用户名: 密码: 验证码:
温州浅滩软土工程特性及固结沉降规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土是近代在滨海、湖泊、沼泽、河滩及谷地等地区海相、湖相沉积形成的一种特殊土体,其工程性质差,天然含水量高、孔隙比大、渗透性差、压缩性大、抗剪强度低、固结时间长、灵敏度高、扰动性大,且流变性显著。在国内外,软土分布十分广泛,其主要分布在沿海地区,而这些地方正是城市、工厂、机场、码头、高速公路所在地,各类建筑特别集中,研究软土的工程特性,进行软土地基处理,也就成为岩土工程的重要内容之一。
     软土地基处理中要解决的两个关键问题就是地基变形和地基稳定。对于深厚的软土地基,地基的沉降计算及工后沉降控制是该类地基处理的核心问题。由于软土的复杂性,对于软土地基的变形或沉降计算的准确性仍较差,目前,计算理论远远落后于工程实践,设计和工程实际之间的较大误差,往往会延误工期、造成工程事故和经济损失。因此,要使地基设计理论有新的进展,关键是要发展新的沉降计算方法,解决地基沉降变形的计算问题。此外,数值计算方法和基于实测沉降数据的沉降预测方法对软土沉降问题的解决同样起着重要的作用。对软土固结沉降特征、规律的分析研究离不开软土各项物理力学指标的正确选取,合理选取软土的计算参数、研究软土各项参数之间的相关关系,对软土地基处理设计具有决定性的作用,对类似工程也具有借鉴和指导意义。
     温州浅滩是瓯江河口区域内发育较为完整、规模最大的滩涂资源。温州浅滩灵霓海堤整个工程的堤坝均座落在深厚的淤泥软土地基上,地基土含水量高、压缩性大、强度低、透水性差,不仅承载力很低,而且在堤身荷载作用下会产生相当大的沉降和差异沉降,且沉降变形持续时间很长,必须对地基进行有效的加固处理。温州浅滩灵霓海堤工程采用了塑料排水板排水固结法+抛石堆载预压方案。从海堤的施工填筑过程、目前的监测数据和海堤运营情况来看,前期的设计计算与实际情况之间存在一定的偏差。
     在此背景下,本论文以温州浅滩淤泥软土及灵霓海堤软基处理工程为例,主要开展了以下几个方面的科学研究工作:
     (1)温州浅滩区域地质及工程地质条件研究
     通过查阅文献、现场踏勘、对已有地质资料的搜集和整理,对温州浅滩区域地质概况、软土沉积环境、研究区工程地质、水文地质条件及软基处理概况进行了详细的分析研究。
     (2)温州浅滩淤泥软土工程特性可靠性研究
     依据温州浅滩工程的地质勘察资料和土工试验、原位测试数据等,对淤泥软土的各项物理、力学性质指标进行可靠性研究;基于Vanmarcke随机场理论,采用“递推空间法”求取淤泥的各项土性指标的自相关距离,进而将土性参数的“点特征”推广到其“空间特征”,并展开土性指标的“空间变异性”研究;对各项指标之间的相关性进行回归分析,求得典型指标之间的经验关系式;分析各项土性指标随土层深度的动态变化规律。
     (3)温州浅滩软土地基固结沉降规律研究
     利用温州浅滩灵霓海堤代表性断面(原位仪器观测断面)的现场监测资料,对淤泥在地基排水固结过程中的地表沉降、分层沉降、水平位移、孔隙水压力消散的变化规律进行详细的分析研究;根据实测孔压数据利用求解孔隙水压力的Barron解的变换形式对地基土层的平均应力固结度进行计算;利用室内试验数据处理的“时间平方根法”对地基土层的竖向和径向固结系数进行计算和统计分析;并基于现场实测沉降过程曲线,分别采用“指数曲线配合法”和本论文提出的“改进的门田法”对软土层的竖向和径向固结系数进行参数反演分析,并将反演结果与室内试验结果进行对比。
     (4)温州浅滩淤泥软基沉降预测研究
     首先对目前软土地基沉降预测的各类方法进行对比研究,然后对温州浅滩灵霓海堤代表性断面的实测沉降数据进行处理和分析,分别采用双曲线法、指数曲线法、Pearl曲线模型、灰色Verhulst预估模型和改进的BP人工神经网络算法(改进的BP-ANN模型)对其进行沉降预测分析,最后将预测结果与实测情况进行对比,得出各种预测方法的适用性和预测效果,提出最适合温州浅滩软基沉降预测的模型和方法。
     (5)温州浅滩淤泥软基轴对称固结单向压缩沉降计算研究
     围绕软土地基轴对称固结的单向压缩沉降计算问题,结合温州浅滩灵霓海堤工程实例的大量沉降监测断面资料,对软土地基固结度计算方法、主固结沉降计算方法、沉降计算深度控制标准、沉降经验修正系数取值、软土压缩性指标反演等课题进行大量的计算和统计分析工作。在此基础上,本论文提出软土地基沉降计算的“拟合公式法”和“坡脚迭代分层总和法”的计算公式、求解步骤,并进行实例验证。
     (6)软土地基一维及三维固结沉降解析计算研究
     从地基土中任意一点在任意时刻的应力-应变状态出发,考虑地基土体的先期固结状态(OCR)和应力历史的影响,利用土的割线模量-有效应力曲线,推导土体应力固结度与应变固结度之间相互换算的解析关系式;建立考虑地基土体先期固结状态(OCR)和应力历史影响的软土地基一维、三维固结变形(固结沉降)计算的一维压缩模量Es法、一维压缩指数Cc法、三维变形模量E法、三维压缩指数Cc法的理论计算体系;并利用灵霓海堤工程实例的计算结果和实测沉降值进行对比验证。
     本论文在研究过程中,以大量详实、可靠的试验数据和原位监测数据为基础,通过系统的分析和研究,得出如下几个方面的结论和研究成果:
     (1)温州浅滩淤泥软土工程特性的可靠性研究结果表明:
     ①温州浅滩淤泥软土的主要工程特性可以概括为“四高二低”,即天然含水率高、孔隙比高、压缩性高、灵敏度高、渗透性低、抗剪强度低。
     ②对于温州浅滩淤泥软土,根据室内土工试验指标推求的自相关距离明显大于根据原位测试指标推求的结果。为了减小取样扰动和取样间距对土体自相关距离的影响,可以采用静力触探试验(CPT)数据求解的自相关距离作为标准值,由此求得的淤泥土性的自相关距离均值为0.46m。
     ③温州浅滩淤泥土层各项物理-力学参数指标的“空间”变异系数明显小于其“点”变异系数,因此变异性也大大降低。这说明,温州浅滩淤泥土层较均匀,土性参数变异性很小。
     (2)灵霓海堤断面的监测资料分析表明:
     ①温州浅滩淤泥软基的地表P-S-t曲线和分层沉降过程曲线均具有明显的阶段性和阶梯状特征。地表最大累计监测沉降量达447.9cm,最小值为170.2cm,平均为311.9cm。地基各土层压缩率基本在0.005-0.268之间,淤泥层的沉降主要发生在塑料排水板处理区,其压缩量占总沉降量的80.4-87.4%,平均占84.7%;塑料排水板处理区以下土层的压缩量占总沉降量的12.6-19.6%,平均占15.3%。其中,淤泥表层4-8m范围内的土层压缩率最大。
     ②孔隙水压力计测得的淤泥初始孔隙水压力的观测结果表明,温州浅滩原始天然地基基本属于正常固结的软粘土地基。软土地基中累积孔压-累积荷载曲线、分级加载孔压系数-累积荷载曲线呈现出三个明显的不同发展阶段(初期加载阶段、中期加载阶段、末期加载阶段)。
     ③根据室内试验数据利用时间平方根法推求的软土固结系数表明,在相同荷载条件下,均有Cv     (3)灵霓海堤沉降预测的结果表明,5种沉降预测方法按预测精度由高到低的顺序排列为:改进的BP模型>Pearl曲线模型>灰色Verhulst模型>指数曲线法>双曲线法,其中前3种方法的预测精度相近。5种预测方法中只有改进的BP模型的预测值略小于实测沉降量,其余4种方法的预测结果均大于实测沉降量。从误差分析、曲线收敛速率分析来看,双曲线法、指数曲线法和改进的BP模型较适用于短、中期预测,而Pearl曲线模型和灰色Verhulst模型则适用于短、中、长期预测。且Pearl曲线模型和灰色Verhulst模型的预测效果也相近,这与两种预测方法均是基于S型曲线函数发展而来的有关。这正好证明了温州浅滩淤泥软土地基沉降随时间的发展趋势是呈“S”型变化的。
     (4)对灵霓海堤63个监测断面一系列计算分析的统计结果表明:
