用户名: 密码: 验证码:
原子分子在δ-Pu上的吸附、离解与扩散过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和计算方法的飞速发展,计算材料学已成为材料研究中的重要手段。计算材料学是连接材料学理论与实验的桥梁,能够提供原子分子水平的微观信息,将实验结果上升为一般的、定量的理论,从而使材料的研究与开发更具方向性和前瞻性,大大提高了研究效率。本论文中,开展了钚腐蚀老化行为相关的计算模拟研究,重点在于一些气体原子、分子在δ-Pu金属低指数表面吸附行为的第一性原理研究,同时对部分原子在完备δ-Pu金属中的结构和扩散行为进行了讨论,另外对δ-Pu金属中氦行为开展了初步的分子动力学模拟。论文研究结果能够对认识钚的表面吸附行为和体相行为提供一定理论参考,也为进一步开展钚腐蚀老化行为的材料模拟研究打下了基础。
     论文第一章简要介绍了钚的腐蚀老化机理,介绍了研究该问题的实验、理论方法及基本情况。在当前认识水平下,对几种老化机制的深入解释还有许多争议,尤其从微观变化去推演宏观的物理性质变化更加缺乏理论和实验的支持。钚的腐蚀老化研究是对当今材料学、固体物理和大规模计算机模拟的挑战。计算材料学研究对认识老化机理,明确腐蚀过程,解释实验现象,进而指导实验工作有着重要的意义。在充分调研钚材料计算模拟研究现状的基础上,明确了论文的研究思路,提出了开展的研究内容。
     论文第二章简要介绍了论文研究所涉及的理论和计算方法,包括绝热近似、密度泛函理论、布洛赫定理、交换关联能的LDA、GGA近似等,简述了赝势方法和处理表面的超原胞方法。对分子动力学的理论基础、势函数的建立和分子动力学方法在材料模拟中的应用也做了必要的叙述。最后介绍了计算使用的主要程序。
     论文第三章,使用密度泛函方法结合平板周期性模型对了气体原子/分子在钚表面吸附行为开展了研究。计算获得了原子、分子δ-Pu表面的吸附结构和吸附能,分析了吸附作用的主要因素,揭示了吸附相互作用的电子态。对于吸附分子在钚表面吸附后的活化和离解情况也进行了讨论。在较宽范围的吸附覆盖度下对部分原子、分子的吸附行为进行了讨论。其中C、N2和H2O等的吸附行为是首次报道,不同覆盖度下对吸附行为影响的讨论也属首次。研究结果对钚的表面腐蚀行为提供了初步理论参考,为进一步表面计算模拟工作打下了基础。主要结果如下:
     覆盖度(θ)0.25ML时,H、O的吸附均为化学吸附,最稳定吸附位都为心位,桥位次之,顶位最不稳定,(111)面的Hcp心位和Fcc心位吸附行为几乎一致。自旋限制(NSP)和自旋极化(SP)水平,(111)面H吸附能和吸附距离分别为3.10eV,1.39A和2.20eV,1.39A;(100)面分别为3.16eV、0.63(?)(NSP)和2.26eV、0.60(?)(SP)。(111)面O吸附能6.153eV(NSP)和7.454eV(SP),吸附距离1.31A。(100)面为6.326 eV(NSP)和7.614 eV(SP),吸附距离0.51 A。与H、O作用的Pu原子数目是决定吸附的主要因素。电子从表面转移到H原子,吸附作用主要发生在第一层。Pu 5f,6s,6d电子和H的2s电子有杂化成键作用。O吸附作用主要发生在第一层,但(100)面心位吸附时第二层Pu原子也发生电子相关作用。相对裸露表面,O的吸附使Pu的5f轨道向费米能级更低处移动,成键主要为O 2p轨道和Pu 5f 6s,6d轨道杂化成键,O从金属获得电子形成σ键。吸附后的表面功函都有增加,电子转移量,表面功函增加量和吸附稳定性都是O吸附大于H吸附的情况。
