腺相比,胰腺癌’H.MRs以大的残余H:0峰和较小的Lip峰为特征,ccM峰大小不一,可能与肿瘤分化程度及肿瘤成分的不均质性有关;肿块型慢性胰腺’H.MRs以Lip峰大而突出,残余H_2O峰较小。正常胰腺组ccM/Glx比值(0.592±0.233;n=20)显著高于胰腺癌(0.367±0.094;n=27)(P=0.007)和肿块型慢]性胰腺炎(0.446:=0.039;n 11)(P 0.021);两两比较,胰腺癌CCM/GIx比值比肿块型慢性胰腺炎更低(P 0.011)。肿块型慢性胰腺炎的相对脂质含量(rLip,0.725:=0.059)较正常胰腺高(0.645:=0.096),有统计学差异(P=0.020);胰腺癌rLip值(0.420:=0.164)低于正常胰腺和肿块型慢性胰腺炎(P<0.001)。rLip以0.647作为截点值来鉴别胰腺癌与肿块型胰腺炎,ROC分忻中获得的敏感性和特异性分别为90.9%和92.6%;CCM/GIx以0.423作为截点值来鉴别胰腺癌和肿块型胰腺炎,ROC分忻得到的敏感性和特异性分别为81.8%和70.4%。
     结论:和正常胰腺和肿块型胰腺炎相比较,胰腺癌的·H波谱以脂质峰降低、残留水峰增加为特征;胰腺癌的胆碱类化台物含量和相对脂质含量减低。代谢物定量分忻对鉴别胰腺癌和肿块型慢性胰腺炎有重要价值。
     第二部分:AIIC值定量分析在胰腺癌诊断中的应用价值
     目的:通过与正常胰腺、肿块型胰腺炎比较,分忻胰腺癌在3T磁共振DWI上的影像特征现;探讨表观扩散系数(ADC)值定量分忻在胰腺癌定性诊断中的价值。
     方法:研究对象包括胰腺癌患者27例(男/女,15/12;年龄,62.2±12.0岁)、慢性肿块型胰腺炎患者(男/女,7/4;年龄,52.5±11.4岁)11例和健康志愿者20名(男/女,15/5;年龄,38.6±17.2岁)。对所有研宄对象,连续实施两组b值(b 0,500;0,1000s/mm。)不同的胰腺DWI检查。应用圆形感兴趣区(ROI)测量胰腺病灶和正常胰腺ADC值(ADC5 00.ADCl000);并按公式rADC(ADC500--ADCl00())/ADC500计算出ADC500与ADCl㈣间的变化率(rADC)。
     结果:在b~500或b-1000 s/mm2DWI图像上,胰腺癌与肿块型胰腺炎呈高信号肿块。同类ADC值比较,胰腺癌(ADC500,1.264:=0.153;ADCl000,1.111±0.133)和肿块型胰腺炎(ADC500 1.352:=0.114;ADCl㈣,1.210:=0.093)的ADC值低于正常胰腺组织(ADC5 00.1.983:=0.172;ADCl㈣,1.658:=0.145),两两比较均有显著性差异(P<0.001)。胰腺癌的ADC500和ADCl㈣较肿块型胰腺炎更低,P值分别为0.045和0.03。胰腺癌的ADC值变化率(rADC,[%])为9.78:=3.50,低于肿块型慢性胰腺炎(12.76:=1.90)(P 0.116)和正常胰腺(17.62:=4.76)(P<0.001)。肿块型慢性胰腺炎和正常胰腺rADC相比也有统计学差异(P=0.003)。在ROC分忻,ADC5【)()、ADCl㈣和rADC对鉴别胰腺癌和肿块型慢性胰腺炎的敏感性分别为72.7%、74.1%、72.7%,特异性分别为74.1%、81.8%、66.7%。
     结论:胰腺癌肿块内水分子扩散受限及做循环灌注减少较肿块型胰腺炎更为显著。I)WI结台ADc值定量分忻能为胰腺癌的诊断及其与肿块型胰腺炎的鉴别提供做观病理组织学方面的重要信息。
     第三部分:胰腺癌胆碱类代谢物、ADC值和I(i.67标记指数相关性研究
     目的:比较不同分化度胰腺癌的胆碱类代谢物(ccM)含量、ADc值和k一67标记指数,并进一步研究胰腺癌胆碱类代谢物含量、ADc值与k一67标记指数的相关性。
     方法:复习病理证实的胰腺癌患者(男/女,12/9;平均年龄62.8±12.6岁)21例,在手术前MRI/vIRs和术后病理组织学检查资料。对不同分化程度的胰腺癌的ccM含量、肿瘤ADc值和k一67抗原标记指数进行比较(Mann—whimev u检验),并进一步探讨胰腺癌ccM含量、ADc值与k一67抗原表达的相关性。
     结果:21例胰腺癌中,高一中分化胰腺癌14例(其中高分化癌3例),低分化腺癌7例;高一中度分化胰腺癌的k一67标记指数(40.99±7.56)显著小于低分化胰腺癌(59.91±8.61),P值等于0.()(】1。胰腺单体素’H.MR。s研究中,14例高一中度分化胰腺癌的ccM/Glx比值为54.5±19.7,明显低于低分化胰腺癌的ccM/Glx比值(0.441±0.080)(P=0.019)。在高6值DWI成像,高一中度分化胰腺癌ADc值平均为1.085±0.161,与低分化胰腺癌的ADc值(1.146±0.062)相比无显著性差异(P=0—322)。直线相关检验表明,胰腺癌ccM/Glx比值大小与胰腺癌k一67标记指数有显著的相关性(P=0.017);而胰腺癌的ADc值与k一67标记指数无显著的相关性(P=0.255)。
     结论:低分化胰腺癌的k一67标记指数、ccM/Glx比值显著高于高一中分化胰腺癌;胰腺癌的ccM/Glx比值与其k一67抗原表达水平具有显著相关性。因此,我们认为胰腺’H MRS在预测肿瘤分化程度、评价胰腺癌增殖活性方面有潜在的应用价值。
Pancreatic cancer is one of the most lethal human cancers and continues to be a major unsolved health problem at the start of the 21st century. It is well known that the 5-year survival rate of patients with pancreatic adenocarcinoma is dismal. When obtaining initial diagnosis, less than 10-15% of patients still preserve an opportunity to surgical resection, which is the only potential curative treatment. Although much effort has been devoted to improve early detection of pancreatic adeno carcinomas, the sensitivity to detect pancreatic cancer is still insufficient with conventional techniques including tumor-associated antigen testing, ultrasonography, CT and MR imaging. With recent development of the high-field MR systems, high-performance gradient and parallel imaging technique, MR spectroscopy (MRS) and MR diffusion-weighted imaging (DWI) are increasingly used to evaluate diseases involving abdominal organs. In this study, pancreatic DWI, proton MRS and histopathological examination were performed for patients with pancreatic carcinoma, as well for patients with mass-forming chronic pancreatitis and healthy volunteers for control. Our purpose was to evaluate the usefulness of DWI and proton MRS in the diagnosis of pancreatic carcinoma, and to explore the value of apparent diffusion coefficient (ADC) and metabolite quantification in predicting the differentiation degree and proliferation activity for pancreatic carcinoma.