     ①通过温州浅滩灵霓海堤软基实测沉降资料对软土的压缩性指标进行反演分析,得到了软土压缩模量Es、压缩指数Cc的室内试验值与反演值之间的线性回归方程,可以利用得到的经验公式对温州浅滩软土的压缩性指标进行修正。
     ②对于温州浅滩灵霓海堤软土地基而言,当采用压缩模量Es法(e-σ'曲线法)计算地基主固结沉降时,沉降经验修正系数的平均取值约为1.62;当采用压缩指数Cc法(e-lgσ')计算时,沉降经验修正系数的平均取值约为1.44,这与地区经验取值1.4较吻合,建议采用Cc法进行计算。
     本论文的研究还表明,地基最终主固结沉降量与最终总沉降量之间并非简单的比例关系,不能仅仅用沉降经验系数来进行修正,两者之间实际上具有相关性很高的线性关系。将主固结沉降量与总沉降量进行回归分析,本论文得到了计算温州浅滩软土地基总沉降量的线性拟合公式。“拟合公式法”计算的最终总沉降量一般略大于实测标准值,且两者差异较小,其计算结果更偏准确和安全。
     ③本论文对传统的分层总和法进行改进,提出了一个计算软土地基最终总沉降量的新方法——“坡脚迭代分层总和法”。坡脚迭代分层总和法是一种考虑沉降增重的软土地基沉降计算方法,它利用路堤坡脚沉降量对路堤中心计算高度进行反复修正(即附加应力的修正),以达到减少沉降变形计算误差的目的。对于“坡脚迭代分层总和法”存在某个极限的迭代次数,使该方法的计算值与实测标准值最接近。
     对温州浅滩灵霓海堤软土地基用上述新方法进行最终总沉降量计算的结果的统计分析表明:利用该方法进行软土地基总沉降的计算是准确的、可行的,且不同的主固结沉降计算方法下的最优迭代次数不等。当主固结沉降采用Es法计算时,进行4次坡脚沉降量的迭代后其总沉降量的计算值与标准值最接近;当主固结沉降采用Cc法计算时,进行3次坡脚沉降量的迭代后其总沉降量的计算结果与标准值最接近。
     (5)软土地基一维、三维固结沉降解析计算的推导结论表明:
     ①本论文根据土中任意一点在任意时刻的应力-应变关系,考虑土体的先期固结压力对引起土体固结变形的有效应力的影响,利用土的割线模量-有效应力曲线,推导了不同超固结比OCR情况下,土体应力固结度与应变固结度之间相互换算的解析关系式。在地基土体固结开始和结束时,其应变固结度与应力固结度相等;而在固结过程中,恒有应变固结度大于应力固结度。且应变固结度与应力固结度之间的转换关系式与土体的先期固结状态、自重应力的大小、附加应力的大小、土体的压缩性指标有关。
     ②从地基土中任意一点在任意时刻的应力-应变关系出发,利用虎克定律和广义虎克定律,考虑地基土体的先期固结状态(OCR)和应力历史,分别推导了软土地基在任意时刻用应力固结度和应变固结度所表示的一维、三维固结沉降量的解析计算公式,以及最终固结沉降量的解析计算公式。并建立了一维压缩模量Es法、一维压缩指数Cc法、三维变形模量E法、三维压缩指数Cc法的解析计算体系。
     实例计算结果显示,温州浅滩淤泥软土地基的平均应变固结度比平均应力固结度约大0-15%左右。软土地基的一维沉降计算值与实测沉降值相差甚远。软土地基三维沉降-时间的关系曲线与实测沉降曲线的对比分析表明:软土地基三维沉降计算效果明显优于一维沉降计算值,且三维压缩指数Cc法的计算结果较三维变形模量E法更接近于实测值。
Soft-soil is one kind of especial soil mass, that is formed by marine and lacustrine sedimentations in the areas of coast, lakes, swamp, overflowland and valley in modern times. Soft-soil has very poor engineering properties with high natural water content, large void ratio, bad penetrability, great compressibility, low shear strength, long consolidation period, high sensitivity, easy disturbance and visible rheology. Soft-soil exists widely in the world, which is mainly located in coasts, where are bulit cities, factories, airports, wharfs, highways etc. Therefore, the study on engineering properties and foundation treatment of soft-soils is becoming one of the most important aspects in geotechnical engineering.
     The two key points in soft foundation treatment are deformation and stability. For the deep soft-soil foundations, the settlement calculation and residual settlement controlling of foundation are the core problems in foundation treatment. Because of the complexity of soft-soil, the accuracy of deformation and settlement calculation is still inadequate. The calculation theory develops far behind the engineering practice, and great difference is existing between them, which may cause such problems as construction period delaying, economy losing, even engineering accident happening. For this reason, in order to study the foundation design theory, the new settlement calculation methods should be developed to solve the settlement problem. In addition, the numerical computation method and settlement prediction method based on the measured settlement data play an important role in solving the settlement problem for soft foundations. The study of consolidation settlement characteristics and regularities is closely related to selection of physical and mechanical parameters of soft-soil. The selection of parameters and their correlation analysis are very critical to foundation treatment design, and such research is helpful to similar projects.
