用户名: 密码: 验证码:
齿科常用合金加工及其生物医学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用激光焊接、化学抛光及表面活性化处理等技术加工处理齿科常用CoCr、NiCr及Ti合金。利用XRD、SEM、EDS、AAS等分析手段研究了CoCr、NiCr、NiTi及Ti合金经激光焊接、活性化处理及化学抛光后组织结构、机械性能及耐腐蚀性变化规律,采用体内、体外生物学评价实验和临床应用对齿科常用合金经加工处理后生物相容性及生物活性进行了评价,结果表明:
     1.在电压280V,脉冲时间10ms,光斑直径0.6mm焊接参数条件下,激光焊接CoCr-NiCr异种合金时,强度(565.42±60.02 MPa)与延伸率(6.24±0.38%)均可满足义齿正常功能要求。熔焊区显微组织致密、细小,熔焊区与两侧母材呈冶金结合。熔焊区NiCr合金侧发生晶间腐蚀倾向明显,热处理、烤瓷升温有助于降低熔焊区NiCr合金侧晶间腐蚀倾向。CoCr侧组元成分由于原子扩散分布比较均匀,和烤瓷升温相比,热处理后元素分布更加均匀。焊接付耐腐蚀能力较高,电化学腐蚀过程中,CoCr合金对NiCr合金具有阳极保护作用,有助于减少NiCr合金Ni~(2+)离子的释出。体内外实验表明激光焊接齿科CoCr-NiCr合金未见细胞毒性反应,病理组织学反应分级为0级,长期与口腔粘膜组织接触无刺激性,细胞相对增殖度(RGR)93.69%,反应分级为1级,急性全身毒性符合规定。临床应用及随访观察显示CoCr-NiCr合金激光焊接义齿就位顺利,固位良好,焊区未见断裂、开焊、变形及腐蚀变色现象,患者感觉义齿舒适、咀嚼效能高。
     2.研制了适合口腔铸钛修复体化学抛光的抛光液,其组成是:体积比为1:1:3的氢氟酸、硝酸和乳酸。化学抛光1min铸钛表面的Ra值为0.092μm,失重率为2.768%,表面氧化膜厚度在5μm左右,使用该抛光液,在一定操作条件下进行化学抛光对钛的机械性能无影响,满足临床应用精度要求。临床应用表明钛修复体化学抛光操作简便、高效,抛光面光泽持久,义齿戴用后无明显变色及变暗现象。
     3.利用化学法活性化处理可以在NiTi合金表面仿生生长磷灰石,其成分和结构近似于自然骨中的矿物质,晶粒为纳米尺度。长期(2年)植入兔股骨内种植体与受植骨间为完全性骨结合,较表面未处理组形成了更成熟的骨板层结构与骨改建的结合线,表明NiTi合金经过活性化处理后可以获得良好的生物活性及长期植入安全性。
In this study, the techniques of laser welding, chemical polishing and surface bioactivating treatment were adopted to process the commonly used dental alloys, including CoCr, NiCr, NiTi and pure titanium. The analyzing methods of XRD, SEM, EDS and AAS were used to investigate the microstructure, mechanical properties and corrosion resistance of the samples processed by above technologies. In vivo and in vitro tests, as well as clinical application, were chosen to evaluate biocompatibility and bioactivity of the processed samples. The results are as follows:
     1. The suggested laser welding parameters is electric voltage 280 V, pulse time 10 ms, spot diameter 0.6 mm. Under this condition, the tensile strength (565.42±60.02 MPa) and elongation (6.24±0.38%) of laser-welded CoCr-NiCr alloys could meet common requirements of dental prostheses. The microstructures of the fusion zone were dense and fine. Metallurgical bonding between the fusion zone and both of the parent metals was observed. In the side of NiCr alloy close to the fusion zone, the presence of inter-grain corrosion was found. Heat treatment and heating in porcelain processing led to decreasing this tendency. The atoms of element beside the CoCr alloy in the fusion zone diffused evenly, and heat treatment resulted in more even element distribution, rather than heating in porcelain processing. After laser welding, the joint of dissimilar alloys showed good corrosion resistance. During electrochemical corrosion, CoCr alloy acted as anode and protected NiCr alloy from corrosion, which contributed to reducing the release of Ni~(2+) ion from NiCr alloy. Concerning laser welded CoCr-NiCr dissimilar alloys, both the in vivo and in vitro experiments indicated that, there was no cytotoxicity reaction, the pathohistological reaction was grading zero, there were no histomorphologic changes after long-term contact with oral mucosa, the RGR (relative growth rate) was 93.69%, the reaction degree was grade one, and the acute toxicity of whole body was conform to the regulations. Clinical application and follow-up visit observation demonstrated that there were no signs of crack, deformation, corrosion and discoloration in welding zone of laser welded CoCr-NiCr dissimilar alloys, the dental prostheses could be inserted and taken off smoothly. And the dentures were also felt comfortable with the excellent retention and masticatory efficiency.