     Part I: In vivo ~1H MR Spectroscopy of Pancreatic Carcinoma at 3T: with Mass-forming Chronic Pancreatitis and Normal Pancreas in Comparison
     Objective: In this part, our purpose was to analyze the !H MR spectroscopic features of in-vivo pancreatic carcinoma, and to explore the value of metabolite quantification in differentiating pancreatic carcinoma from mass-forming chronic pancreatitis.
     Methods: This study protocol had been approved by our institutional Medical Ethics Committee. With informed consent, single-voxel pancreatic !H MR spectroscopic examination was performed for 27 patients with pancreatic carcinoma (M/F, 15/12; age, 62.2±12.0 years) and 11 patients with mass-forming chronic pancreatitis (M/F, 7/4; age, 52.5±11.4 years), and for 20 healthy volunteers (M/F, 15/5; mean age, 38.6±17.2 years) for control. !H-MR spectroscopic features of pancreatic carcinoma, mass-forming chronic
     pancreatitis and normal pancreas were pictured; moreover, the relative lipid content (rLip, the ratio of lipid peak area divided by peak areas from 0 to 6 ppm), choline-containing metabolites (CCM) to glutamate and glutamine complex (Glx) ratio (CCM/Glx) were compared between three groups. Furthermore, ROC analysis was made to determine the diagnostic value of metabolite quantification in differenting pancreatic carcinoma from mass-forming chronic pancreatitis.
     Results: In comparison with normal pancreas, !H spectrum of the pancreatic carcinoma was characterized by large residual water (H2O) resonance peak and small lipid peak; CCM of the pancreatic carcinoma was reduced and varied in size, likely due to the difference in tumor differentiation degree and the heterogeneity in tumor constituents; however, mass-forming chronic pancreatitis presented with an enlarged lipid peak and reduced residual H2O. CCM/Glx ratio of the pancreatic carcinoma (0.367±0.094 [mean±SD]; n=27) was lower than that of mass-forming chronic pancreatitis (0.446±0.039; n=ll) (P=0.011). CCM/Glx ratios of both pancreatic carcinoma and mass-forming pancretitis were significantly lower than that of normal pancreas (0.592±0.233; n=20), with P values of 0.007 and 0.021 respectively. The rLip value of pancreatic carcinoma (0.420±0.164) was lower than those of chronic pancreatitis (P<0.001) and normal pancreas (P<0.001). Significant difference (P=0.020) was also revealed in rLip value between mass-forming pancreatitis (0.725±0.059) and normal pancreas (0.645±0.096). For differentiating pancreatic carcinoma from mass-forming pancreatitis, rLip obtained sensitivity of 90.9% and specificity of 92.6% when using 0.647 as the optimal cut-off value; while CCM/Glx obtained sensitivity of 81.8% and specificity of 70.4% when using cut-off value of 0.423.
     Conclusion: In !H spectrum, pancreatic carcinoma presented with a decrease of CCM concentration and relative lipid content, as well as an increase of residual water, when compared to normal pancreas and mass-forming chronic pancreatitis. !H MR spectroscopy with metabolite quantification was of potential value in differentiating pancreatic carcinoma from mass-forming chronic pancreatitis.
     Part II: Usefulness of ADC Quantification in Differentiation between Pancreatic Carcinoma and Mass-forming Chronic Pancreatitis
     Objective: To explore the imaging features of pancreatic carcinoma in 3-T MR diffusion-weighted imaging (DWI), and to determine the efficacy of ADC quantification for differentiating pancreatic carcinoma from mass-forming chronic pancreatitis.
     Methods: Our study subjects consisted of 27 patients with pancreatic carcinoma (M/F, 15/12; age, 62.2±12.0 years), 11 patients with mass-forming chronic pancreatitis (M/F, 7/4; age, 52.5±11.4 years) and 20 healthy volunteers (M/F, 15/5; age, 38.6±17.2 years). For all of them, twice pancreatic DWIs with two different sets of b values (0, 500 and 0, 1000 s/mm2) were performed consecutively. ADC values (ADC500, ADC1000) of pancreatic carcinoma, mass-forming pancreatitis and normal pancreas were measured using a circular region of interest (ROI), and rADC was calculated according to the formula: rADC = (ADC500—ADC1000)/ADC500. The diagnostic performance of ADCs and rADC (the rate of variance between ADC500 and ADC1000) were evaluated using ROC analysis.
     Results: Both pancreatic carcinoma and mass-forming pancreatitis were revealed as high-attenuation mass lesions on DWI with b value of 500 or 1000 s/mm2. The ADCs of pancreatic carcinoma (ADC500, 1.264±0.153; ADC1000, l.lll±0.133) and mass-forming pancreatitis (1.352±0.114; 1.210±0.093) were lower than those of the normalpancreatic tissues (1.983±0.172; 1.658±0.145) (PO.001). Compared to mass-forming pancreatitis, pancreatic carcinoma exhibited an even lower ADC1000 (P=0.045) and ADC500 values (P=0.03). The rADC (%) of pancreatic carcinoma was 9.78±3.50, significantly lower than those of mass-forming pancreatitis (12.76±1.90, P=0.116) and normal pancreas (17.62±4.76, P<0.001). Significant difference was revealed in rADC between the mass-forming pancreatitis and normal pancreas (P=0.003). In ROC analysis, ADC500, ADC1000 and rADC respectively obtained sensitivity of 72.7%, 74.1% and 72.7% and specificity of 74.1%, 81.8% and 66.7% for differentiating pancreatic carcinoma from mass-forming chronic pancreatitis.