     Wenzhou shoal is the largest and most complete tidal flat resources around estuary area of Ou river. The whole embankment of Lingni seawall in Wenzhou shoal reposes on the deep silt foundation. The silt, that with high water content, large compressibility, low shear strength, low bearing capacity and low penetrability, could cause to large deformation and differential settlement. The duration of silt deformation will be long. Therefore, the silt foundation in Wenzhou shoal must be reinforced effectively. The foundation treatment methods used here includes drainage consolidation method with plastic drainage plate and preloading method with ripraps. According to the construction process, monitoring data and operation of the seawall, there is certain difference between the preliminary design computation and practical situation.
     Based on above, in this dissertation, taking silt in Wenzhou shoal and soft-soil foundation treatment of Lingni seawall as an example, the following scientific researches were carried out:
     (1) Analysis on areal geology and engineering geologic conditions in Wenzhou shoal
     By means of literature reading, analysis of original data in geoexploration, design, construction, monitoring stages and on-site exploration, the general situation of areal geology, sedimentary environment of silt, engineering geologic conditions, hydrogeologic conditions and soft-soil foundation treatment project in Wenzhou shoal were studied in detail.
     (2) Reliability study on engineering properties of soft-soil in Wenzhou shoal
     According to the geoexploration materials and data of geotechnical test and in situ test, the reliability of each physical-mechanical parameter of silt was studied. Basing on the theory of Vanmarcke random field, adopting the "recurrence spatial method", autocorrelation distance of each soil parameter was figured out. In this way, the "point properties" could be extended to the "spatial properties" of each soil parameter, so the "spatial variability" could be gotten. The regression analysis among soil parameters was done, and also the experimental formulas were obtained among them. Moreover, dynamic variation regularity of soil parameters with depth was studied.
     (3) Study on consolidation settlement regularity of soft-soil foundation in Wenzhou shoal
     By using the on-site monitoring data of representative sections (survey section of in-situ instruments) of Lingni seawall, the surface settlement, layered settlement,horizontal displacement and dissipation regularity of pore pressure in the process of consolidation were analyzed detailedly. The average stress degree of consolidation was calculated by the transformation form of Barron analytical solution which applied to solve the pore pressure according to the actual measured pore pressure data. The calculation and statistical analysis of vertical and radial coefficient of consolidation were carried out by "time square root method" based on the laboratory experiment data. The inversion of vertical and radial coefficient of consolidation was performed by "companion method of exponential curve" and "improved Mentian method" proposed in this dissertation on the basis of actual measured settlement curves. Finally, the contrast of inversive results and calculated results was promopt.
     (4) Study on the settlement prediction of soft-soil foundation in Wenzhou shoal
     Firstly, the comparative study of all kinds of settlement prediction methods for soft-soil foundation was carried out. And then, the actual measured settlement data were treated with mathematical method, and the settlement prediction was performed for the representative section of Lingni seawall respectively by hyperbola method, exponential curve method, Pearl curve model, grey Verhulst model and improved BP artificial neural network arithmetic (improved BP-ANN model). Finally, the comparison of prediction values and measured settlement data was carried on. The applicability and predicted efficiency of each prediction method were obtained. The optimal settlement prediction model and method were put forward for Wenzhou shoal.
     (5) Study on the settlement calculation of uni-directional compression with axisymmetric consolidation of soft-soil foundation in Wenzhou shoal
     Centering on the settlement calculation of uni-directional compression with axisymmetric consolidation of soft-soil foundation, combining with the abundant settlement monitoring data of Lingni seawall project, the computation and statistical analysis on the calculation method of degree of consolidation, the calculation method of consolidation settlement, the control standards of the compression layer depth, the value of the empirical correction coefficient for settlement and the inversion of compressibility index were proceeded. Based on the above, the "fitting formula method" and the "iterative layerwise summation method of slope-toe" for the final settlement calculation were proposed. The computing formulas and solution procedures of both methods were given in this dissertation. Case verification was made as well.
     (6) Study on the analytic calculation of one-dimensional and three-dimensional consolidation settlement of soft-soil foundation
     Starting from the stress and strain status in foundation soil at any time and in any point, considering the preconsolidation state (the value of OCR) and stress-history, by using the secant modulu and effective stress curve, the conversion relation formula between stress degree of consolidation and strain degree of consolidation was derived. The theoretic calculation systems were established for one-dimensional and three-dimensional consolidation settlement calculation which could consider the preconsolidation state (the value of OCR) and stress-history, such as one-dimensional compression modulu (Es) method, one-dimensional compression index (Cc) method, three-dimensional deformation modulu (E) method and three-dimensional compression index(Cc)method. In the end, taking the Lingni seawall for example, the contrast verification of calculation results by the above methods and measured settlement data was made.
     In the process of research in this dissertation, based on the abundant and dependable test data and on-site monitoring data, through the systemic study and analysis, the main conclusions and research achievements are drawn as follows:
     (1) The research results of reliability study on engineering properties of soft-soil in Wenzhou shoal show that:
     ①The main engineering properties of soft-soil in Wenzhou shoal could be summarized for "4 high 2 low", that is high natural water content, high void ratio, high compressibility, high sensitivity and low penetrability, low shear strength.
     ②For the soft-soil in Wenzhou shoal, the autocorrelation distance of each soil parameter computed by the laboratory experiment indexes is significant larger than the one computed by the in-situ test indexes. In order to reduce the influence caused by the perturbation and space of sampling, could adopt cone penetration test (CPT) data to determine the autocorrelation distance of silt, and take the average result as a standard value for the silt. In this dissertation, the average autocorrelation distance of silt in Wenzhou shoal is 0.46m.
     ③The "spatial coefficient of variation" of each physical-mechanical parameter of silt in Wenzhou shoal is obvious less than the "point coefficient of variation". The variability of parameters is decreased in deep degree, which shows that, the soft-soil horizon is relatively homogeneous, and the actual variability of silt parameters in Wenzhou shoal is very low.
     (2) The analysis results of on-site monitoring data for survey section of Lingni seawall show that:
     ①The surface settlement P~S~t curve and layered settlement curve are characterized as stages and stepladders form. The maximal accumulated monitoring surface settlement has achieved 447.9cm, and the minimum settlement is 170.2cm, the mean value is about 311.9cm. The compressibility of each foundation layer is in the range of 0.005-0.268. The main deformation presents in the treatment area of plastic drainage plate, the amount of compression accounts for 80.4-87.4% of the total settlement with an average at 84.7%. The amount of compression below the treatment area of plastic drainage plate accounts for 12.6-19.6% of the total settlement with an average at 15.3%. Therein, the compressibility of surface layer of silt with the depth 4-8m is maximum in soft-soil foundation.