     2. The chemical polishing liquid for dental casting pure titanium was developed, which was consisted of hydrofluoric acid, nitric acid and lactic acid in volume ratio of 1:1:3. After 1min of chemical polishing, the Ra value of titanium casting samples was 0.092μm, the weight-lost rate was 2.768%, and the thickness of the superficial oxidized film was about 5μm. Under adequate condition, the chemical polishing technique merely affected the mechanical properties of the alloys, and the size of the polished samples met the clinical precision requirement of the dental prostheses. Clinical application verified that chemical polishing of dental titanium prostheses was simple and convenient, excellent polishing effect could be achieved, the polished surface maintained a lasting luster after a long-term use, and there was no apparent discoloration or getting darkness.
     3. The chemical bioactivating treatment was used to coat the surface of NiTi alloy with biomimetic HA. The composition and structure of NiTi alloy coated with HA were similar to the mineral material within natural bone. The measurement of the crystal grains was at nano level. After long-term (2 years) use of the implant embedded in the thighbone of rabbit, the result showed the complete osseointegration between the implant and the bone. Compared with matched control group without any treatment on the surface, the NiTi alloy coated with biomimetic HA developed more mature bone structures including osseous lamellas and cement line at the bone reconstruction zone, which manifested that good biocompatibility and long term biological safety of NiTi alloy implant could be realized by means of the technique of chemical activating treatment.
引文
[1] 冯海兰,徐军,口腔修复学,北京:人民卫生出版社,2005
    [2] 马轩祥,口腔修复学,北京:人民卫生出版社,2005
    [3] 郭天文,口腔科铸钛理论和技术,西安:世界图书出版公司,1997
    [4] Svetlana A, Shabalovskaya. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys, Biomed Mater Eng, 1996, 6(4): 267-289
    [5] Mohammed ES, Martha ES, Helge FB et al. On the properties of two binary NiTi shape memory alloys, Biomaterials, 2002, 23(14): 2887-2894
    [6] Rucker BK, Kusy .P. Elastic flexural properties of multistranded stainless steel versus conventional nickel titanium archwires, Angle Orthod, 2002, 72(4): 302-309
    [7] 杨贤金,崔振铎,赵乃勤,化学修饰对 NiTi 形状记忆合金氧化膜的影响,功能材料,2002,33(2):169-171
    [8] Advincula M, Fan X, Lemons J et al. Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies, Colloids Surf Biointerfaces, 2005, 42(1): 29-43
    [9] 陈治清,口腔生物材料学,2004,北京:化学工业出版社
    [10] Martin E, Manceur A, Polizu S. Corrosion behaviour of a beta-titanium alloy, Biomed Mater Eng, 2006, 16(3): 171-182
    [11] Es-Souni M, Es-Souni M, Fischer-Brandies H et al. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications, Anal Bioanal Chem, 2005, 381(3): 557-567
    [12] Roach MD, Wolan JT, Parsell DE et al. Use of X-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing, J Prosthet Dent, 2000, 84(6): 623-634
    [13] 陈治清,口腔材料学第三版,北京:人民卫生出版社,2004,17
    [14] Es-Souni M, Fischer-Brandies H, Es-Souni M et al, On the in vitro biocompatibility of Elgiloy, a co-based alloy, compared to two titanium alloys, J Orofac Orthop, 2003, 64(1): 16-26
