用户名: 密码: 验证码:
淮河支流微量元素分布及环境生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上个世纪50年代初始,环境问题就引起了人们的重视。由于日本发生由汞污染引起的水俣病和由镉污染引起的痛骨病开始,微量元素污染问题渐渐进入人们的视线,它的污染和防治备受世界各国政府的重视,特别是环境中的有毒微量元素,由于其化学行为和生物富集效应,一直为世界各国学者研究的热点。
     目前人们对河流污染的研究主要集中在江河湖泊,而对人们河流支流中污染在状况却不十分重视,支流污染往往比干流更加严重。支流一般流经城市,在城市功能中起着水源地、排涝、排污等重要的功能,因此本文选取了淮河两条重要的支流,一条为人工河流新汴河,一条为自然河流沱河,且都流经安徽宿州地区。流经区域为严重缺水地区,经济发展滞后,正面临着产业升级转型中,保护有限的水资源,保证人们生产生活用水显得十分迫切!本文以新汴河与沱河为研究对象,设置96个采样点(断面),系统采集了河流沉积物、沿岸土壤、水中金鱼藻、中华圆田螺样品,分析测试其微量元素,通过模拟实验研究的金鱼藻和中华圆田螺作为微量元素指示生物的可能性。
     通过研究发现:
     (1)新汴河表层沉积物中As、Cr、Cu、Ni、Pb、Zn六种微量元素除Zn外其他微量元素在大部分采样点都受到无污染到中污染,各段污染负荷指数来看泗洪段污染最严重,宿州段和灵璧段相当,泗县段污染最低。
     (2)沱河沉积物中除Cu有大部分样点为无污染到中度污染外其余的微量元素样点有零星污染;各段污染负荷指数来看采煤塌陷段和宿州段污染最严重,农业段污染指数相差不大。
     (3)农业生产生活污染、交通运输以及城市工业污染是两条河流沉积物微量元素主要来源,在沱河中靠近工业区段存在明显的带状污染情况。两条河流沉积物微量元素比较发现自然河流沱河微量元素含量比较低。
     (4)两条河流沿岸土壤中除个别微量元素有轻微污染外,其他微量元素均没有污染,Zn在两条河流中都处于无污染到中度污染等级。
     (5)金鱼藻在研究区域内不同样点表现出不同的富集能力,在对金鱼藻中微量元素富集系数与沉积物中微量元素含量线性回归分析发现,金鱼藻中的微量元素富集系数与周边环境中的沉积物在着一定的相关关系的现象,部分微量元素如Cu、Pb、As存在稳定吸附的现象。
     (6)研究区域内中华圆田螺微量元素富集能力大小顺序为Cr>Ni>Cu>Zn>Mn>As>Pb>Fe。Cr、Ni、Cu、Zn、Mn是生物体生长所必需的微量元素因而富集能力较强,而Pb和As为生物体生长非必需的、有毒微量元素,因而富集能力较弱。
     (7)金鱼藻模拟实验对微量元素铜的毒性、富集、吸附特征进行研究。铜离子在低浓度时对金鱼藻的生长有明显的促进作用,高浓度是对生长有抑制作用,金鱼藻在低浓度时吸附量与ln(时间)有很好的线性关系,随着浓度升高,线性关系越差。因此金鱼藻在低浓度时可以用作对水中Cu离子的指示生物。
     (8)中华圆田螺模拟实验结果表明中华圆田螺对微量元素的吸收与沉积物中微量元素总量无关,As和Mn存在最大饱和吸附量,而Cu、Pb和Zn在中华圆田螺体内的含量与沉积物中的含量存在一定的线性关系,因此,中华圆田螺可以成为Cu、Pb和Zn的指示生物。图:122;表:40;参:110
Environmental problems caused people's attention since the1950s. Element pollution got in to sight because of minamata disease and Itai-itai disease caused by mercury pollution and cadmium pollution. The prevention and control of pollution was pay attention to by the governments around the world. Especially in the environment of elements whose chemical behavior and bioaccumulation effects, has been a hot research scholars around the world.