     ②The monitoring data of incipient pore pressure by pore-water pressure meter shows that, the natural foundation of Wenzhou shoal belongs to normal consolidated soft clay foundation. Accumulative pore pressure-accumulative load curve of soft foundation and pore pressure coefficient-accumulative load curve in each loading step are manifested in three different developing stages (that is, initial loading stage, middle loading stage, terminal loading stage).
     ③The calculation results of vertical and radial coefficient of consolidation gotten by "time square root method" based on the laboratory experiment data show that, under the same loading conditions, thereis Cv     (3) Settlement prediction results of typical section of Lingni seawall show that, the prediction precisions of the five methods from higher to lower are:improved BP-ANN model> Pearl model>grey Verhulst model>exponential method>hyperbolic method. The prediction precisions of the first three methods are similar to each other. The predicted settlement is slightly less than the measured settlement only when using the improved BP-ANN model among the five methods. In the opposite, when using the other four methods, the predicted settlement is more than the measured settlement at different degree. According to the error analysis and convergence rate of prediction curves, the hyperbolic method, exponential method and improved BP-ANN model are applicable to the short-term and medium-term prediction, yet, the Pearl model and grey Verhulst model are suitable for all the short-term, medium-term and long-trem prediction. The prediction results of Pearl model and grey Verhulst model are highly similar, which is related to the functions of both model buildings on basis of S-form curve. It is proved that the development tendency of settlement with time of soft-soil foundation in Wenzhou shoal varies in S-form.
     (4) The statistic results of a series of calculations and analyses for 63 monitoring sections of Lingni seawall show that:
     ①According to the inversion of compressibility indexes based on the measured settlement data, the linear regression equations of compression modulu (Es) and compression index (Cc) are established between inversive values and testing values. The regression equations could be used to modify the design compressibility indexes.
     ②For the soft-soil foundation of Lingni seawall in Wenzhou shoal, the average value of the empirical correction coefficient for settlement is 1.62 when adopting the compression modulu (Es) method (e~σ'curve method); and the average value of the empirical correction coefficient for settlement is 1.44 when adopting the compression index (Cc) method (e~lgσ' curve method), which anastomosed with the regional empirical value 1.4. Therefore, the compression index (Cc) method is suggested for the settlement calculation.
     The research also shows that, there is not a simple proportion relation between the final consolidation settlement and final total settlement, the relationship between them could not be described only by the empirical correction coefficient for settlement. In fact, there is a linear relationship between them with high correlation. By means of regression analysis of the final consolidation settlement and final total settlement, the linear fitting formulas between them has been established for soft-soil foundation in Wenzhou shoal to calculate the final total settlement. The calculated results by "fitting formula method" are slightly larger than the measured standard value, and the difference is small. The results gotten by the fitting formulas are more exact and secure.
     ③Due to the shortages of traditional layerwise summation method, a new method called "iterative layerwise summation method of slope-toe" is proposed to calculate final total settlement of soft soil foundation by promoting the traditional layerwise summation method. This new method can consider the settlement caused by weight gain. In order to reduce errors of settlement calculation, the calculation height in the center of the embankment is repeatedly modified (additional stress is modified as well) by means of iteration the settlement of slope-toe in this method. There is an optimum and ultimate iteration times through which the calculated results by iterative layerwise summation method of slope-toe are the most close to the actual measured settlement data.
     The statistics analysis of calculated final total settlement values by the new method for Lingni seawall shows that, the new method may be potential to calculate foundation final total settlements with its accurate results, and the optimum iteration times is different for different consolidation settlement calculation methods. When adopting the compression modulu (Es) method to calculate the consolidation settlement in the new method, the optimum iteration times is 4 times; and when adopting the compression index (Cc) method, the optimum iteration times is 3 times.
     (5) The conclusions of the analytic calculation of one-dimensional and three-dimensional consolidation settlement of soft-soil foundation show that:
     ①According to the stress and strain status in foundation soil at any time and in any point, considering the influence of pre-consolidation pressure on effective stress which caused to the deformation of soil mass, by using the secant modulu-effective stress curve, the conversion relation formula between stress degree of consolidation and strain degree of consolidation is derived in different over-consolidation ratio (OCR) conditions. In the beginning and at the end of consolidation of foundation, stress degree of consolidation is equal to the strain degree of consolidation. At any time in the process of consolidation, the strain degree of consolidation is larger than the stress degree of consolidation. The conversion relation formula between them is related to the preconsolidation state, self-weight stress, additional stress and compressibility indexes of soil mass.
     ②Starting from the stress and strain status in foundation soil at any time and in any point, according to the hooke law and generalized hooke law, considering the preconsolidation state (the value of OCR) and stress-history, the analytic calculation formulas of one-dimensional and three-dimensional consolidation settlement and final settlement calculation represented by stress degree of consolidation and strain degree of consolidation of soft-soil foundation at any time are deduced. The theoretic calculation systems are also established for one-dimensional and three-dimensional consolidation settlement calculation, such as one-dimensional compression modulu (Es) method, one-dimensional compression index (Cc) method, three-dimensional deformation modulu (E) method and three-dimensional compression index (Cc) method.
     The practical calculation results show that, the average strain degree of consolidation of soft-soil foundation in Wenzhou shoal is larger than the average stress degree of consolidation in the range of 0-15%. The difference between the one-dimensional consolidation settlement calculation values and the actual measured settlement values is not small. The contrastive analysis of settlement curve between the three-dimensional consolidation settlement calculation and the actual measured settlement shows that, the three-dimensional consolidation settlement calculation method is better than the one-dimensional method, and the three-dimensional compression index (Cc) method is superior to the three-dimensional deformation modulu (E) method, its results even more close to the actual measured settlement data.
引文
[1]E. W. Brand, R. P. Brenner编著;叶书麟,宰金璋,史佩栋译校.软粘土工程学[M].北京:中国铁道出版社,1991.
    [2]杨顺安,冯晓腊,张聪辰.软土理论与工程[M].北京:地质出版社,2000.
    [3]杨光华.岩土力学与工程的发展问题[J].广东水利水电,2000,(6):15-17.
    [4]上海市水利工程设计研究院.温州浅滩灵霓海堤一期工程初步设计报告[R].2002.
    [5]GB 50021-2001.岩土工程勘察规范.2001.
    [6]JGJ 83-91.软土地区工程地质勘查规范.1991.
    [7]JTJ 064-98.公路工程地质勘查规范.1998.