    [15] 黎红,张孟平,冯洁琳,钛修复体的口腔生物摩擦学特性研究,中华口腔医学杂志,2004,39(1):63-66
    [16] 徐丽娟,陈子勇,陈玉勇,口腔科铸钛系统的研究进展,特种铸造及有色合金,2005,25(6):363-365
    [17] 骆小平,郭天文,张建中,中国口腔钛铸造技术的研究现状,中华口腔医学杂志,2005,40(1):21-22
    [18] 郭天文,徐君伍,王宝成,国产 LZ-2 牙科铸钛机铸造性能的初步检测,齿科材料器械杂志,1996,15(40):154
    [19] Greenet EH, Moser JB, Opp J et al. Properties of dental castability of titanium and Ti-6Al-4V (Abstract), J Dent Res, 1986, 65(special issue): 301
    [20] 赵刚,钛合金烤瓷冠、桥在口腔修复中的应用分析,口腔医学,2005,25(3): 158-159
    [21] 李荣,王凌成,尧茂江,钛合金铸造支架义齿临床疗效观察,实用医院临床杂志,2005,2(2):57-58
    [22] 骆小平,钛制义齿在老年患者口腔修复中的应用,实用老年医学,2002,16(6):291-292
    [23] 陈民芳,NiTi 合金表面仿生生长磷灰石及其生物相容性的研究:[博士学位论文],天津;天津大学,2003
    [24] Watanabe I. Effect of pressure difference of the quality of titanium casting, J-Dent-Res, 1997, 76(3): 773-779
    [25] Chai T. Porosity and accuracy of multiple-uint titanium casting, J Prosthet Dent, 1995, 73(6): 534-541
    [26] Hsu HC, Kikuchi H, Yen SK et al. Evaluation of different bonded investments for dental titanium casting, J Mater Sci Mater Med, 2005, 16(9): 821-825
    [27] Hotta Y, Miyazaki T, Fujiwara T et al. Durability of tungsten carbide burs for the fabrication of titanium crowns using dental CAD/CAM, Dent Mater J, 2004, 23(2): 190-196
    [29] Curtis-RV. Stress-stain and thermal expansion characteristics of a phosphate bonded investment mould for dental super plastic forming, J Dent Res, 1998, 26(3): 251-258
    [30] 严晓东,高勃,陈静,钛合金口腔修复体的激光立体成形制备技术中钛粉末利用率的研究,口腔颌面修复学杂志,2005,6(1):65-67
    [31] 陈天芬,满毅,两种材料套筒冠游离缺失基托下支持组织的受载位移分析,广东牙病防治,2004,12(2):101-102
    [32] 杜莉,杨凌,胥春,Magfit 磁性附着体铸接式和焊接式衔铁显微结构及热影响区的研究,华西口腔医学杂志,2003,21(5):383-385
    [33] 杨凌,杜莉,林映荷,Magfit 磁性附着体铸接式和焊接式衔铁口外磁性固位力的测定,华西口腔医学杂志,2003,21(5):386-388
    [34] 张富强,口腔修复基础与临床,2004,上海:上海科学技术文献出版社
    [35] Rocha R, Pinheiro A.L, and V. A.B., Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd: YAG laser or TIG welding. Braz Dent J, 2006, 17(1): 20-23
    [36] Watanabe I, Liu J, Atsuta M et al. Effect of welding method on joint strength of laser-welded gold alloy,Am J Dent, 2003, 16(4): 231-234
    [37] Bardin F. Optical techniques for real-time penetration monitoring for laser welding, Appl Opt, 2005, 44(19): 3869-3876
    [38] Baba N, Liu J, Atsuta M et al. Mechanical Strength of Laser-Welded Cobalt-Chromium alloy,J Biomed Mater Res Part B: Appl Biomater, 2004, 69(2): 121-124
    [39] Liu J, Watanabe I, Yoshida K et al. Joint strength of laser-welded titanium, Dent Mater, 2002, 18(2): 143-148
    [40] Bertrand C, Le Petitcorps Y. The laser welding technique applied to the non precious dental alloys procedure and results, Br Dent J, 2001, 190(5): 255~257
    [41] Chai T, Chou CK. Mechanical properties of laser-welded cast titanium joints under different conditions, J Prosthet Dent, 1998, 79(4): 477-483
    [42] Wang RR, Chang CT. Thermal modeling of laser welding for titanium dental restorations, J Prosthet Dent, 1998, 79(3): 335-342
    [43] Baba, N, Watanabe I, Penetration depth into dental casting alloys by Nd:YAG laser, J Biomed Mater Res B Appl Biomater, 2005, 72(1): 64-68.