     Today most researches about river pollution focuses on the big rivers and lakes, while the tributaries around people were not pad attention. Tributaries had stronger contamination than mainstream, because tributaries go through the city. Rivers in the city play a functional water sources, drainage, sewage and other important functions. Therefore, we choose two tributaries of Huaihe River. Both of them were in Suzhou Anhui province, one was an artificial river named New Bian River, and other is a natural river named Tuo River. Anhui Suzhou is a serious water shortage areas and economic development lags behind city. Protecting of limited water resources to ensure that people living was very urgent by the economic development. We sited96samples (or sections) and collected sediments, coastal soil, Ceratophyllum and Cipangopaludina cahayensis in New Bian River and Tuo River and detected the content of elements in them. We do experiments studied on the possibilities of Ceratophyllum and Cipangopaludina cahayensis as element indicators.
     Through research, main results were summed as follows:
     (1) Six elements (As, Cr, Cu, Ni, Pb and Zn) were belong to uncontamination to moderate contamination, strong contamination in some sample stations in sediments of New Bian River except Zn. Sihong section had most contaminated. Suzhou section and Lingbi section had the same contamination, and then was Sihong section.
     (2) In Tuo River most or half of samples were clean to moderate contamination by Cu, and others were uncontamination except sporadic samples. Mining subsidence section had a biggest index of PLI, and then was Suzhou section. Several agriculture sections had small index of PLIs.
     (3) Agricultural production and domestic pollution, transport pollution and industry pollution were the main sources of elements in sediments of two study rivers. There was an industrial zone near Tuo River that was considered as industrial pollution. Compare the two rivers, nature river lower content of elements in sediment than artificial river.
     (4) Coastal soil was uncontaminated except some elements in some sampling points, but two river coastal soils had contaminated by Zn.
     (5) Ceratophyllum had different ability to accumulate elements on different study area. Correlation phenomenon was existed between EFs and content of elements in sediment, through linear regression analyzing.
     (6) The order of EFs of Cipangopaludina cahayensis in study area was that: Cr>Ni>Cu>Zn>Mn>As>Pb>Fe. We could find the Cr, Ni, Cu, Zn, Mn were necessary elements for the growth, thus show stronger enrichment ability, and As and Pb were nor necessary elements for the growth.
     (7) Simulation Ceratophyllum experiments studied on enrichment, adsorption characteristics and toxicity of Cu. Low concentration of Cu had role in promoting, but high concentration had inhibition. Adsorption capacity and ln(time) had a good linear relationship at low concentration, but the higher concentration had worse linear relationship. Thus Ceratophyllum could consider as an indicator organism at low concentration of Cu.
     (8) Cipangopaludina cahayensis experiments show that elements adsorption had no relationship which concentration of element in sediments. As and Mn had a maximum adsorption capacity. The concentration of Cu, Pb and Zn in Cipangopaludina cahayensis and in sediment had a good linear relationship, therefore, can be an indicator organism. Figure122; table40; reference110
引文
[1]林年丰.医学环境地球化学[M].吉林:吉林科学技术出版社(1991)
    [2]王忠,美国土壤环境背景值研究[M],中国环境监测总站(1988.11)
    [3]吴燕玉,周启星,田均良.制定我国土壤环境标准(汞、镉、铅和砷)的探讨[J].应用生态学报,1991,04:344-349.
    [4]周启星,汞和镉的环境地球化学及其应用[D].中国科学院沈阳应用生态研究所,1989:1-24
    [5]王秀丽,徐建民,谢正苗,姚槐应,石伟勇.微量元素铜和锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报(农业与生命科学版),2002,02:74-78.
    [6]林爱军,王凤花,谢文娟,董芬,王春艳,魏连爽.土壤铜污染对植物的毒性研究进展[J].安徽农业科学,2011,35:21740-21742,21847[7]付善明,周永章,张澄博,丁健,窦磊,赵宇鴳.粤北大宝山矿尾矿铅污染迁移及生态系统环境
    响应[J].现代地质,2007,03:570-577
    [8]Muller G. Schwermetalle in den sediment des Rheins,Veranderungem Seitte[J]. Umschau, 1979,78:778-783.