    [8]JTJ 240-97.港口工程地质勘查规范.1997.
    [9]TB 10035-2006.铁路特殊路基设计规范.2006.
    [10]张勤,陈志坚.岩土工程地质学[M].郑州:黄河水利出版社,2000.
    [11]黄文熙.土的工程性质.北京:水利电力出版社,1983.
    [12]徐至钧主编.软土地基和预压法地基处理[M].北京:机械工业出版社,2005.
    [13]黄飞.软土性质及其地基加固技术[J].广西城镇建设,2005(12):43-45.
    [14]高国瑞.近代土质学[M].南京:东南大学出版社,1990.
    [15]沈珠江.软土变形的计算参数及其室内测定[J].水利水运科学研究.1985(2):75-82.
    [16]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报.1998,20(1):100-111.
    [17]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [18]Osipov V. I. Microstructure and changes associated with thixotropic phenomena in clay soil[J]. Geotechnique,1984,34(2):293-303.
    [19]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984.
    [20]徐泽中,方涤华,姜朴等.沪宁高速公路软土的工程特性研究[J].水利水电科技进展,1998,18(2):9-12.
    [21]梁涛,张修杰.珠江三角洲地区高速公路软土特征及处理方法[J].林业建设,1998(5):25-29.
    [22]王清,肖树芳.海积软土的工程地质研究现状[J].世界地质.2000,19(3):253-257.
    [23]雷华阳,肖树芳.天津海积软土微观结构与工程性质初探[J].地质与勘探.2002,38(6):81-85.
    [24]梁国钱,张民强,俞炯奇等.浙江沿海地区软土工程特性[J].中国矿业大学学报.2002,31(5):435-437,441.
    [25]孔令伟,吕海波,汪稔等.海口某海域软土工程特性的微观机制浅析[J].岩土力学,2002,23(1):36-40.
    [26]孔令伟,吕海波,汪稔等.某防波堤下卧层软土的工程特性状态分析[J].岩土工程学报,2004,26(4):454-458.
    [27]祝卫东.温州软土与台州软土工程特性及其比较分析[D].浙江大学硕士学位论文,2003.
    [28]陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-141.
    [29]师旭超.海相淤泥的固结特性及变形机理研究[D].中国科学院武汉岩土力学研究所博士学位论文,2003.
    [30]章定文,刘松玉,于新豹.连云港海相软土工程特性及处治方法探讨[J].工程地质学报,2003,11(3):250-257.
    [31]Takaharu Shogaki, Yuichi Nochikawa, Takashi Sakamoto et al. Consolidation properties of Pusan New Port clays[J]. Busan Korea:Proceedings of Korea-Japan Joint Workshop,2003, 119-127.
    [32]Takaharu Shogaki, Yuichi Nochikawa, Seiji Suwa et al. Soil properties of Pusan New Port clays[J]. Engineering Practice and Performance of Soft Deposites, IS-OSAKA,2004,63-68.
    [33]Takaharu Shogaki, Yuichi Nochikawa, Jeong Gyeong Hwan et al. Strength and Consolidation Properties of Pusan New Port Clays[J]. Soils and Foundations,2005,45(1):153-169.
    [34]#12
    [35]Tamotsu Matsui, Kazuhiro Oda, Koji Yamamoto. Geotechnical information and engineering practice for constructing man-made islands in Osaka Bay[J]. Engineering Practice and Performance of Soft Deposits, IS-OSAKA,2004,561-586.
    [36]周翠英,牟春梅.珠江三角洲软土分布及其结构类型划分[J].中山大学学报(自然科学版),2004,43(6):81-84.
    [37]Jia Xia, Guang-Long Huang, San-Bao Yan. Behaviour and engineering implications of recent floodplain soft soil along lower reaches of the Yangtze River in Western Nanjing, China[J]. Engineering Geology,2006(87):48-59.
    [38]Hossam. M. Abuel-Naga, Dennes. T. Bergado, Abdelmalek Bouazza et al. Thermal conductivity of soft Bangkok clay from laboratory and field measurements[J]. Engineering Geology,2009(105):211-219.
    [39]张效龙,徐家升,刘敦武.河口滨海区浅层海积软土工程特性研究[J].华东理工大学学报(自然科学版),2008,31(3):259-264.
    [40]万中喜.黄骅港软土工程特性及软土地基处理[D].天津:天津大学,2004.
    [41]张重杰.洞庭湖区某高速公路软土工程特性及其物理力学指标相关关系[J].中外建筑,2006(4):123-125.
    [42]丁光文.太湖地区湖积相软土的工程特性[J].铁道勘察,2008(5):41-45.
    [43]张长生.深圳后海湾海相沉积淤泥固结变形特性研究[D].广州:中国科学院广州地球化学研究所,2005.
    [44]周龙翔,童华炜,王梦恕等.广州软土的工程特性及地基处理方法的对比研究[J].北京交通大学学报,2006,30(1):17-20.
    [45]林奕禧,艾康洪,黄良机.珠海地区软土的工程特性及工程建设问题[J].岩石力学与工程学报,2006,25(增2):3372-3376.
    [46]夏银飞.软粘土的结构性及模型研究[D].武汉:武汉理工大学,2007.
    [47]夏银飞,吴代华,文建华.珠江三角洲软土物理力学指标统计分析[J].公路交通科技,2008,25(1):47-50.
    [48]罗来芬.真空降水与强夯联合处理软土地基的试验研究[D].北京:中国地质大学(北京),2008.
    [49]李玲玲.结构性软土的性状研究及其应用[D].杭州:浙江大学,2007.
    [50]刘用海.宁波软土工程特性及其本构模型应用研究[D].杭州:浙江大学,2008.
    [51]Mitchell J. K. Fundamentals of soil behavior[M].2nd ed., New York:Wiley.1993, xiii,437p.
    [52]Lambe T. W., Whitman R. V. Soil Mechanics[M]. New York:John Wiley & Sons Inc.1969.
    [53]Terzaghi K. Theoretical soil mechanics[M]. New York,1925.
    [54]Casagrande A. The structure of clay and its importance in foundation engineering[J]. Boston Soc. Civil Eng.,1932, Vol.19.
    [55]Lambe T. W. The engineering behavior of compacted clay[J]. SMFD, ASCE,1958, Vol.84, SM2.
    [56]Lambe T. W. The structure of compacted clay[J]. SMFD, ASCE,1958, Vol.84, SM2.
    [57]Aylmore L. A. G. and Quirk J. P. Swelling of clay water systems, Nature,1959.
    [58]Van Olphen. An introduction to clay colloid chemistry.1963.
    [59]Side G., Barden L. The microstructure of dispersed and flocculated samples of kaolinite, illite and montmorillonite[J]. Canadian Geotechnical Journal,1970(8):391-399.