    [44] 黎红,李明哲,赵云风等,激光焊接多单位固定桥精度的研究,华西口腔医学杂志,2000,18(2):112-115
    [45] Oda Y. Effect of corrosion on the strength of soldered titanium and Ti-6Al-4V alloy, Dent Mater, 1996, 12(3): 167
    [46] 徐晶,吴凤鸣,成志富,等离子弧焊、钨极气体保护焊、激光焊焊接牙科纯钛显微结构比较,口腔医学,2006,26(3): 214-216
    [47] Yasunori S, Chikahiro O. Titanium removable partial denture clasp repair using laser welding: a clinical report, J Prosthet Dent, 2004, 91(5): 418-420
    [48] Salvatore L, Matteo S. A simplified method to reduce prosthetic misfit for a screw-retained implant-supported complete denture using a luting technique and laser welding, J Prosthet Dent, 2004, 91(6): 595-598
    [49] Watanabe I, Liu J, Baba N et al. Optimizing mechanical properties of laser-welded gold alloy through heat treatment, Dent Mater, 2004, 20(7): 630-634
    [50] Oshihiro G. Custom precision attachment housings for removable partial dentures, J Prosthet Dent, 2002, 88(1): 100-102
    [51] Chao Y, Du L, Yang L, Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments, J Prosthet Dent, 2005. 93(5): 473-477
    [52] 黄庆丰,张建中,姜卫东等,异种金属间激光焊接的初步研究,上海口腔医学,2004,13(5):412-415
    [53] 程静涛,牙科钛铸件的表面处理,生物医学工程学杂志,1998,15(4): 414-418
    [54] 程静涛,牙科铸钛系统,生物医学工程学杂志,1997,14(4):388-392
    [55] Lusquinos F, De Carlos A, Pou J et al. Calcium phosphate coatings obtained by Nd: YAG laser cladding: Physicochemical and biologic properties, J Biomed Mater Res (Appl Biomater), 2003, 64(4): 630-637
    [56] Aebli N, Krebs J, Stich H et al. In vivo comparison of the osseointegration of vacuum plasma sprayed titanium and hydroxyapatite coated implants, J Biomed Mater Res, 2003, 66(2): 356-363
    [57] Schmidmaier G, Wildemann B, Schwabe P et al. A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osteointegration in a rat model, J Biomed Mater Res, 2002, 63(2): 168-172
    [58] 骆小平,郭天文,欧阳官,铸模温度对铸钛机械性能及表面反应层结构的影响,中华口腔医学杂志,1997,32(6):327-330
    [59] Pelsoczi-Kovacs I, Kutsan G., Rauscher A et al. The electrochemical behavior of titanium and dental casting in modelling oral conditions, Fogorv Sz, 2005, 98(6): 251-255
    [60] Ohkubo C, Watanabe I, F0rd JP et al. The machinability of cast titanium and Ti-6Al-4V, Biomatcrials, 2000, 21(4): 42l-428
    [61] 程静涛,郭天文,王宝成,自动研磨对纯钛铸件表面粗糙度的影响,现代口腔医学杂志,1999,13(3): 200-203
    [62] Silva RA, Silva IP, Rondot B. Effect of Surface Treatments on Anodic Oxide Film Growth and Electrochemical Properties of Tantalum used for Biomedical Applications, J Biomater Appl, 2006, 21(1): 93-103
    [63] 第五机械工业部设计研究院,表面处理车间工艺设计手册,石家庄:河北人民出版社,1995,106-107
    [64] 井田一夫,チタンぉよびチタン合金の技工,齿科技工,1992,20(12):1264-1276
    [65] 许强龄,现代表面处理新技术,上海:上海科学技术文献出版社,1994
    [66] 李哲,肖茂春,铸造纯钛抛光方法的研究,华西口腔医学杂志,2006,24(3): 214-216
    [67] Okawa S, Hossain M, Kanatani et al. Surface properties of electrochemically buffed titanium casting, Dent Mater J, 2004, 23(4):504-511
    [68] 骆小平,牙科精密铸钛技术的研究进展,国外医学口腔医学分册,1997,24(1):33-36
    [69] Guilherme AS, Henriques GEP, Zavanelli RA et al. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols, J Prosthet Dent, 2005, 93(4): 378-385 [70 ] Silvia S, Michela B, Marco B et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments, Biomaterials, 2005,26(11): 1219-1229