     Conclusion: Pancreatic carcinoma was characterized by more restricted water diffusion (lowered ADC) and lowered microvascular perfiision (lowered rADC) than mass-forming chronic pancreatitis in DWI. DWI combined with ADC quantification might be a potentially useful technique in the diagnosis of pancreatic carcinoma by providing histological information in vivo.
     Part III: Correlation of Choline-containing Metabolites (CCM), ADC Value and Ki-67 Labeling Index in Pancreatic Carcinoma
     Objective: To investigate the difference between well-to-moderately and poorly differentiated pancreatic carcinoma in Choline-containing metablites (CCM) content, ADC value and Ki-67 labeling index, and to determine whether there is a correlation of CCM content, ADC value with the Ki-67 protain expression.
     Materials and methods: Preoperative MRI/MRS and postoperative histopathologic results of 21 patients with pancreatic carcinoma (M/F, 12/9; age, 62.8±12.6 years) were reviewed. CCM content, ADC value and Ki-67 labeling index of tumors with varied differentiating grades were compared using Mann-Whitney U test; and the correlation of CCM, ADC and Ki-67 labeling index were determined using linear regression analysis.
     Results: In postoperative histopathologic examination, 14 and 7 pancreatic carcinoma were respectively diagnosed as well-to-moderately differentiated and poorly differentiated tumors; the Ki-67 labeling index of well-to-moderately differentiated tumors (40.99±7.56) was lower than that of poorly differentiated (59.91±8.61) (P=0.001). In single-voxel !H-MRS study, the CCM/Glx ratio of well-to-moderately differentiated tumors (54.5±19.7) was significantly lower than that of poorly differentiated (0.441±0.080) (P=0.019). No significant difference was revealed in ADC values between well-to-moderately differentiated (1.08 5±0.161 s/mm2) and poorly differentiated pancreatic carcinoma (1.146±0.062 s/mm2) (P=0.322) in DWI with b value of 1000 mm2/s. There is a significant linear correlation (P=0.017) between CCM/Glx ratio and Ki-67 labeling index, but no significant correlation between ADC value and Ki-67 labeling index (P=0.255).
     Conclusion: !H MRS may have potential value in predicting the differentiation degree and proliferation activity of pancreatic carcinoma.
引文
[1] Buck AK, Herrmann K, Eckel F, Beer AJ. Pancreatic and Hepatobiliary Cancers. Methods Mol Bid, 2011, 727: 335-349.
    [2] Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin, 2004, 54: 8-29.
    [3] MacKenzie MJ. Molecular therapy in pancreatic adenocarcinoma. Lancet Oncology, 2004, 5: 541-549.
    [4] Hilgers W, Kern SE. Molecular genetic basis of pancreatic adenocarcinoma. Genes Chromosomes Cancer, 1999, 26: 1-12.
    [5]赵平我国胰腺癌诊治策略的研究中华胰腺病学杂志,2002,2:193-199
    [6]王兴鹏,徐刚胰腺癌的治疗胃肠病学杂志,2004,9:107-109
    [7] Adsaya NV, Basturka O, Klimstrab DS, et al. Pancreatic pseudotumors: non-neoplastic solid lesions of the pancreas that clinically mimic pancreas cancer. Semin Diagn Pathol, 2004, 21: 260-267.
    [8]季洪兵,吕光明,钟南保,陈忠华立体定向放射治疗胰腺癌的疗效分析实用肝脏病杂志,2010.14:883-887
    [9] Burris H, Moore J, Auderson J, et al. Improvements in survival and clinical benefict with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trail. J Clin Oncol, 1997, 5: 2403-2413.
    [10]王春友胰腺癌分期评估及外科治疗决策的思考中华外科杂志,2007,45:3-5
    [11] Tanaka S, Kitamra T, Yamamoto K, et al. Evaluation of routine sonography for early detection of pancreatic cancer. J Clin Oncol, 1996, 26: 422-427.
    [12] Safi F, Roscher R, Beger HG. The clinical relevance of the tumor marker CA 19-9 in the diagnosing and monitoring of pancreatic carcinoma. Bull Cancer, 1990, 77: 83-91.
    [13] Tempero MA, Uchida E, Takasaki H, et al. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res, 1987, 47: 5501-5503.
    [14] Galasso D, Carnuccio A, Larghi A. Pancreatic cancer: diagnosis and endoscopic staging. Eur Rev MedPharmacol Sci, 2010, 14: 375-385.
    [15] Chang KJ, Nguyen P, Erickson RA, et al. The clinical utility of endoscopic ultrasound-guided fine-needle aspiration in the diagnosis and staging of pancreatic carcinoma. Gastrointestinal Endoscopy, 1997, 45: 387-393.
    [16] Hwang JC, Kim JH, Lim SG, Yoo BM, Cho SW. Endoscopic resection of ampullary adenoma after a new insulated plastic pancreatic stent placement: a pilot study. J Gastroenterol Hepatol,2010,25: 1381-1385.
    [17] Prokesch RW, Chow LC, Beaulieu CF, et al. Local staging of pancreatic carcinoma with multi-detector row CT: use of curved planar reformations initial experience. Radiology, 2002, 225: 759-765.
    [18] Gabata T, Matsui O, Kadoya M, Yoshikawa J. Small pancreatic adenocarcinomas: efficacy of MR imaging with fat suppression and gadolinium enhancement. Radiology, 1994, 193: 683-688.
    [19] Diehl SJ, Lehmann KJ, Gaa J, et al. MR imaging of pancreatic lesions: comparison of manganese-DPDP and gadolinium chelate. Invest Radiol, 1999, 34: 589-595.
    [20] Catalano C, Laghi A, Fraioli F, et al. Pancreatic carcinoma: the role of high-resolution multislice spiral CT in the diagnosis and assessment of resectability. Eur Radiol, 2003; 13: 149-156.
    [21] Vargas R, Nino-Murcia M, Trueblood W, et al. MDCT in Pancreatic adenocarcinoma: prediction of vascular invasion and resectability using a multiphasic technique with curved planar reformations. Am J Roentgenol, 2004,182: 419-425.
    [22] Ichikawa T, Sou H, Araki T, et al. Duct-penetrating sign at MRCP: usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology, 2001, 221: 107-116.