    [9]Blom G, Winkels H J. Modeling sediment accumulation and dispersion of contaminants in lake Ijsselmeer (the Netherlands)[J]. Water Science and Technology,1998,37:17-24.
    [10]Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P.Analysis and Assessment of Element Pollution inSuspended Solids and Sediments ofthe River Danube[J].Chemosphere, 2003,51:633-642
    [11]Farkas A, Erratico C, V igano L. Assessment of the Environmental Significance of Element Pollution in Surficial Sediments of the River Po [J]. Chemosphere,2007,68:761-768.
    [12]Segura R, Arancibia V, Zuniga M C, et al.Distribution of Copper, Zinc, Lead and Cadmium Concentrations in Stream Sediments from the Mapocho River in Santiago, Chile[J]. Journal of Geochemical Exploration,2006,91:71-80.
    [13]Helle V A, Jesper K, Christian P, et al. Environmental risk assessment of surface water and sediments in Copenhagen harbor [J]. Water Science and Technology,1998,37:263-272.
    [14]晁敏,平仙隐,李聪,伦凤霞,沈新强.长江口南支表层沉积物中5种微量元素分布及生态风险[J].安全与环境学报,2010,04:97-101.
    [15]董德明,李海龙,李鱼,房春生,李晓红,许崇彦.伊通河(长春市区段)沉积物微量元素微量元素化学形态分布[J].水土保持研究,2004,11(1):95-96
    [16]朱颜明,何岩,余中盛.长江流域水体环境背景值研究图集[M].科学出版社,1998
    [17]陈静生.河流水质原理及中国河流水质[M].科学出版社,2006
    [18]王增焕,林钦,李纯厚,黄洪辉,杨美兰,甘居利,蔡文贵.珠江口表层沉积物铜铅锌镉的分布与评价[J].环境科学研究,2004,04:5-9,24
    [19]李鸣,刘琪璟.鄱阳湖水体和底泥微量元素污染特征与评价[J].南昌大学学报(理科版),2010,05:486-489,494.
    [20]陈翠华.江西德兴地区微量元素污染现状评价及时空对比研究[D].成都理工大学,2006.
    [21]刘红磊,尹澄清,唐运平.太湖梅梁湾岸边带底泥中微量元素的形态与分布[J].中国环境科学,2010,03:389-394.
    [22]戴纪翠,高晓薇,倪晋仁,尹魁浩.深圳河流沉积物中微量元素累积特征及污染评价[J].环境科学与技术,2010,04:170-175.
    [23]Villaescusa-Celaya J A, Guti G E, and Flores-Mu G. Elements in the fine fraction of coastal sediments form Baja California (Mexico) and California (USA)[J]. Environmental Pollution, 2010.108(3):453-462.
    [24]陈振楼,许世远,柳林,余佳,俞立中.上海滨岸潮滩沉积物微量元素微量元素的空间分布与累积[J].地理学报,2000,06:641-651.
    [25]李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中微量元素污染来源[J].环境科学,2006,01:137-141.
    [26]冯素萍,鞠莉,沈永,裘娜,李鑫,祝培明,王伟.沉积物中微量元素形态分析方法研究进展[J].化学分析计量,2006,04:72-74.
    [27]Ure A M. Single extraction schemes for soil analysis and related applications[J]. The Science of the Total Environment,1996,178:3-10.
    [28]Tessier A, Campbell P G C, Bisson M, et al Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,1979,51:844-850.
    [29]Forstner U. Metal pollution in aquatic environment[M]. Second Edition,1981.
    [30]Korfali S I, Davies B E. Speciation of metals in sediment and water in a river under lain by limestone:role of carbonate species for purification capacity of river[J]. Adv. Environ. Res.2004,8:599-612.
    [31]Fytianos K, LourantouA. Speciation of elements in sediment samples collected at Lakes Volvi and Koronia N.Greece[J]. Environment international,2004,30(1):11-17.