    [71] 李笑梅,任卫红,汪大林,铸造纯钛义齿表面形态和粗糙度对其颜色稳定性的影响,第二军医大学学报,2003,24(4):431-434
    [72] 李笑梅,周中华,五种常用口腔修复材料对细菌滞留影响的临床研究,第二军医大学学报,2002,23(1):81-83
    [73] 玉置幸道,宫崎隆,青山训康,补缀物の自动研磨关する研究,齿科材料器械,1990,9(5):754-761
    [74] 张丁华综述,孙皎审校,牙种植体材料的研究进展,口腔材料器械杂志,2006,15(1):33-36
    [75] Lusquinos F, De Carlos A, Pou J et al. Calcium phosphate coatings obtained by Nd: YAG laser cladding: Physicochemical and biologic properties, J Biomed Mater Res (Appl Biomater), 2003, 64(4): 630-637
    [76] Cleries L, Frmandez-Pradas JM, Morenza JL et al. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition, J Biomed Mater Res (Appl Biomater), 2000, 49(1): 43-52
    [77] Yan WQ, Nakamura T, Kawanabe K et al. Apatite layer-coated titanium for use as bone bonding implants, Biomaterials, 1997,18(17): 1185-1190
    [78] Maitz MF. Ion beam treatment of titanium surfaces for enhancing deposition of hydroxyapatite from solution, Biomol Engineer, 2002, 19(2-6): 269-272
    [79] Liu X, Ding C. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid, Biomaterials, 2001, 22(14): 2007-2012
    [80] Uchida M, Kim HM. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal, J Biomed Mater Res, 2002, 63(5): 522-530
    [81] Wen HB, Liu Q, Wijn JR et al. Preparation of bioactive microporous titanium surface by new two-step chemical treatment, J Mater Med, 1998, 9(3): 121-128
    [82] 杨贤金,朱胜利,崔振铎,NiTi 合金表面化学沉积羟基磷灰石生物活性层机理的研究,功能材料,2001,32(2):154-155
    [83] Coogan TP, Latta DM, Snow ET et al. Toxicity and carcinogenicity of nickel compounds, CRC Crit. Rev. Toxicol, 1989, 19(4): 341-384
    [84] Wataha JC, Hanks CT, Craig RG. et al. In vitro effects of metal ions on cellular metabolism and the correlation between these effects and the uptake of the ions, Biomed Mater Res, 1994, 28(4): 427-433
    [85] Yoshimitsu O, Emiko G.. Comparison of metal release from various metallic biomaterials in vitro, Biomaterials, 2005, 26(1): 11-21
    [86] Woody RD, Huget EF, Horton JE et al. Apparent cytotoxicity of base metal casting alloys, J Dent Res, 1977, 56(7): 739-743
    [87] Balakrishnan N. Biocompatibility of nitinol and stainless steel in the bladder: an experimental study, J Urol, 2005, 173(2): 647-650
    [88] Bahia MG, Martins RC, Gonzalez BM et al. Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments, Int Endod J, 2005, 38(11): 795-801
    [89] 郭天文,王宝成,程静涛,钛制义齿 131 件临床总结,实用口腔医学杂志 2000,16(5):408-409
    [90] Duerig T, Pelton A, Stockel D. An overview of nitinol applications, Mater Sci Eng, 1999, 273~275: 149-160
    [91] Wenyi J, Mark BW, Richard A et al. Nickel release from orthodontic arch wires and cellular immune response to variouse nickel concentrations, J Biomed Mater Res (Appl Biomater), 1999, 48(4): 488-495
    [92] Rinke S, Welzel A, Huels A et al. Tensile strength of laser-welded CoCr alloys dependence on welding method, J.CA Sect.,1998, 53(10): 736-739
    [93] Mai TA, Spowage AC. Thermal modelling of laser welding and related processes: a literature review, Opt. & Laser Technol., 2005, 37(2): 99-115
