用户名: 密码: 验证码:
中试A/O-MBR处理市政污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用具有中试规模的一体式缺氧/好氧-膜生物反应器(A/O-MBR)处理市政污水,采用间歇式出水方式,反应器正常运行期间(8月24日~12月23日),出水稳定在40L/h,采用过膜压差和比膜通量来表征膜污染情况。
     研究内容主要包括三方面:一是研究了MBR工艺对污水中有机物、氨氮、总氮、总磷、浊度等指标的去除情况;二是研究了污泥浓度、污泥粘度、出水抽停比、微生物、曝气强度、污泥颗粒粒径、温度等因素对膜污染的影响;三是研究了水力清洗和化学清洗对膜组件比膜通量的恢复情况。
     在反应器正常运行期间,COD、氨氮、总氮、总磷、TOC的平均去除率分别是89.29%、98.16%、51.49%、66.79%、71.29%,出水平均浊度为0.54NTU。反应器对有机物和氨氮的去除效果很好,对总氮和总磷的去除效果波动较大。
     污泥浓度控制在3000~5000mg/L时,对于本试验进水能达到很好的处理效果且膜组件运行稳定,比膜通量可表示为:J_b=k_1*J* exp(-k_2MLSS),式中k_1、k_2为与工况运行参数相关的系数,在膜通量、各工艺参数不变的情况下可视为常数。污泥浓度的增加会导致污泥粘度和胞外聚合物浓度的增加。考虑既有效控制膜阻力的增长又保证满足出水量的要求,试验确定最佳出水抽停时间比为:10min:3min。胞外聚合物是造成膜污染的主要因素,蛋白质和多糖是组成胞外聚合物的主要物质,二者总含量占EPS的52.67%。丝状菌等微生物是污泥絮凝、聚集的骨架,但这些微生物可以在膜表面大量吸附并且插入膜孔造成膜孔径减小或形成堵塞。曝气强度过大或过小都会导致膜污染,曝气强度的增加会导致污泥颗粒粒径的减小,宜将曝气强度控制在临界曝气强度附近,本试验最佳曝气强度为1.3m~3/h。低温较容易导致膜污染,本试验中温运行阶段污泥粘度的平均值为6.67Pa.s,低温运行阶段的污泥粘度粘度平均值为9.56Pa.s。
     水力清洗后膜组件比膜通量相比于清洗之前恢复93.75%,化学清洗后恢复程度为100%。
This experiment was carried out to treat municipal wastewater by pilot-Scale anoxic/oxic integrated membrane bioreactor with effluent intermittent discharging modes. The TMP and membrane specific flux were used to charaterize the situation of membrane fouling during the normal operation time of the reactor (from August 24 to December 23), whose effluent reached a stable level of 40L/h.
     In this thesis, three aspects were included in the main research contents as follows : The removal of organics, NH_4~+-N ,TN, TP,turbidity and other indexes were analyzed in the first aspect; Influence of sludge concentration,sludge viscidity, run/off time of effluent, microorganism, aeration intensity, particle size of sludge, temperature and other factors on the membrane fouling was studied in the second aspect; The recovery of membrane specific flux of membrane module after the thydraulic cleaning and the chemical cleaning was studied in the third aspect.
     The average removal rate of COD, NH NH_4~+-N , TN, TP and TOC reached 89.29%, 98.16%, 51.49%, 66.79% and 71.29% respectively during the normal operation time, and the effluent turbidity was up to 0.54NTU on average. Compared with larger fluctuation of the removal of TN and TP, The removal of organics and NH_4~+-N was rather better.
     The quality of effluent could be good and membrane module could run well when the sludge concentration ranged from 3000 to 5000mg/L. The membrane specific flux could be expressed: J_b=k_1*J* exp(-k_2MLSS), k_1 and k_2 were coefficients correlated with process operating parameters, which could be recognized as constants when membrane specific flux and and other process operating parameters were constant. The increase of sludge concentration could cause higher sludge viscidity and more extracellular polymeric substances(EPS). The best run/off time of effluent was determined as 10min:3min when the membrane resistance was well controlled and the water yield was satisfied. The main influential factor of membrane fouling was EPS which mainly included protein and polysaccharide up to 52.67% totally in this experiment. Filamentous bacteria and other microbe, which could result in membrane pore size smaller and even blockage when the microbe was adsorbed on the membrane surface or inserted into membrane pores, was frame as flocculating and aggregating sludge. The aeration intensity could cause membrane fouling no matter strong or weak, and the stronger aeration intensity could cause the size of sludge particle smaller. The aeration intensity should be controlled at the critical level. The best aeration intensity was 1.3m~3/h in this experiment. Low temperature could cause membrane fouling more easily. The sludge viscidity on average was 6.67Pa.s in low temperature time while 9.56Pa.s in medium temperature time.