    [32]Filgueiras A V, LaviUa I, Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples. Analytical and Bioanalytical chemistry,2002,374:103-108.
    [33]Lauridsen T L, Jensen J P, Jeppesen E. Response of submerged macrophysics in Danish lakes to nutrient load in reductions and biomanipulation[J]. Hydrobiologia,2003,506:641-649.
    [34]Miiller, G. Index of geo-accumulation in the sediments of the Rhine River[J]. Geojournal, 1969,2:108-118
    [35]Tomlinson D L., Wilson J G, Harris C R., and Jeffrey D. W.. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgolander Meeresuntersuchungen,1980,33:566-575
    [36]Salomons, W, and Forstner U. Metals in the hydrocycle[M]. Springer, Berlin Heidelberg, Tokyo.1984.
    [37]Dickinson W W, Dunbar G B, and McLeod H. Element history from cores in Wellington Harbor, New Zealand[J]. Environmental Geology,1996,27:59-69.
    [38]Hornung H, Karm MD, and Cohen Y. Trace metal distribution on sediments and benthic fauna of Haifa Bay, Israel. Estuarine[J]. Coastal and Shelf Science,1989,29:43-56.
    [39]Salomons W, and Forstner U. Metals in the hydrocycle[M]. Springer, Berlin Heidelberg, Tokyo.1984.
    [40]Ravichandran M, Baskaran M, Santschi P H, and Bianchi T. History of trace metal pollution in Sabine-Neches Estuary, Beaumont, Texas[J]. Environmental Science and Technology,1995,29: 1495-1503.
    [41]Sutherland RA. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology,2000,39:611-627.
    [42]Chen, C W, Kao C M, Chen C F, and Dong C D. Distribution and accumulation of elements in the sediments of Kaohsiung Harbor. Taiwan[J]. Chemosphere,2007,66:1431-1440.
    [43]陈水木,黄志中.鄱阳湖湿地微量元素污染地质累积指数与潜在生态危害指数评价[J].江西化工,2008,01:57-60.
    [44]向勇,缪启龙,丰江帆.太湖底泥中微量元素污染及潜在生态危害评价[J].南京气象学院学报,2006,05:700-705.
    [45]张蓉,花日茂,孙凯,刘刚.巢湖闸口区底泥微量元素含量的研究[J].土壤通报,2008,02:398401.
    [46]Shrivastaia S K and Banerjee D K. Speciation of metals in sewage sludge and sludge-amended soils[J]. Water, Air and Soil Pollution,2004,152:219-232
    [47]陈静生,刘玉机.中国水环境微量元素研究[M].北京:中国环境科学出版社.168-170.
    [48]霍文毅,黄风茹,陈静生,贾振邦.河流颗粒物微量元素污染评价方法比较研究[J].地理科学,1997,01:82-87.
    [49]张文彤.SPSS 11统计分析教程[M].北京希望电子出版社.191-192
    [50]李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中微量元素污染来源[J].环境科学,2006,01:137-141.
    [51]马立杰,崔迎春,王海荣.运用因子分析评价山东黑泥湾沉积物微量元素污染来源[J].海洋地质前沿,2012,04:57-61.
    [52]李丽颖,张思冲,张敏,任佳.大庆贴不贴泡沉积物微量元素污染及聚类分析[J].黑龙江水专学报,2007,01:77-81.
    [53]程荣进,张思冲,周晓聪,叶华香.大庆城郊湿地沉积物微量元素污染及聚类分析[J].中国农学通报,2009,02:240-245.
    [54]李晨晨,赵广孺,赵志忠,王军广.海南岛东西部砖红壤中微量元素微量元素含量空间分布及其相关性研究[J].安徽农业科学,2011,02:1085-1088.
    [55]彭渤,唐晓燕,余昌训,谭长银,涂湘林,刘茜,杨克苏,肖敏,徐婧喆.湘江入湖河段沉积物微量元素污染及其Pb同位素地球化学示踪[J].地质学报,2011,02:282-299.
    [56]Chow T J. Lead accumulation in roadside soil and grass [J]. Nature,1970,225:295-296.