    [94] Mai TA, Spowage AC. Characterization of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminiu, Mater Sci Eng A, 2004(1-2): 374: 224-233
    [95] 潘春旭,异种钢及异种金属焊接-显微结构特征及其转变机理,北京:人民交通出版社,2000
    [96] Baba N, Watanabe I, Tanaka Y et al. Joint properties of cast Fe-Pt magnetic alloy laser-welded to Co-Cr alloy, Dent Mater J, 2005, 24(4): 550-554
    [97] Srimaneepong V. Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings, Dent Mater J, 2005, 2 4(4): 541-549
    [98] 刘建书,李湘,罗展慧,Monel 400 与 16MnR 异种金属的焊接,焊接,2003,3:26-29
    [99] 黎红,付强,赵云风,激光焊接烤瓷合金试件抗应力腐蚀的实验研究,华西口腔医学杂志,2000,18(2):116-118
    [100] 李萌盛,吴元峰,谢霞,焊接参数对异种钢接头热应力影响的数值模拟,焊接,2005,1:16-18
    [101] 秦丽雁,张寿禄,宋诗哲,典型不锈钢晶间腐蚀敏化温度的研究,中国腐蚀与防护学报,2006,26(1):1-5
    [102] 张田宏,元素 V 对奥氏体焊缝金属晶间腐蚀敏感性的影响,焊接学报,2006,27(6):64-66
    [103] 刘春波,程俊彪,卢立香,焊后热处理对 BB503 钢焊接接头性能及组织的影响,金属热处理,2004,29(12):26
    [104] 熊建钢,胡乾午,吴丰顺,镍基高温合金激光焊接接头组织及裂纹形成原因,应用激光,2001,21(5):309-312
    [105] Schmalz G., Garhammer P. Biological interaction of dental cast alloys with oral tissues, Dent mater, 2002,18(5):396-406
    [106] Lucien R, Heinz L¨uthy, Pierre-Yves E. Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals, Biomaterials, 2005, 26(21): 4358-4365
    [107] Ameer MA, Khamis E. Electrochemical behaviour of recasting Ni-Cr and Co-Cr non-precious dental alloys, Corros. Sci., 2004, 46(11): 2825-2836
    [108] Benatti OFM, Miranda WG, Muench A. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys, J Prosthet Dent, 2000, 84(3): 360-363
    [109] Tanja Matkovi, Prosper Matkovi, Jadranka Malina, Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys, J Alloys and Comp., 2004, 366(1-2 ): 293-297
    [110] Huang HH. Effect of chemical composition on the corrosion behavior of Ni-Cr-Mo dental casting alloys, J Biomed Mater Res Part B: Appl Biomater, 2002, 60(3): 458-465
    [111] Huang HH. Surface characterization of passive film on NiCr-based dental casting alloys, Biomaterials, 2003, 24(9): 1575-1582
    [112] Ali E. Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium, Appl. Surf. Sci., 2003, 220(1-4): 343-348
    [113] Gil FJ, Sánchez .A, Espías A et al. In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys, Int Dent J, 1999, 49(6): 361-367
    [114] Michel R, Reich M. Systemic effects of implanted prostheses made of cobalt-chromium alloys, Arch Orthop Trauma Surg, 1991, 110(2): 61-74
    [115] 汪大林,钛在口腔医学中的应用研究,国外医学口腔医学分册,1993,20(1): 43-46
    [116] John C, Mcgivney, Munoz. A multicenter longitudinal clinical trial of a new system for restorations, J Prosthet Dent, 1997, 77(1): 1-11
    [117] Zinelis S, Tsetsekou A, Papadopoulos. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys, J Prosthet Dent, 2003, 90(4): 332-338
    [118] Tamaki Y, Miyazaki T, Suzuki E et al. Polishing of titanium prosthetics (Part 6): The chemical polishing baths containing hydrofluoric acid and nitric acid, Shika Zairyo Kikai, 1989, 8(1): 103-109
    [119] Russell R, Wang, Aaron F. Titanium for prosthodontic applications: A review of the literature, Quintessence Int, 1996, 27(6): 401