    [60]Mitchell J. K. Fundamentals of soil behavior[M].2nd ed., New York:Wiley.1993.
    [61]高国瑞.中国海相沉积土微结构研究和工程地质[J].中国科学(B辑),1984,9.
    [62]Leroueil S., Tavenas F., Locat J. Discussion on:Correlations between index tests and the properties of remoulded clays-Carrier W. D. and Beckman J. F.[J]. Geotechnique,1985,35(2): 223-226.
    [63]沈珠江.土体结构性数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1).
    [64]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [65]Tavenas F., Leroueil S. Laboratory and in suit stress-strain-time behavior of soft clays[J]. Int. Symp. Geotech. Engng. Soft Soils, Mexico City,1990,2.
    [66]S. Leroueil, P. R. Vaughan. The general and Congruent effects of structure in natural soil and weak rock[J]. Geotechnique,1990,40(3):467-488.
    [67]Onitsuka, Zhenshun Hong. A new method of Correcting Unconfined Compressive Strength of Natural Clays for Sample Disturbance[J]. Soils and Foundations,1995,35(2):95-105.
    [68]王立忠,李玲玲,丁利.温州煤场软土结构性试验研究[J].土木工程学报.2002,35(1):88-92.
    [69]王立忠,丁利,陈云敏,李玲玲.结构性软土压缩特性研究[J].土木工程学报.2004,37(4):46-53.
    [70]沈恺伦.软粘土结构性、塑性各向异性及其演化[D].杭州:浙江大学,2006.
    [71]张勇.武汉软粘土的变形特征与循环荷载动力响应研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [72]#12
    [73]Freudenthal A. M. Safety and Probability of Structural Failure[J]. Proc. ASCE,1954,80(408).
    [74]Cornell C. A. A Normative Second-Moment Reliability Theory for Structural Design[M]. Waterloo:University of Waterloo,1969.
    [75]Ang A. H., Tang W. T. Probability Concepts in Engineering Planning and Design[M]. New York:Tohn Wiley & Sons,1975.
    [76]Casagrande A. Role of the Calculated Risk in Earthwork and Foundation Engineering[J]. ASCE,1956,91(4).
    [77]Lumb P. D. Variability of Natural Soil[J]. Canadian Geotechnical Journal,1966,3(2)][Lumb P. D. Safety Factors and the Probability Distribution of Soil Strength[J]. Canadian Geotechnical Journal,1970,7(3).
    [78]Vanmarcke E. H. Probabilistic Modeling of Soil Profiles[J]. Journal of Geotechnical Engineering Division, ASCE,1977,103(11):1227-1246.
    [79]Vanmarcke E. H. Reliability of earth slopes[J]. Journal of Geotechnical Engineering Division, ASCE,1977,103(11):1247-1265.
    [80]Ingles O. G. Human Factors and Error in Civil Engineering[C]. Pro.3rd Int. Conf. Applications of Stats.and Prob. in Soil and Struct. Engg,1978,3.
    [81]高大钊.土力学可靠性原理[M].北京:中国建筑工业出版社,1989.
    [82]Chang C. S. Uncertainty of one-dimensional consolidation analysis[J]. Journal of Geotechnical Engineering, ASCE,1985,111(12):1411-1424.
    [83]Hong H. P. One-dimensional consolidation with uncertain properties[J]. Canadian Geotechnical Journal,1992,29.
    [84]李小勇.饱和粘性土地基固结的可靠性设计方法[J].工业建筑,2003,33(11):21-23,31.
    [85]谢桂华.岩土参数随机性分析与边坡稳定可靠度研究[D].长沙:中南大学,2009.
    [86]Hynes, M. E., Vanmarcke, E. H. Subjective Reliability Assessment in Geotechnical Engineering[J]. Embankment Case Study, MIT Department of Civil Engineering Research Report, 1975.
    [87]张征,刘淑春,邹正盛等.岩土参数的变异性及其评价方法[J].土木工程学报,1995,28(6):43-51.
    [88]孟庆山,雷学文.土工参数的统计方法及其工程应用[J].武汉冶金科技大学学报(自然科学版),1999,22(4):414-417.
    [89]李小勇.土工参数空间概率特性及软粘土地基固结概率分析[D].杭州:浙江大学,2001.
    [90]谢康和,李小勇,虞颜.粘性土地基固结的空间概率特性[J].浙江大学学报(工学版),2002,36(5):588-590.
    [91]宫风强,李夕兵,邓建.小样本岩土参数概率分布的正态信息扩散法推断[J].岩石力学与工程学报,2006,25(12):2559-2564.
    [92]王宇辉.太原粉土工程性质指标的概率统计分析[D].太原:太原理工大学,2002.
    [93]吴长富.杭州地区土性概率特征及单桩承载力可靠度研究[D].杭州:浙江大学,2005.
    [94]徐雷云.土体物理力学参数的数据库开发及其相关性和概率统计分析[D].南京:河海大学,2006.
    [95]Peck R. B. Advantages and limitations of observational method in applied soil mechanics[J]. Geotechniqu,1969,19(2).
    [96]杨林德.岩土工程问题反演理论与工程实践[M].北京:科学技术出版社,1996.
    [97]邓永锋,刘松玉,洪振舜.成层地基土体固结系数反演[J].公路交通科技,2004,(21)9:1-4.
    [98]夏彩虹.塑料排水板在哈尔滨软土路基中的应用研究[D].长春:吉林大学,2004.
    [99]彭劫,刘汉龙.深厚软基上海堤工程现场试验及有限元反分析[J].水利水电科技进展,2005,25(6):37-40,45.
    [100]梁杏等.深港西部通道口岸场坪填海软基固结沉降分析与预测研究[R].中国地质大学(武汉)环境学院,2006.
    [101]彭涛.海积软土固结沉降机理及其沉降预测方法研究[D].武汉:中国地质大学(武汉),2006.
    [102]周健,闫东霄,贾敏才等.某深水港土层固结系数反演及工后长期沉降预测[J].岩土力学,2008,29(5):1407-1410.
    [103]龚晓南主编.地基处理手册(第三版)[M].北京:中国建筑工业出版社,2008.
    [104]陈洁.公路软土地基处理及沉降计算研究综述[J].四川建筑,2004,24(2):70-72.
    [105]何开胜,戴济群.超深排水板堆土预压法[J].水利学报,2000(6):74-80.
    [106]周洪涛,杨岸英.深圳西部通道填海及地基处理工程试验研究[J].铁道工程学报,2005(5):79-83.
    [107]黄哲浩.温州浅滩水下淤泥软基处理[J].水利水电快报,2005,26(14):19-21.
    [108]孟庆山,汪稔.软土动力固结理论研究及应用的现状[J].建筑技术,2005,36(3):179-181,185.