    [23] Fattahi R, Bald NC, Perman WH, et al. Pancreatic diffusion-weighted imaging: comparison between mass-forming focal pancreatitis, pancreatic cancer, and normal pancreas. J Magn Reson Imaging, 2009, 29: 350-356.
    [24] Seicean A, Badea R, Stan-Iuga R, et al. Quantitative contrast-enhanced harmonic endoscopic ultrasonography for the discrimination of solid pancreatic masses. Ultraschall Med, 2010, 31: 571-576.
    [25] Lu N, Feng XY, Hao SJ, Liang ZH, et al. 64-slice CT perfusion imaging of pancreatic adenocarcinoma and mass-forming chronic pancreatitis. Acad Radiol, 2011, 18: 81-88.
    [26] Basso D, Plebani M. The Role of the Tumor Microenvironment in the Progression of PancreaticCancer. J Pancreas (Online), 2000, 1: 19-23.
    [27] Kartalis N, Lindholm TL, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging of pancreas tumours. EurRadiol, 2009, 19: 1981-1990.
    [28] Lee SS, Byun JH, Park BJ, Park SH, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging, 2008, 28: 928-936.
    [29] Lemke A, Laun FB, Klau M, et al. Differentiation of pancreas carcinoma from healthy pancreatictissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol, 2009, 15: 287-292.
    [30] Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion- weighted MRI in colorectal cancer. Am J Roentgenol, 2006, 187: 181-184.
    [31] Ross BD, Colletti P, Lin A. MR spectroscopy of the brain: neurospectroscopy. In: Clinical magnetic resonance imaging. 3rd ed. Philadelphia, Pa: Saunders-Elsevier, 2006: 1840-1910.
    [32] Pagani E, Bizzi A, Di Salle F, De Stefano N, Filippi M. Basic concepts of advanced MRI technique. Neural Sci, 2008, 29: 290-295.
    [33] Leach MO. Magnetic resonance spectroscopy (MRS) in the investigation of cancer at The Royal Marsden Hospital and The Institute of Cancer Research. Phys MedBiol, 2006, 51: 61-82.
    [34] Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographic, 2009; 29: 1653-1663.
    [35] Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer. Cancer Res, 1997, 57: 1452-1459.
    [36] Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr, 2005, 29: 163-169.
    [1] Leach MO. Magnetic resonance spectroscopy (MRS) in the investigation of cancer at the royal Marsden hospital and the institute of cancer research. Phys MedBiol, 2006, 51: 61-82.
    [2] Bendszus M, Warmuth MM, Klein R, et al. MR spectroscopy in gliomatosis cerebri. AJNR, 2000, 21: 375-830.
    [3] Leclerc X, Huisman T , Gregory SA.The potential of proton magnetic resonance spectroscopy ( 1H-MRS ) in the diagnosis and management of patients with brain tumors.Current Opinion in Oncology, 2002, 14: 292-298.
    [4] Nelson SJ, Graves E, Pirzkall A, et al. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging, 2002, 16: 464-476.
    [5] Moller-Hartmann W, Herminghaus S, Kings T, et al. Clinicl application of proton magnetic resonance spectroscopy in the diagnosis of intraCranial mass lesions. Neuroradiology, 2002, 44: 371-381.
    [6] Jansen JF, Backes WH, Nicolay K, et al. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology, 2006, 240: 318-332.
    [7] Baik HM, Su MY, Yu H, et al. Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5 T. MAGMA, 2006, 19: 96-104.
    [8] Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy—a pilot study at 4 T. Radiology, 2004, 233: 424-431.
    [9] Heerschap A, Jager GJ, van der Graaf M, et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res, 1997, 17: 1455-1460.
    [10] Dzik-Jurasz AS, Murphy PS, George M, et al. Human rectal adenocarcinoma: demonstration of 1H-MR spectra in vivo at 1.5 T. Magn Reson Med, 2002, 47: 809-811.
    [11] Casciani E, Polettini E,Bertini L, etal. Prostate cancer: evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiol Med, 2004, 108: 530-541.
    [12] Alusta P, Im I, Pearce BA, et al. Improving proton MR spectroscopy of brain tissue for noninvasive diagnostics. JMagn Reson Imaging, 2010, 32: 818-829.
    [13] Senft C, Hattingen E, Pilatus U, et al. Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery, 2009, 65: 908-913.
    [14] Soper R, Himmelreich U, Painter D, et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classifcation strategy. Pathology,2002, 34: 417-422.
    [15] Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 3 IP, 23Na, and 1H MRS studies of three models of pancreatic cancer. Cancer Research, 1997, 57: 1452-1459.
    [16] 16. Ross BD, Colletti P, Lin A. MR spectroscopy of the brain: neurospectroscopy. In: Edelman RR, Hesselink JR, Zlatkin MB, Crues JV, eds. Clinical magnetic resonance imaging. 3rd ed. Philadelphia, Pa: Saunders-Elsevier, 2006, 1840-1910.
    [17] Pagani E, Bizzi A, Di Salle F, De Stefano N, Filippi M. Basic concepts of advanced MRI technique. Neural Sci, 2008, 29: 290-295.
    [18] Fischbach F, Bruhn H. Assessment of in vivo 1H magnetic resonance spectroscopy in the liver: a review. Liver Int, 2008, 28: 297-307.
    [19] Kreis R. Issues of spectral quality in clinical 1H magnetic resonance spectroscopy and a gallery of artifacts. NMRBiomed, 2004, 17: 361-381.
    [20] Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographic, 2009, 29: 1653-1663.
    [21] Zheng-yu J; Hui Y. 3.0-Tesla: opportunities and challenges. Chinese medical sciences journal, 2006, 21: 205-208.
    [22] Kuhl CK, Traber F, Schild HH, et al. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice (Part I): technical considerations and clinical applications. Radiology, 2008, 246: 675-696.
    [23] Hancu I, Zimmerman EA, Sailasuta N, et al. ^ MR spectroscopy using TE averaged PRESS: A more sensitive technique to detect neurodegeneration associated with Alzheimer's disease. Magnetic Resonance in Medicine, 2005, 53: 777-782.
    [24] Hurd R, Sailasuta N, Srinivasan R, et al. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magnetic resonance in medicine, 2004, 51: 435-440.