    [120] Gonzalez-Martin A, Kim J, Van Hyfte J et al. A new photocatalytic reactor for trace contaminant control: a water polishing system, Life Support Biosph Sci, 2001, 8(1): 33-41
    [121] 廖海珠,义齿磨光的光洁度标准及其所需的线速度问题,临床口腔医学杂志,1985,1(3):164
    [122] Lia R, Silvia F, Eugenio B et al. The effect of surface roughness on early in vivo plaque colonization on titanium, J Periodontol, 1997, 68(6): 556-562
    [123] Schwarz F, Papanicolau P, Rothamel D et al. Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces, J Biomed Mater Res A, 2006, 77(3): 437-44
    [124] Ouirynen M, Bollen CML. The influence of surface roughness and surface free energy on supra-&subgingival plaque formation in man, J Clin Perioclonntol, 1995, 22(1): 1-14
    [125] Willershausen B, Callaway A, Ernst CP et al. Influence of oral bacteria on the surface morphology of various dental materials under in vitro conditions, International Dental J, 1995, 45(5): 298-301
    [126] 师昌绪,材料科学技术百科全书,北京:中国大百科全书出版社,1995,98-100
    [127] 宋应亮,徐君伍,马轩祥,口腔环境中钛及钛合金的腐蚀研究现状,国外医学生物医学工程分册,2000,23(4):243-246
    [128] Schiff N, Boinet M, Morgon L et al. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes, Eur J Orthod,2006, 28(3):298-304
    [129] Gallen BW, Sodhi RNS, Griffiths K et al. Properties of Ti and Ti-6Al-4V surface oxides as determined by nuclear reaction analysis and X-ray photoelectron spectroscopy, Fifth world biomaterials congress. Toronto, Canada, 1996: 863-866
    [130] 宋应亮,钛种植义齿结构部件的缝隙腐蚀, 国外医学口腔医学分册,1996, 23(2):16-18
    [131] 何惠明,艾绳前,王宝成,钛表面烤瓷的预氧化处理工艺研究,实用口腔医学杂志,1998,14(1): 14-16
    [132] Burstein GT, Liu C, Souto RM. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution, Biomaterials, 2005, 26(3): 245-256
    [133] Zavanelli RA. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments, J Oral Rehabil, 2004, 31(10): 1029-1034
    [134] Atwood RC, PD Lee, RV Curtis. Modeling the investment casting of a titanium crown, Dent Mater, 2006, In press
    [135]Berger-Gorbet M, Broxup B, Rivard C et al. Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants, J Biomed Mater Res Part B: Appl Biomater, 1996, 32(2): 243-248
    [136] Liu XY, Chu PK, Ding CX et al. Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater Sci Eng R Rep, 2004, 47(3-4): 49-121
    [137] 陈民芳,杨贤金,何菲,NaOH 浓度对 NiTi 形状记忆合金表面类骨磷灰石形成的影响,金属学报,2003,39(8):859-864
    [138] Takadama H, Kim HM, Miyaji F et al. How does alkali-treated titanium induce apatite formation, Bioceramics, 1998, 11: 663-666
    [139] Rondelli G, Vincentini B. Localized corrosion behavior in simulated human body fluids of commercial NiTi orthodontic wires, Biomaterials , 1999, 20(8): 785-792
    [140] Ryhanen J, Kallioinen M, Serlo W et al. Bone healing and mineralization, implant corrosion, and trace metals after nickel-titanium shape memory metal intramedullary fixation, J Biomed Mater Res (Appl Biomater), 1999, 47(4): 472-480
    [141] Kujala S, Ruhanen J, Tuukkanen J. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials, 2002,23(12): 2535-2554.