    [109]吴泽宇.滇池船闸、节制闸工程软基振冲加固处理[J].云南农业大学学报,2001,16(3):213-217.
    [110]梁云靖,何维敬,胡一非.能量补偿爆炸法在场区岸坡淤泥软基处理中的应用[J].水运工程,2005(8):70-74.
    [111]Terzaghi K. Erdbaumechanik and Bodenphysikalischer Grundlage[M]. Lpz. Deuticke,1925.
    [112]Rendulic L. Porenziffer and Porenwasserdruck in Tonen[M]. Bauingenieur,1936.
    [113]Biot M. A. General theory of three-dimensional consolidation[J]. J. of Applied Physics,1941, 12:155.
    [114]Cryer C. W. A comparison of the three-dimensional theories of Biot and Terzaghi[J]. J. Mech, Appl. Math.,1963,16:401.
    [115]Gibson R. E. et al. Critical experiment to examine theories of three-dimensional considation[C]. Proc. European conf. on SMFE,1963.
    [116]Schiffman R. L., Chen A. T-F and Jordan J. C. An analysis of consolidation theories[J]. Proc. ASCE,JSMFD,1969,95(1).
    [117]Barron R. A. Consolidation of fine-grained soils by drain wells[J]. Trans. ASCE,1948(113): 718-754.
    [118]Richart F. E. A Review of the Theories for Sand Drains[J]. ASCE proc., Soil Mechanics and Foundations,1957,83(3):1301.
    [119]Hansbo S. Consolidation of fine-grained soils by prefabricated drains[J]. proc.10th Int. Conf. Soil Mech. and Found. Engg.,1981(3):677-682.
    [120]曾国熙,杨锡林.砂井地基沉陷分析[J].浙江大学学报,1959,]:58-59.
    [121]曾国熙.利用砂井处理土坝软粘土地基[J].浙江大学学报,1975,1.
    [122]Holtz R. D., Jamikowski M., Lancellotta R. et al. Behaviour of bent prefabricated vertical drains.1981.
    [123]谢康和.砂井地基固结理论、数值分析与优化设计[D].杭州:浙江大学,1987.
    [124]K. H. Xie, X. R. Zhu, Q. Y. Pan et al. Recent studies on the smear action of vertical drains[C]. Proceedings of international conference on geotechnical engineering &earthquake resistant technology in soft soil areas, Shenzhen, China,1993.
    [125]Albert J. Yeung. Design curves for prefabricated vertical drains[J]. J. of Geotechnical and Geoenvironmental Engineering, ASCE,1998,123(8):755-759.
    [126]折学森.软土地基沉降计算[M].北京:人民交通出版社,1998.
    [127]Mikasa M. The consolidation of soft clay. A new consolidation theory and its application[J]. Lananean Soc. Civil Eng.1963.
    [128]Gibson R. E., G. L. England & M. J. L. Hussey. The theory of one-dimensional consolidation of saturated clay (Ⅰ)[J]. Geotechnique,1967,17.
    [129]Gibson R. E., Schiffman R. L., Carrgill K. W. The theory of one-dimensional consolidation of saturated clay (Ⅱ)[J]. Geotechnique,1981,18.
    [130]窦宜.自重应力作用下饱和粘土的固结变形特性[J].岩土工程学报,1992,14(6).
    [131]蔡正银.自重应力作用下饱和粘土的固结特性.岩土力学与工程的理论与实践[M].杭州:浙江大学出版社,1992.
    [132]景宏君.土质路基三维固结变形理论及其应用[M].北京:科学出版社,2008.
    [133]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [134]邱发兴.地基沉降变形计算[M].成都:四川大学出版社,2007.
    [135]周镜.软土沉降分析中的某些问题[J].中国铁道科学,1999,20(2):17-29.
    [136]董亮,史存林,蔡德钩等.地基沉降计算新方法的探索[J].工程地质学报,2005,13(2):227-230.
    [137]王茂丽.软土地基非线性固结沉降的研究[D].武汉:武汉理工大学,2005.
    [138]唐明科.地基沉降机理分析研究及沉降的电算化和软土路基沉降的计算研究[D].西安:西安建筑科技大学,2005.
    [139]曹杰.排水固结法在不同应力路径条件下引起软土地基沉降初步分析[D].南京:河海大学,2006.
    [140]王军,高玉峰.扰动结构性软土地基的沉降特性分析[J].岩土力学,2006,27(8):1384-1388.
    [141]杨光华.地基沉降计算的新方法[J].岩石力学与工程学报,2008,27(4):679-686.
    [142]#12
    [143]#12
    [144]Skempton A. W., Bjerrum L. A Contribution to the Settlement Analysis of Foundation on Clay[J]. Geotechnique,1957,7(4).
    [145]Lambe T. W. Stress Path Method[J]. Proc. ASCE,1967,6.
    [146]黄文熙,张文正,俞仲泉.水工建筑物土壤地基的沉降量与地基中的应力分布[J].水利学报,1957(3):1-60.
    [147]黄文熙.水工建筑物土壤地基的沉降计算[J].河海大学学报(自然科学版),1957(1):227-229.
    [148]魏汝龙.三维变形条件下的最终沉降量计算[J].水利水运工程学报,1979(2):50-84.
    [149]折学森,顾安全.饱和粘性土地基的三维沉降计算[J].中国公路学报,1996,9(3):36-42.
    [150]钱坤,尹新生,朱珊等.三维地基沉降计算公式的改进与比较[J].四川建筑科学研究,2009,35(3):111-1]4.
    [151]全文娟.考虑侧向变形的地基沉降修正研究及其工程应用[D].武汉:武汉理工大学,2006.
    [152]李军伟.考虑侧向变形的地基沉降计算及沉降预测[D].西安:长安大学,2003.
    [153]程冠初.路堤软基沉降变形数值分析[D].贵阳:贵州大学,2006.
    [154]张向东.软土非线性有限元及遗传算法材料参数反演技术研究[D].福州:福州大学,2006.
    [155]李明飞.高速公路软土路基变形规律研究[D].西安:西安科技大学,2006.
    [156]资建民.高填方路基快速施工与沉降控制研究[D].武汉:华中科技大学,2008.
    [157]付宏渊.高速公路路基沉降预测及施工控制[M].北京:人民交通出版社,2007.
    [158]Asaoka A. Observational proceduce of settlement predication[J]. Soil and Foundations,1978, 18(4):87-101.
    [159]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1988.
    [160]Meculloch W. S., Pitts W. A. Logical calculus of the ideas immanent in nervous activity[J]. Bull Math. Biophysics,1943(5):115-133.
    [161]Holland L. H. Adaptation in Natural and Artificial System[M]. Ann Arbor, MI:University of Michigan Press,1975.