    [25] Sharma U, Sah RG, Jagannathan NR. Magnetic resonance imaging (MRI) and spectroscopy (MRS) in breast cancer. Magn Reson Insights, 2008, 2: 93-103.
    [26] Kumar M, Jagannathan NR, Seenu V, et al. Monitoring the therapeutic response of locally advanced breast cancer patients: sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging, 2006, 24: 325-32.
    [27] Haddadin IS, Mclntosh A, Meisamy S, et al. Metabolite quantification and high-field MRS in breast cancer. NMR Biomed, 2009, 22: 65-76.
    [28] Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographic, 2009, 29: 1653-1663.
    [29] Negendank W, Sauter RProton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg, 1996, 84: 449-458.
    [30] Bakker CJ, Vriend J. 1H spin-lattice relaxation studies of tissue response to radiotherapy in mice.Phys MedBiol, 1983, 28: 331-340.
    [31] Fang F? He X, Deng H, et al. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci, 2007, 98: 1678-1682.
    [32] Cho SG, Lee DH, Lee KY et al. Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr, 2005, 29: 163-169.
    [33] Wreesmann V, van Eijck CH, et al. Inflammatory pseudotumour of the pancreas: a report of six cases associated with obliterative phlebitis. Histopathology, 2001, 38: 105-110.
    [34] Cho SG, Kim MY, Kim HJ, et al. Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology, 2001, 221: 740-746.
    [35] Zalatnai A. Pathologic diagnosis of pancreatic cancer—facts, pitfalls, challenges. Orv Hetil, 2001, 142: 1885-1890.
    [36] Podo F. Tumour phospholipid metabolism. NMR Biomed, 1999, 12: 413-439.
    [37] Wu B, Peng WJ, Wang PJ, et al. In vivo 1H magnetic resonance spectroscopy in evaluation of hepatocellular carcinoma and its early response to transcatheter arterial chemoembolization. Chin MedSci J, 2006, 21:258-264.
    [38] Kim JK, Altun E, Elias J, et al. Focal pancreatic mass: distinction of pancreatic cancer from chronic pancreatitis using gadolinium-enhanced 3D-gradient-echo MRI. J Magn Reson Imaging, 2007, 26: 313-322.
    [39] Fattahi R, Bald NC, Perman WH, et al. Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging, 2009, 29: 350-356.
    [40] Momtahen AJ, Bald NC, Alkaade S, et al. Focal pancreatitis mimicking pancreatic mass: magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) findings including diffusion-weighted MRI. Acta Radiol, 2008, 49: 490-497.
    [41] Maris JM, Evans AE, McLaughlin AC, et al. 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med, 1985, 312: 1500-1505.
    [42] Foley LM, Towner RA, Painter DM. In vivo image-guided lH-magnetic resonance spectroscopy of the serial development of hepatocarcino gene sis in an experimental animal model. Biochim Biophys Acta, 2001, 1526: 230-236.
    [43] Kurhanewicz J, Vigneron DB, Hricak H, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D 1H MR spectroscopic imaging. Radiology, 1996, 200: 489-496.
    [1]黄文才,陆建平胰腺磁共振扩散加权成像的临床应用进展中国医学影像技术,2010,26:16 19
    [2] Ichikawa T, Erturk SM, Motosugi U, et al. High-bvalue diffusion-weighted MRI in colorectal cancer. AJRAm J Roentgenol, 2006, 187: 181-184.
    [3]胡兴荣,陈军磁共振弥散成像在肝纤维化中的研究进展世界华人消化杂志,2009,17:288—292
    [4] Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJRAm J Roentgenol, 1998, 170: 397^02.
    [5] Akisik, MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted MR imaging with secretin enhancement. Radiology, 2009, 250:103-109.
    [6] Yamada I, Aung W, Himeno Y, et al. Diffusion Coefficients in Abdominal Organs and Hepatic Lesions: Evaluation with Intravoxel Incoherent Motion Echo-planar MR Imaging. Radiology, 1999, 210: 617-623.
    [7]陈翼,许乙凯,方挺松MRI多种成像技术在胰腺癌诊断中的价值中国医学影像技术,2004.20:886-888
    [8]任莹,金征宇,冯逢,等31 0 T磁共振扩散加权成像对胰腺癌的诊断价值初探中国医学影像技术,2006,22 f4):5812_5831
    [9] Fattahi R, Bald NC, Perman WH, et al. Pancreatic diffusion-weighted imaging: comparison between mass-forming focal pancreatitis, pancreatic cancer, and normal pancreas. J Magn Reson Imaging, 2009, 29: 350-356.
    [10] Inan N, Arslan A, Akansel G, et al. Diffusion-weighted imaging in the differential diagnosis of cystic lesions of the pancreas. AJRAm J Roentgenol, 2008, 191: 1115-1121.
    [11] Lee SS, Byun JH, Park BJ, Park SH, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging, 2008, 28: 928-936.
    [12] Apte M, Pirola R, Wilson J. New insights into alcoholic pancreatitis and pancreatic cancer. Journalof Gastroenterology and Hepatology, 2009; 24: 51-56.
    [13] Finkelberg DL, Sahani D, Deshpande V, Brugge WR. Autoimmune pancreatitis. N Engl J Med, 2006, 355: 2670-2676.
    [14] Takase M, Suda K. Histopathological study on mechanism and background of tumor-forming pancreatitis. Pathol Int, 2001, 51: 349-354.
    [15] Kartalis N, Lindholm TL, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging of pancreas tumours. EurRadiol, 2009, 19:1981-1990.
    [16] Mujika M, Barkin JS, Go VL. Acute pancreatitis secondary to pancreatic cancer. Study group participants. Pancreas, 2000, 21: 329-332.
    [17] Lin A, Feller ER. Pancreatic cancer as a cause of unexplained pancreatitis: report often cases. Ann Intern Med, 1990, 113: 166-167.
    [18] Koh DM, Collins DJ. Diffusion-weighted MRI in the body: application and challenges in oncology. AJRAm J Roentgenol, 2007, 188: 1622-1635.
    [19] Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJRAm J Roentgenol, 2006, 187: 1521-1530.
    [20] Shinya S, Sasaki T, Nakagawa Y, et al. Usefulness of diffusion-weighted imaging (DWI) for detection of pancreatic cancer: 4 case reports. Hepatogastroenterology, 2008, 55: 282-285.