    [142] Da G, Wang T, Lui Y et al. Surgical treatment of tibial and femoral fracturea with NiTi shape memory alloy interlocking intramedullary nails, Materials Science Forum, 2002, 394: 37-40
    [143] Wever DJ, Elstrodt JA, Veldhuizn AG et al. A preliminary investigation of shape memory alloys in the surgical correction of ecoliosis, Eur. Spine J, 2002, 11:100-107
    [144] Veldhuizen AG, Sanders MM, Cool JA et al. A scoliosis correction device based on memory metal, Med Eng Phys, 1997, 19(2): 171-179
    [145] Kapanen A, Ilvesaro J, Danilo A et al. Behaviour of NiTinol in osteoblast-like ROS-17 cell cultures, Biomaterials, 2002, 23(23): 645-650
    [146] Shih CC, Lin SJ, Chen YL et al. Increased corrosion resistance of stent materials by converting surface film of polycrystalline oxide into amorphous oxide, Biomed Mater Res, 2000, 52(2): 323-332
    [147] 赵慧峰,徐明,在早期负荷情况下植入犬下颌骨的镍钛形状记忆合金种植体界面的光镜及电镜观察,北京口腔医学,2001,9(2):63-66
    [148] Shevchenko N, Pham MT, Maitz MF et al. Studies of surface modified NiTi alloy, Appl Surf Sci, 2004, 235(1-2): 126-131
    [149] Shabalovskaya SA. Surface corrosion and biocompatibility aspects of Nitinol as an implant material, Biomed Mater Eng, 2002, 12(1): 69-109
    [150] Hench LL, Oonishi. H, Wilson J et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes, J Biomed Mater Res, 1999, 44(1): 31-43
    [151] Wheeler DL, Campbell AA, Graff GL. Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants , J Biomed Mater Res. 1997, 34(4): 539-543
    [152] 崔福斋,严庆玲,生物材料学,北京:科学出版社,1997
    [153] 段可,程俊秋,聚丙烯酸钠对钛表面仿生生长磷灰石涂层的调制,化学研究与应用,2001,13(4):468-470
    [154] Ernst BH. Ectopic bone induction by RHBMP-2 released from calcium phosphate coatings on titanium implants, Implant Dent, 2003, 12(1): 101-102
    [155] 杨贤金,崔振铎,赵乃勤,化学修饰对 NiTi 形状记忆合金氧化膜的影响, 功能材料,2002,33(2):169-171
    [156] Chen MF, Yang XJ, Hu RX et al. Study on the formation an apatite layer on NiTi shape memory alloy using a chemical treatment method, Surf. coat. technol, 2003, 173(2-3): 229-234
    [157] 刘渊,陈必胜,陶长仲,羟基磷灰石烧结涂层种植体和纯钛种植体的对比实验研究,实用口腔医学杂志,1994,10(4):272-276
    [158] Gert DE. Stuucture of the bone interface to dental implants in vivo, J. Oral implantol, 1993, 19(2): 123-135
    [159] 丁仲鹃,董强,肖旭辉,两种钛种植体与骨结合界面的组织学研究,华西口腔医学杂志,2004,22(3):242-245
    [160] 罗智斌,丁学强,邓飞龙,低弹性模量纯钛种植体的骨内植入试验研究,中山大学学报(医学科学版),2003,24(2):126-128
    [161] Storch V. Cell and environment: a link between morphology and ecology, Biologia Ambiental I.: Serv Ed Univ: Pais Vasco, 1988, 179-190
    [162] Okazaki Y, Rao S, Asao S. Effects of Ti, Al and V concentrations on cell viability, Mater Trans, JIM, 1998, 39(1): 1053-1062
    [163] Messer RL, Bishop S, Lucas LC. Effects of metallic ion toxicity on human gingival fibroblasts morpholog, Biomaterials,1999, 20(18): 1647-1657
    [164] Rossman MD, Preuss OP, Powers MB. In Beryllium biomedical and environmental aspects. Baltimore, MD: Williams & Wilkins, 1991: 87-90
    [165] Mjǒr IA, Christensen GJ. Assessment of local side effect of cast alloys, Quintesence Int, 1993, 24: 343-351
    [166] 杨晓芳,奚延裴,生物材料生物相容性评价研究进展,生物医学工程学杂志,2001,18(1):123- 128
    [167] Piliero SJ, CS, Licalzi M. Biocompatibility evaluation of casting alloy in hamsters, J Prosthet Dent, 1979, 41(2): 220
    [168] 励永明,评价生物材料不同给予方法致急性全身毒性作用的实验初探,口腔材料器械杂志,2000,9(2):83-85
    [169] 梁卫东,石应康,细胞培养法评价生物材料相容性研究进展,生物医学工程学杂志,1999,16(1):86-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700