    [162]Karanagh K., Clough R. W. Finite Element Application in the Characterization of Elastic Solids[J]. Int. J. Solids Structures,1971(7):11-13.
    [163]Tan T. S.& Lee S. L. Hyperbolic method for consolidation analysis of geotechnical engineering[J]. ASCE,117(11):1723-1737.
    [164]Tan S. A. Validation of hyperbolic method for settlement in clays with vertical drains[J]. Soil and Foundation,1995,35(1):101-113.
    [165]叶朝良.路堤下软土地基变形性状的室内模型试验研究和沉降预测[D].南宁:广西大学,2002.
    [166]颜可珍.软土地基固结沉降速率研究[D].长安:长安大学,2002.
    [167]肖桃李.高速公路软土地基沉降分析及工后沉降预测[D].武汉:武汉理工大学,2007.
    [168]周姗姗.高速公路软土路基沉降影响因素研究及灰色预测[D].北京:中国地质大学(北京),2007.
    [169]高永.考虑软土流变的加载卸载沉降预测研究[D].南京:河海大学,2007.
    [170]浙江省地质矿产局编著.浙江省区域地质志[M].北京:地质出版社,1989.
    [171]江苏连云港地质工程勘察院.温州疏港高速公路工程可行性地质勘察报告[R].2006.
    [172]王成农等.浙江省构造体系与地震分布规律图及其说明书1/50万[R].浙江省地质科学研究所,1982.
    [173]GB 18306-2001中国地震动参数区划图[S].北京:中国标准出版社,2001.
    [174]邹建军.浙江东部近岸海域海底沉积物环境地球化学研究[D].长春:吉林大学,2005.
    [175]浙江省水利水电勘测设计院.温州半岛工程浅滩一期工程初步设计阶段工程地质勘察报告[R].2002.
    [176]中交第一公路勘察设计研究院有限公司,浙江省交通规划设计研究院.77省道延伸线龙湾至洞头疏港公路工程初步工程地质勘查报告[R].2009.
    [177]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2002.
    [178]GB/T 50123-1999土工试验方法标准.
    [179]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [180]杨红坡.一维非线性固结问题的概率分析[D].杭州:浙江大学,2003.
    [181]高大钊.岩土工程设计安全度指标及其应用[J].工程勘察,1996(1):1-6.
    [182]闫澍旺,朱红霞,刘润.天津港土性相关距离的计算研究和统计分析[J].岩土力学,2009,30(7):2179-2185.
    [183]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [184]天津港湾工程质量检测中心.温州半岛浅滩一期围涂工程北围堤一期工程与灵霓海堤一期II标段工程原位观测完工报告[R].2006.
    [185]浙江广川工程咨询有限公司.温州半岛浅滩灵霓海堤一期Ⅰ标段工程原位观测报告[R].2006.
    [186]Skempton A. W. The pore pressure coefficients A and B[J]. Geotechnique.1954(4):143.
    [187]Henkel D. J. The shear strength of saturated remoulded clay[C]. Proc. of Research Conf. on Shear Strength of Cohesive Solis, ASCE,1966.
    [188]Carrillo N. Simple two and three dimensional cases in the theory of consolidation of soils[J]. Math, and physics,1942,21(1).
    [189]吕卫清,董志良,陈平山等.正常固结软土渗透系数与固结应力关系研究[J].岩土力学,2009,30(3):769-773.
    [190]Lowe J., Jonas E., Obrician V. Controlled gradient consolidation test[J]. Journal of the Soil Mechanics and Foundation on Engineering Division, ASCE,1969,95(1):77-97.
    [191]Karl T., Ralph B., Peck G. M. Soil mechanics in engineering practice[M]. New York:John Wiley and Sons Inc,1996.
    [192]陈新彦,马传明.3种估算土层固结系数方法的对比研究[J].中南公路工程,2001,26(3):85-86,89.
    [193]孟高头,张德波,刘春宇等.用孔压静力触探和室内固结试验求取土的固结系数的对比研究[J].水文地质工程地质,2001(1):18-20.
    [194]孟高头.土体原位测试机理、方法及其工程应用[M].北京:地质出版社,1997.
    [195]徐跃.利用沉降观测值推求最终沉降量和固结系数的方法[J].公路,1994(2):23-27.
    [196]陈玉祥,张汉亚.预测技术与应用[M].北京:机械工业出版社,1985.
    [197]李林,金先级.数值计算方法(MATLAB语言版)[M].北京:高等教育出版社,2006.
    [198]石东洋.数值计算方法[M].郑州:郑州大学出版社,2007.
    [199]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [200]刘思峰,党耀国,方志耕等.灰色系统理论及其应用(第三版)[M].北京:科学出版社,2004.
    [201]韩力群.人工神经网络理论、设计及应用(第二版)[M].北京:化学工业出版社,2007.
    [202]赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1995.
    [203]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [204]杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001.
    [205]JGJ94-94,建筑桩基技术规范[S].
    [206]JTJ250-98,港口工程地基规范[S].
    [207]JTJ017-96.公路软土地基路堤设计与施工技术规范[S].
    [208]JGJ79-2002,建筑地基处理技术规范[S].
    [209]GB50007-2002,建筑地基基础设计规范[S].
    [210]JTJ024-85,公路桥涵地基与基础设计规范[S].
    [211]TB10002.5-2005,铁路桥涵地基和基础设计规范[S].
    [212]刘全林,魏焕卫.地基沉降计算中压缩层厚度确定方法的比较[J].岩土工程技术,2001(4):208-211.
    [213]吴雪婷,徐光黎.软土地基沉降计算中压缩层厚度控制标准分析[J].人民长江,2009,40(5):49-51.
    [214]焦五一.地基变形计算的新参数——弦线模量的原理和应用[J].水文地质工程地质,1982,(1):30-33,29.
    [215]李仁平.用双曲线切线模量方程计算地基非线性沉降[J].岩土力学,2008,29(7):1987-1992.
    [216]徐金明,汤永净.分层总和法计算沉降的几点改进[J].岩土力学,2003,24(4):518-521.
    [217]何思明.基于弹塑性理论的修正分层总和法[J].岩土力学,2003,24(1):88-92.
    [218]铁道部第四勘测设计院.深厚层软土路堤控制后期沉降加固方法的研究[C]//软土地基试验研究文集.武汉:中国地质大学出版社,2001.
    [219]朱向荣,潘秋元,谢康和.超载预压加固软粘土地基的若干问题[J].地基处理,1991,2(3):1-9.
    [220]魏汝龙.从实测沉降过程推算固结系数[J].岩土工程学报,1993,15(2):12-19.
    [221]谢新宇,朱向荣,谢康和等.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    [222]谢新宇.考虑变形耦合的一维大变形固结分析[J].浙江大学学报(工学版),2002,36(5):544-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700