    [21] Takeshi Y, Hideaki K, Donald G, et al. ADC Measurement of Abdominal Organs and Lesions Using Parallel Imaging Technique. AJRAm J Roentgenol, 2006, 187:1521-1530
    [22] Takeshi Y, Hideaki K, Donald G, et al. ADC Measurement of Abdominal Organs and Lesions Using Parallel Imaging Technique. AJRAm J Roentgenol, 2006, 187:1521-1530.
    [23] Sukru ME, Tomoaki I, Utarou M, et al. Diffusion-weighted MR imaging in the evaluation of pancreatic exocrine function before and after secretin stimulation. Am J Gastroenterol, 2006, 101: 133-136.
    [24] Tajima Y, Kuroki T, Tsutsumi R, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis: Diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. Gastroenterol, 2007, 13: 858-865.
    [25] Kartalis N, Lindholm TL, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging ofpancreas tumours. EurRadiol, 2009, 19:1981-1990.
    [26] Shah AK, Whitty JE.Brain MRI in peripartum seizures: usefulness of combined T2 and diffusion weighted MR imaging. Journal of the Neurological Sciences, 1999, 166: 122-125
    [27] Lemke A, Laun FB, Klau M, et al. Differentiation of pancreas carcinoma from healthy pancreatictissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol, 2009, 15: 287-292.
    [28] Lee SS, Byun JH, Park BJ, Park SH, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging, 2008; 28: 928-936.
    [1] Schonk DM, Kuijpers HJ, van Drunen E, et al. Assignment of the gene(s) involved in the expression of the proliferation-related Ki-67 antigen to human chromosome 10". Hum Genet, 1989, 83:297-299.
    [2] Bullwinkel J, Baron-Luhr B, Liidemann A, et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J. Cell. Physiol, 2006; 206: 624-635.
    [3] Rahmanzadeh R, Huttmann G, Gerdes J, et al. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis". Cell Prolif, 2007, 40: 422^30.
    [4] Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol, 2000, 182:311-322.
    [5] Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer, 1983, 31: 13-20.
    [6] Shimizu H, Kumabe T, Shirane R, Yoshimoto T: Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. Am J Neuroradiol, 2000, 21: 659-665.
    [7] Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. Am J Neuroradiol, 2001; 22:604-612.
    [8] Baik HM, Su MY, Yu H, et al. Quantification of choline-containing compounds in malignant breast tumors by ^ MR spectroscopy using water as an internal reference at 1.5 T. MAGMA, 2006, 19: 96-104.
    [9] Fattahi R, Bald NC, Perman WH, et al. Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging, 2009, 29: 350-356.
    [10] Heerschap A, Jager GJ, van der Graaf M, et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res, 1997, 17: 1455-1460.
    [11] Gupta RK, Cloughesy TF, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent dif£sion coef ffient and quantitative histopathology in human glioma. J Neurooncol, 2000, 50: 215-226.
    [12] Hurd R, Sailasuta N, Srinivasan R, et al. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magnetic resonance in medicine, 2004, 51: 435^40.
    [13]黄文才,陆建平胰腺磁共振扩散加权成像的临床应用进展中国医学影像技术,2010,26:16 19
    [14] Shimizu H, Kumabe T, Shirane R, Yoshimoto T: Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. Am J Neuroradiol, 2000, 21: 659-665.
    [15] Connolly MM, Dawson PJ, Michelassi F, et al. Survival in 1001 patients with carcinoma of the pancreas. Ann Surg, 1987, 206: 366-370.
    [16] Bottger T, Zech J, Weber W, et al. Relevant factors in the prognosis of ductal pancreatic carcinoma. Acta Chirurg Scand, 1990, 156: 781-788.
    [17] Cameron JL, Crist D, Sitzmann JV, et al. Factors influencing survival after pancreatico- -duodenectomy for pancreatic cancer. Am J Surg, 1991, 161: 120-124.
    [18] Eskelinen M, Lipponen P, Collan Y, et al. Cancer of the pancreas: clinical stage, histological grade, surgical therapy and survival. Surg Res Comm, 1991, 10: 9-14.
    [19] Dettmar P, Harbeck N, Thommsen C, et al. Prognostic impact of proliferation associated factors MIB1 (Ki-67) and S-phase in node-negative breast cancer. Br J Cancer, 1997, 75: 1525-1533.
    [20] Terada T, Ohta T, Kitamura Y, et al. Cell proliferative activity in intraductal papillary-mucinous neoplasms and invasive ductal adenocarcinomas of the pancreas. An immunohistochemical study. Arch Pathol Lab Med, 1998, 122: 42^6.
    [21]陈晓星,倪金良,郝波,张国新,施瑞华胰腺癌组织suⅣivin与k-67的表达及其意义世界华人消化杂志,2005,28:2650 2653
    [22] Poptani H, Kaartinen J, Gupta RK, et al.Diagnostic assessment of brain tumors and non-noeplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol, 1999, 125: 343-349.
    [23] Gupta RK, Sinha U, Cloughesy TF, et al.Inverse correlation between choline magnetic resonancespectroscopy signal intensity and the apparent diffusion coefficient in human glioma.Magn Reson Med, 1999, 41:2-7.
    [24] Kankaanranta L, Kakkinen AM, Joaskelainen J, et al. Choline in proton MR spectroscopy correlateswith MIB-1 proliferation index in gliomas. Abstract 430 In: Proceedings of Seventh Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Philadelphia, 1999: 15-18.
    [25] Matsumura A, Isobe T, Anno I, et al. Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MRspectroscopy study. Journal of clinical neuroscience, 2005, 12: 416^20.
    [26] Hiroaki S, Toshihiro K, Reizo S, et al. Correlation between choline level measured by proton MR spectroscopy and ki-67 labeling index in gliomas. AJNRAm J Neuroradiol, 2000, 21: 659-665.
    [27] Mardor Y, Roth Y, Ochershvilli A, et al. Pretreatment prediction of brain tumors response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia, 2004, 6: 136-142.
    [28] Anwen L, Qin L, Jing H, et al. Recent progress of diffusion weighted magnetic resonance imaging in assessment of tumor in the body. Clinical oncology and cancer research, 2007, 6: 362-366.