    [57]Wong S C., Li X D, Zhang G, et al. Elements in agricultural soils of the Pearl River Delta, South China [J]. Environmental Pollution,2002,119:33-44.
    [58]路远发,杨红梅,周国华,马丽艳,梅玉萍,陈希清.杭州市土壤铅污染的铅同位素示踪研究[J].第四纪研究,2005,03:355-362
    [59]杨元根,刘丛强,张国平,吴攀,朱维晃.土壤和沉积物中微量元素积累及其Pb、S同位素示踪[J].地球与环境,2004,01:76-81.
    [60]张素荣,曹星星.对比不同消解方法测定土壤中微量元素[J].环境科学与技术,2004,S 1:49-51
    [61]江桂斌.环境样品前处理技术[M],北京:化学工业出版社,2004:431,432,456.
    [62]魏培海,曹国庆.仪器分析[M].高等教育出版社,2007
    [63]郭扬武,傅祖玲.原子吸收光度法测定工业氟硅酸中铜含量[J].理化检验(化学分册),2002,01:46.
    [64]董仁杰.火焰原子吸收光谱法测定污泥中铜锌铅镉镍[J].理化检验(化学分册),2002,10:500-501
    [65]孙孝祥,修长泽,孙秀云,孙韶岩.火焰原子吸收光谱法间接测定食品中碘[J].理化检验(化学分册),2001,11:521-524.
    [66]朱永芳.微波消解法测定化妆品中铅砷汞[J].理化检验(化学分册),2002,06:305-307.
    [67]胡清源,李力,石杰,陈再根,王芳,王安.微波消解-电感耦合等离子体质谱法同时测定烟草中27种微量元素[J].光谱学与光谱分析,2007,06:1210-1213.
    [68]陈曦,丁亮,何公理,徐肖雅,张淼,徐东群,林少彬.电感耦合等离子体质谱测定居住区大气中痕量铍、镉、砷、铅[J].光谱学与光谱分析,2011,07:1942-1945.
    [69]王俊平,马晓星,方国臻,王硕,殷慧玲.电感耦合等离子体质谱法测定饮用水中6种痕量微量元素微量元素[J].光谱学与光谱分析,2010,10:2827-2829.
    [70]黄衍初,姜兆春.环境样品的x射线荧光分析[J].环境化学,1987,04:59-70.
    [71]张思冲,周晓聪,张丽娟,叶华香.x射线荧光光谱法测定微量元素微量元素的实验研究[J].实验技术与管理,2009,11:20-23,34.
    [72]张爱芬.x射线荧光光谱在铝矿石赤泥组分分析中的应用[J].轻金属,2005,10:30-33.
    [73]黄宏,郁亚娟,王晓栋,王连生.淮河沉积物中微量元素污染及潜在生态危害评价[J].环境污染与防治,2004,03:207-208+231-244.
    [74]淮河(安徽段)行蓄洪区沉积物微量元素污染及潜在生态危害研究[D].合肥工业大学,2006
    [75]朱兰保,盛蒂,周开胜,代静玉.淮河安徽段沉积物中微量元素污染及其潜在生态风险评价[J].环境与健康杂志,2007,10:784-786.
    [76]董广霞,毛剑英.淮河流域污染“久治不愈”原因浅析及治理措施建议[J].中国环境监测,2005,06:75-78.
    [77]蒋艳,彭期冬,骆辉煌,马巍.淮河流域水质污染时空变异特征分析[J].水利学报,2011,11:1283-1288
    [78]文雯.为何支流水质不如干流好?[N].中国环境报,2011-06-22001.
    [79]李钧德.淮河支流:污染造出一批“癌症村”[N].新华每日电讯,2004-09-29001
    [80]夏军.唐河地下涵对新汴河的碍航影响及处理措施[J].治淮,2004,08:45-46.
    [81]陈永华.浅析新汴河流域水资源的开发利用[J].治淮,2007,09:14.
    [82]丁启.新汴河流域水资源现状与可持续开发利用对策[J].水资源保护,2003,01:55-57.