     The membrane specific flux returned to 93.75% after the thydraulic cleaning and 100% after the chemical cleaning.
引文
[1]张薇,赵亚娟.国际水资源现状与研究热点[J].地质通报,2009,28(2-3):177-183.
    [2]杜天军.浅析我国水资源的现状及发展节水农业的必要性[J].中国西部科技,2009,8(36):59-60.
    [3]姚诚.水污染现状及其治理措施[J].污染防治技术,2009,22(2):87-90.
    [4]张志超,黄霞,肖康,等.脱氮除磷膜-生物反应器的除磷效果及特性[J].清华大学学报, 2008, 48 (9) :1472-1474.
    [5]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理, 2003,23 (1) :1-7.
    [6]赵方波,于水利,荆国林,等.间歇循环活性污泥—MBR工艺的脱氮除磷[J].中国给水排水, 2006, 22 (11) :22-25.
    [7]陆谢娟,李双菊,刘礼祥,等.一体化膜生物反应器的强化脱氮除磷试验研究[J].中国给水排水,2008, 24 (13) :27-30.
    [8] Socjima K, Oki K, Terada A, et al. Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accumulating organisms and nutrient removal efficiency in anaerobic / aerobic / anoxic process[J]. Bioprocess and Biosystems Engineering, 2006, 29 (5-6) :305-313.
    [9] Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal, 2006, 27 (3) :191-196.
    [10]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社,2006.
    [11] Fallah N, Bonakdarpour B, Nasemejad B, et al. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT)[J]. Journal of Hazardous Materials, 2010, 178 (1-3) : 718-724.
    [12] Zayen A, Mnif S, Aloui F, et al. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia[J]. Journal of Hazardous Materials, 2010, 177 (1-3) : 918-923.
    [13] Kim J, Yoon TI. Direct observations of membrane scale in membrane bioreactor for wastewater treatment application[J]. Water Science Technology, 2010, 61 (9) : 2267-2272.
    [14] Wang ZW, Wang P, Wang QY, et al. Effective control of membrane fouling by filamentous bacteria in a submerged membrane bioreactor[J]. Chemical Engineering Journal, 2010, 158 (3) : 608-615.
    [15] Xie K, Lin HJ, Mahendran B, et al. Performance and fouling characteristics of asubmerged anaerobic membrane bioreactor for kraft evaporator condensate treatment[J]. Environmental Technology, 2010, 31 (5) : 511-521.
    [16]裴亮,张雪婷.分置式-MBR处理生活污水的研究[J].过滤与分离,2007,17(3):22-24.
    [17]罗涛.膜生物反应器处理小区生活污水的试验研究[D].湖南:湖南大学,2009.
    [18]李绍峰,崔崇威,黄君礼.胞外聚合物EPS对MBR膜污染的影响[J].哈尔滨工业大学学报,2007,39(2):266-269.
    [19] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216 (1-2) : 217-227.
    [20] Chang IS, Lee CH. Membrane filtration characteristics in membrane-coupled activated sludge system - the effect of physiological states of activated sludge on membrane fouling[J]. Desalination, 1998, 120 (3) : 221-233.
    [21]曾一鸣.膜生物反应器技术[M].北京:国防工业出版社,2007.
    [22] Huang X, Liu R, Qian Y. Behaviour os soluble microbial products in a membrane bioreactor[J]. Process Biochemistry, 2000, 36 (5) : 401-406.
    [23]孟凡刚.膜生物反应器膜污染行为的识别与表征[D].大连:大连理工大学,2007.
    [24] Namkung E, Bruce E. Soluble microbial products (SMP) formation kinetics by biolms[J]. Water Resouce, 1986, 20 (6) : 795-806.
    [25]刘研萍,王琳,王进,等.膜生物反应器的污染及防治[J].工业水处理,2004,24(6):5-8.
    [26]李娜,李国德,郑治国,等.膜生物反应器中膜污染的研究[J].矿冶,2007,16(2):68-71.
    [27]霍守亮,黄显怀,刘绍根,等.膜生物反应器在污水处理中膜污染及其防治[J].工业水处理,2004,24(8):9-13.
    [28]傅威,王志伟,尹星,等.膜生物反应器长期运行条件下膜的清洗方法及机理研究[J].给水排水,2009,35:177-182.
    [29]张国俊,刘忠洲.膜过程中膜清洗技术研究进展[J].水处理技术,2003,29(4):187-190.