    [29] Ichikawal T, Erturk SM, Motosugil U, et al. High-b Value Diffusion-Weighted MRI for Detecting Pancreatic Adenocarcinoma: Preliminary Results. AJR Am J Neuroradiol, 2007, 188: 409^14.
    [30] Yoshikawa MI, Ohsumi S, Sugata S, et al. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiation medicine, 2008, 26: 222-226.[31 ] Desprechins B, Stadnik T, Koert s G, et al. Use of diffusion-weighted MR imaging in differential di agnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR, 1999, 20: 1252-1257.
    [32] Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging, 2002, 16:196-200.
    [33] Muraoka N, Uematsu H, Kimura H, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. J Magn Reson Imaging, 2008, 27: 1302-1308.
    [34] Wang Y, Chen ZE, Nikolaidis P, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: Association with histopathology and tumor grade. J Magn Reson Imaging, 2011,33: 136-142.
    [1] Ross BD, Colletti P, Lin A. MR spectroscopy of the brain: neurospectroscopy. In: Clinical magnetic resonance imaging. 3rd ed. Philadelphia, Pa: Saunders-Elsevier, 2006, 1840-1910.
    [2] Pagani E, Bizzi A, Di Salle F, De Stefano N, Filippi M. Basic concepts of advanced MRI technique. Neural Sci, 2008, 29: 290-295.
    [3] Leach MO. Magnetic resonance spectroscopy (MRS) in the investigation of cancer at the Royal Marsden Hospital and the Institute of Cancer Research. Phys MedBiol, 2006, 51: 61-82.
    [4] Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographic, 2009, 29: 1653-1663.
    [5] Kreis R. Issues of spectral quality in clinical ^ magnetic resonance spectroscopy and a gallery of artifacts. NMRBiomed, 2004, 17: 361-381.
    [6] Fischbach F, Bruhn H. Assessment of in vivo ^ magnetic resonance spectroscopy in the liver: a review. Liver Int, 2008, 28: 297-307.
    [7] Jansen JF, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology, 2006, 240: 318-332.
    [8] Katz-Brull R, Rofsky NM, Lenkinski RE. Breath-hold abdominal and thoracic proton MRspectroscopy at 3T. Magn Reson Med, 2003, 50: 461^67.
    [9] Kreis R. Issues of spectral quality in clinical ^ magnetic resonance spectroscopy and a gallery of artifacts. NMRBiomed, 2004, 17: 361-381.
    [10] Angulo P. Nonalcoholic fatty liver disease. N Engl J Med, 2002, 346: 1221-1231.
    [11] Cho JY, Suh KS, Kwon CH, et al. Mild hepatic steatosis is not a major risk factor for hepatectomy and regenerative power is not impaired. Surgery, 2006, 139: 508-515.
    [12] Nikeghbalian S, Nejatollahi SM, Salahi H, et al. Does donor's fatty liver change impact on early mortality and outcome of liver transplantation? Transplant Proc, 2007, 39: 1181-1183.
    [13] Qayyum A, Chen DM, Breiman RS, et al. Evaluation of diffuse liver steatosis by ultrasound, CT, and MR imaging: which modality is best? Clin Imaging, 2009, 33: 110-115.
    [14] Thomas EL, Hamilton G, Patel N, et al. Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut,2005, 54: 122-127.
    [15] Cho SG, Kim MY, Kim HJ, et al. Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology, 2001, 221: 740-746.
    [16] Lim AK, Patel N, Hamilton G, et al. 31P MR spectroscopy in assessment of response to antiviral therapy for hepatitis C virus-related liver disease. AJRAm J Roentgenol, 2007, 189: 819-823.
    [17] Lim AK, Patel N, Hamilton G, et al. The relationship of in vivo 31P MR spectroscopy to histology in chronic hepatitis C. Hepatology, 2003, 37: 788-794.
    [18] Maris JM, Evans AE, McLaughlin AC, et al. 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med, 1985, 312: 1500-1505.
    [19] Foley LM, Towner RA, Painter DM. In vivo image-guided ^-magnetic resonance spectroscopy of the serial development of hepatocarcino gene sis in an experimental animal model. Biochim Biophys Acta, 2001, 1526: 230-236.
    [20] Towner RA, Foley LM, Painter DM. Hepatocarcino gene sis tumor grading correlated with in vivo image-guided ^-NMR spectroscopy in a rat model. Toxicol Appl Pharmacol, 2005, 207: 237-244.
    [21] Li CW, Kuo YC, Chen CY, et al. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn Reson Med, 2005, 53: 770-776.
    [22] Wu B, Peng WJ, Wang PJ, et al. In vivo *H magnetic resonance spectroscopy in evaluation of hepatocellular carcinoma and its early response to transcatheter arterial chemoembolization. Chin Med Sci J, 2006, 21: 258-264.
    [23] Podo F. Tumour phospholipid metabolism. NMRBiomed, 1999, 12: 413^39.
    [24] Sharma U, Sah RG, Jagannathan NR. Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) in breast cancer. Magn Reson Insights, 2008, 2: 93-103.
    [25] Kumar M, Jagannathan NR, Seenu V, et al. Monitoring the therapeutic response of locally advanced breast cancer patients: sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging,2006, 24: 325-332.
    [26] Haddadin IS, Mclntosh A, Meisamy S, et al. Metabolite quantification and high-field MRS in breast cancer. NMRBiomed, 2009, 22: 65-76.
    [27] Sardanelli F, Fausto A, Podo F. MR spectroscopy of the breast. Radiol Med, 2008, 113: 56-64.
    [28] Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE. Human breast lesions: characterization with proton MR spectroscopy. Radiology, 1998, 209: 269-275.
    [29] Bolan PJ, Meisamy S, Baker EH, et al. In-vivo quantification of choline compounds in the breast with *H MR spectroscopy. Magn Reson Med, 2003, 50: 1134-1143.
    [30] Baik HM, Su MY, Yu H, et al. Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5 T. MAGMA, 2006, 19: 96-104.[31 ] Meisamy S, Bolan PJ, Baker EH, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology, 2005, 236: 465^75.
    [32] Huang W, Fisher PR, Dulaimy K, et al. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology, 2004, 232: 585-591.
    [33] Sardanelli F, Fausto A, Di Leo G, et al. In vivo Proton MR Spectroscopy of the Breast Using the Total Choline Peak Integral as a Marker of Malignancy. Am J Roentgenol, 2008, 232: 585-591.