    [83]苏汪.淮海经济区做大做强区域经济[J].大陆桥视野,2007,05:34-37.
    [84]王帅,刘松.宿州市水资源紧缺状况思考与对策[J].治淮,2005,07:6-7.
    [85]黄淑玲,张勇.宿州市沱河段水环境容量研究[J].安徽科技学院学报,2010,03:22-25.
    [86]2008宿州统计年鉴[M].中国统计出版社
    [87]李静.宿州市特色经济发展战略研究[[D].华东师范大学,2008.
    [88]2008年安徽统计年鉴[M]中国统计出版社37-38
    [89]Huang W, Campredom R, Abrao J J, et al, Variation of elements in recent sediments from piratininga Laggon (Brazil)-interpretation of geochemical data with the aid of multivariate analysis[J]. Environmental Geology,2004,36:241-247.
    [90]Louma, S N...Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia,1989,176/177:379-396.
    [91]Atul R. Chourpagar and Kulkarni G.K.. Heavy element toxicity to a freshwater crab, Barytelphusa cunicularis (Westwood) from Aurangabad Region. Recent Research in Science and
    Technology,2011,3:01-05. [92] An, Y J and Kampbell D H. Total, dissolved, and bioavailable elements at Lake Texoma marinas. Environmental Pollution,2003.122:253-259.
    [93]文湘华.水体沉积物微量元素质量基准研究[J].环境化学,1993,05:334-341.
    [94]Rate A W. Distribution of Elements in Near-Shore Sediments of the Swan River Estuary [J]. Western Australia, Water Air and Soil Pollution,2000,124:155-168.
    [95]Forstner U. In Metals Speciation, Separation and Recovery [M].Lewis, Michigan.1987,3-26
    [96]中国科学院植物研究所,中国高等植物图鉴(第一册)[M]北京:科学出版社,1972,649-650
    [97]康士秀,沈显生,吴自勤,周忠泽,巨新,黄宇营.金鱼藻微量元素SR-XRF分析用于淮河中部微量元素污染监测[J].核技术,2003,02:109-113.
    [98]宋志慧,赵世刚.铜和镉对金鱼藻的毒性影响研究[J].安徽农业科学,2010,07:3688-3689,3693.
    [99]何刚,罗睿.金鱼藻对环境铜、锌和汞离子的快速生理响应[J].贵州农业科学,2009,11:47-50.
    [100]郭明新,林玉环.用中华圆田螺作为底泥微量元素毒性和生物可给性的指示生物[J].环境与开发,1997,02:10-13.
    [101]中国环境监测总站.中国土壤环境背景值[M].中国环境科学出版社,1980
    [102]Muller P, Biogeographie, Stuttgart:UTB [M]. Ulmer-Verlag,1980:123-136.
    [103]Markert B A, Breure A M, Zechmeister H G. Bioindicators and Biomonitors:Principles, Concepts and Applications[M]. Amsterdam:Elsevier,2003:35-50
    [104]Markert B, Fraenzle S, Fomin A. From the biological system of the elements to biomonitoring Elements and Their Compounds in the Environment.2nd[M] Weinheim: Wiley-VCH,2002:66-78
    [105]Markert B A, Breure A M, Zechmeister H G Definitions, strategies and principles for bioindication/biomonitoring of the environment Bioindicators and Biomonitors:Principles, Concepts and Applications [M].Amsterdam:Elsevier,2003:3-39.
    [106]李振平,张秦安.桂林水系沉积物中微量元素的生物有效性研究[J].生态环境,2007,03:744-747.
    [107]孙伟民,张悦周,赵晨辉.环境微量元素污染的生物指示作用[J].化工环保,2008,06:518-521.
    [108]向华,于晓英.铜污染对水体——水生植物的毒害效应研究进展[J].湖南农业科学,2009,11:54-56.
    [109]郭明新,林玉环.用中华圆田螺作为底泥微量元素毒性和生物可给性的指示生物[J].环境与开发,1997,02:10-13.
    [110]丛宁.铜对金鱼毒性影响的研究[D].南京农业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700