    [30]国家环保局.水和废水检测方法[M].第四版.北京:中国环境科学出版社,2003.
    [31] Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers : implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38 (8-9) : 45-53.
    [32]张宏伟,雷鸣,李莹,等.膜生物反应器中污泥EPS的提取方法[J].化工学报,2008,59(6):1531-1534.
    [33]李娜,王光辉,张志凡,等. IMBR-A/O工艺对生活污水脱氮除磷的研究[J].化学与生物工程,2006,23(9):54-56.
    [34]李贤胜,施永生,王琳.溶解氧对同步硝化反硝化脱氮影响研究[J].给水排水,2009,35:167-169.
    [35]张朝生,章文菁,方茜,等. DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J].环境工程学报,2009,3(3):413-416.
    [36] Zhang D, Xu H, Li X, et al. Oxygerr limited autotrophic nitrification and denitrification a technology for biological nitrogen removal[J]. Chinese Journal of Applied Ecology, 2003, 14 (12) : 2333-2336.
    [37] Meng F G, Yang F L, Shi B Q, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities[J]. Separation and Purification Technology, 2008, 59 (1) : 91-100.
    [38]周钱刚,李林宝. A/O-MBR工艺低温下缺氧段反硝化效果影响因素研究[J].中国资源综合利用,2008,26(10):10-12.
    [39]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报,2006,27(2):9-13.
    [40]池福强,傅金祥,张立成,等. A2/O除磷新工艺的研究及其微生物学原理[J].工业安全与环保,2006,32(9):11-13.
    [41]赵丹,任南琪,陈坚,等.生物除磷技术新工艺及其微生物学原理[J].哈尔滨工业大学学报,2004,36(11):1460-1462.
    [42]徐运,蒋蕾蕾,许丹丹.造纸废水中TOC和COD的相关性研究[J].中国卫生检验杂志,2009,19(4):816-817.
    [43]黎松强,吴馥萍.有机化工废水COD与TOC的相关性[J].精细化工,2007,24(3):282-286.
    [44]史郁,周旋,刘慧.酵母废水TOC与COD相关性研究[J].环境科学与技术,2007,30(1):32-34.
    [45]杨小丽,王世和.污泥浓度与曝气强度对MBR运行的综合影响[J].中国给水排水,2007,23(1):77-80.
    [46]桂萍,黄霞,陈颍,等.膜-生物反应器运行条件对膜过滤特性的影响[J].环境科学,1999,20(3):38-41.
    [47]秦尚,陈学民,伏小勇,等.一体式膜生物反应器膜污染影响因素[J].环境科学与管理,2009,34(10):93-96.
    [48]黄瑾.膜生物反应器(MBR)中膜污染控制的中试研究[J].中国市政工程,2009,(5):78-80.
    [49] Defrance L, Jaffrin Y M, Gupta B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73 ( 2 ) : 105-112.
    [50]吴志超,尹星,王志华,等.浸没式膜-生物反应器污泥组分对膜污染的影响[J].环境工程学报,2009,3(1):93-97.
    [51]李世峰.膜生物反应器处理生活污水的试验研究—强化脱氮除磷及膜污染控制[D].青岛:中国海洋大学,2008.
    [52] Shimizu Y, Okuno Y, Uryu K. Filtration characteristics of hollow fibermicrofiltration membranes used in membrane bioreactor for domestic waste water treatment[J]. Water Research, 1996, 30 (10) : 2385-2392.
    [53] Gao MC, Yang M, Li HY, et al. Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater[J]. Desalination, 2004 (170) : 177-185.
    [54] Nagaoka H, Yamanishi S, Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology, 1998, 38 (4-5) : 497-504.
    [55] Meng FG, Zhang HM, Yang FL, et al. Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor[J]. Journal of Membrane Science, 2006, 272 (1-2) : 161-168.
    [56] Bai RB, Leow HF. Microfiltration of activated sludge waste water-The effect of system operation parameters[J]. Separation and Purification Technology, 2002, 29 (2) : 189-198.
    [57] Sethi S, Wiesner MR. Modeling of transient permeate flux in cross-flow membrane filtration incorporating multiple particle transport mechanisms[J]. Journal of Membrane Science, 1997, 136 (1-2) : 191-205.
    [58] Lahoussine-Turcaud V, Wiesner MR, Bottero JY. Fouling in tangential-flow ultrafiltration : The effect of colloid size and coagulation pretreatment[J]. Journal of Membrane Science, 1990, 52 (2) :173-190.
    [59]吴成强,杨金翠,杨敏,等.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(9):5-7.
    [60]许振良.膜法水处理技术[M].北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700