    [34] Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo *H MRspectroscopy~a pilot study at 4 T. Radiology, 2004, 233:424^31.
    [35] Tan PC, Pickles MD, Lowry M, Manton DJ, Turnbull LW. Lesion T(2) relaxation times and volumes predict the response of malignant breast lesions to neoadjuvant chemotherapy. Magn Reson Imaging, 2008, 26: 26-34.
    [36] Saito K, Kaminaga T, Muto S, et al. Clinical efficacy of proton magnetic resonance spectroscopy ^H-MRS) in the diagnosis of localized prostate cancer. Anticancer Res, 2008; 28: 1899-1904.
    [37] Swindle P, Ramadan S, Stanwell P, et al. Proton magnetic resonance spectroscopy of the central, transition and peripheral zones of the prostate: assignments and correlation with histopathology. MAGMA, 2008, 21: 423^34.
    [38] WangP, Guo YM, Liu M, etal. A meta-analysis of the accuracy of prostate cancer studies which use magnetic resonance spectroscopy as a diagnostic tool. Korean J Radiol, 2008, 9: 432^38.
    [39] Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging, 2002, 16: 451^63.
    [40] Pels P, Ozturk-Isik E, Swanson MG, et al. Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis. NMRBiomed, 2006, 19: 188-197.
    [41] Schricker AA, Pauly JM, Kurhanewicz J, et al. Dualband spectral-spatial RF pulses for prostate MRspectroscopic imaging. Magn Reson Med, 2001, 46: 1079-1087.
    [42] Heerschap A, Jager GJ, van der Graaf M, et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res, 1997, 17: 1455-1460.
    [43] Casciani E, Polettini E, Bertini L, et al. Prostate cancer: evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiol Med, 2004, 108: 530-541.
    [44] Kurhanewicz J, Vigneron DB, Hricak H, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D ^ MR spectroscopic imaging. Radiology, 1996, 200: 489-96.
    [45] Heijmink SW, Scheenen TW, Futterer JJ, et al. Prostate and lymph node proton magnetic resonance (MR) spectroscopic imaging with external array coils at 3 T to detect recurrent prostate cancer after radiation therapy. Invest Radiol, 2007, 42: 420^27.
    [46] Seierstad T, Roe K, Sitter B, et al. Principal component analysis for the comparison of metabolic profiles from human rectal cancer biopsies and colorectal xenografts using high-resolution magic angle spinning ^magnetic resonance spectroscopy. Mol Cancer, 2008, 7: 33.
    [47] Dzik-Jurasz AS, Murphy PS, George M, et al. Human rectal adenocarcinoma: demonstration of 1H-MR spectra in vivo at 1.5 T. Magn Reson Med, 2002, 47: 809-811.
    [48] Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr, 2005, 29: 163-169.
    [49] Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 3 IP, 23Na, and 1H MRS studies of three models of pancreatic cancer. Cancer Res, 1997, 57: 1452-1459.
    [1] Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet, 2004, 363: 1049-1057.
    [2] Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology, 2005, 234: 756-764.
    [3] Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol, 1998, 170: 397^02.
    [4]胡兴荣,陈军。磁共振弥散成像在肝纤维化中的研究进展.世界华人消化杂志,2oo9, 17.288-292.
    [5] Ichikawa T, Erturk SM, Motosugi U, et al. High-bvalue diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol, 2006, 187: 181-184.
    [6] Bald NC, Alkaade S, Magas L, et al. Suspected chronic pancreatitis with normal MRCP: findings on MRI in correlation with Secretin MRCP. J. Magn. Reson. Imaging, 2008, 27: 125-131.
    [7] Fattahi R, Bald NC, Perman WH, et al. Pancreatic diffusion-weighted imaging: comparison between mass-forming focal pancreatitis, pancreatic cancer, and normal pancreas. J. Magn. Reson. Imaging, 2009, 29: 350-356.
    [8] Bald NC, Perman WH, Saglam S,et al. Diffusion-weighted magnetic resonance imaging of the pancreas. Top Magn Reson Imaging, 2009, 20: A'h-Al.
    [9] Akisik, MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted mr imaging with secretin enhancement. Radiology, 2009, 250:103-109.
    [10] Otsuki M. Chronic pancreatitis:The problems of diagnostic criteria. Pancreatology, 2004, 4: 28^1.
    [11] Kartalis N, Lindholm TL, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging of pancreas tumours. Eur Radiol, 2009, 19:1981-1990.
    [12] Takeshi Y, Hideaki K, Donald G, et al. ADC Measurement of Abdominal Organs and Lesions Using Parallel Imaging Technique. AJR Am J Roentgenol, 2006, 187:1521-1530.
    [13] Sukru ME, Tomoaki I, Utarou M, et al. Diffusion-weighted MR imaging in the evaluation of pancreatic exocrine function before and after secretin stimulation. Am J Gastroenterol, 2006, 101: 133-136.
    [14] Tajima Y, Kuroki T, Tsutsumi R, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis: Diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. Gastroenterol, 2007, 13: 858-865.
    [15] Yamada I, Aung W, Himeno Y, et al. Diffusion Coefficients in Abdominal Organs and Hepatic Lesions: Evaluation with Intravoxel Incoherent Motion Echo-planar MR Imaging. Radiology, 1999, 210:617-623
    [16] Lee SS, Byun JH, Park BJ, Park SH, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging, 2008, 28: 928-936.
    [17] Lemke A, Laun FB, Klau M, et al. Differentiation of pancreas carcinoma from healthy pancreatictissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol, 2009, 15: 287-292.
    [18]陈翼,许乙凯,方挺松MRI多种成像技术在胰腺癌诊断中的价值中国医学影像技术,2004.20:886 888
    [19]任莹,金征宇,冯逢,等31 0 T磁共振扩散加权成像对胰腺癌的诊断价值初探中国医学影像技术,2006,22:5812_5831
    [20] Inan N, Arslan A, Akansel G, et al. Diffusion-weighted imaging in the differential diagnosis of cystic lesions of the pancreas. AJR Am J Roentgenol, 2008, 191: 1115-1121.
    [21] AnayelA, Mathieu A, Closset Jean, et al. Successful Preoperative Localization of a Small Pancreatic Insulinoma by Diffusion-Weighted MRI. J Pancreas (Online), 2009, 10: 528-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700