     H和O在(100)面心位吸附的计算结果与文献有很大差别,主要是由于模型和吸附覆盖度的不同造成,因此应用不同的表面模型考察了吸附覆盖度的影响。在0.11ML到1.0ML覆盖度范围内,C在Pu表面不同吸附位的稳定规律类似与H和O,其中Hcp位仅略高于Fcc位。C的吸附能对覆盖度变化敏感,随着θ的增大而减小,变化几乎是线性的。(111)面吸附能最高点出现在0.25ML-0.33ML附近,最稳定吸附位的吸附能在5.3-5.6 eV范围。(100)面吸附能最高点在0.125ML-0.25ML附近,最稳定吸附位的吸附能为6.13 eV-6.60 eV。吸附C原子到表面的距离随着覆盖度的增加而减小。C吸附造成Pu表面电子向C偏移,形成表面偶极子,表面功函增加量和覆盖度成近线性关系。存在退极化效应,偶极矩随覆盖度的减小而增加。投影态密度和局域态密度表明C-Pu的相互作用主要为C2p轨道和Pu5f、Pu6p及Pu6d轨道成键,C-Pu键较强,是稳定的化学吸附。
     N最稳定吸附位也为高对称心位。(111)面最稳定态的吸附能在2.4-2.7 eV范围,(100)面在3.2-3.9eV范围,强于(111)面,都属于化学吸附,但远弱于C、O原子而稍强于H原子。随着N原子覆盖度增加,吸附能变小。在高覆盖度下,Hcp或Fcc吸附位的N原子轻微偏离高对称的吸附位,N原子之间的核间距变小,N、N原子间有轻微的横向吸引作用。N吸附诱导表面功函数增加量与覆盖度成近线性关系,随着覆盖度的增加而增加。N原子的净的负电荷约多于C吸附情况,但吸附作用却小于C原子,这是因为部份电子进入了反键态。态密度分析表明N-Pu的相互作用形成成键态和反键态,成键态为N2p轨道和Pu5f、Pu6p及Pu6d轨道成键,反键态为N3s轨道和Pu7s轨道成键。反键态有占据电子,造成N-Pu键较弱,N吸附能较小。
     覆盖度将影响H、O的吸附能和吸附结构,特别是在覆盖度较高的情况下。在较高覆盖度下,由于吸附原子之间会发生吸引或排斥作用,将使吸附结构较低覆盖度下的发生明显变化,吸附能也有所变化。(111)面吸附能最大值出现在0.25ML附近,(100)面最大值在0.4ML到0.5ML之间。覆盖度的影响要比C和N原子的影响小,特别是(100)面心位吸附情况。但电子态和吸附作用本质不发生改变。
     H2分子的吸附是物理吸附。垂直吸附构型优于两种平行构型,其中心位垂直吸附为最稳定吸附结构。(100)面吸附能和吸附距离分别为0.1147eV,3.78(?)(NSP)和0.0961V,3.51(?)(SP)。(111)面为0.0940eV,3.85(?)(NSP)和0.0879eV,3.68(?)(SP)。相互作用只发生在第一层,吸附前后只有很少的电荷转移,表面功函轻微增加。H2在表面吸附后,键长增长,伸缩振动频率红移,分子得到活化。(100)面可能的离解方式有,从顶位Horl出发,离解为两个处于桥位吸附的H原子,或从顶位Hor2出发,离解为两个处于心位吸附的H原子,解离的能垒分别为0.527eV和0.562eV。(111)面,从顶位Horl吸附出发,离解为位于相邻两个中心位置的原子态吸附,离解能垒0.226eV。从顶位Hor2吸附出发,离解成两个处于相邻Fcc心位吸附位置的H原子,此时体系能量要比前一方式离解后体系能量稍低,但需要越过能垒稍大,为0.543eV。上述可能离解过程在热力学和动力学上均容易发生。以分子态吸附时,Pu的5f轨道和H的2s轨道能量差别相当大,Pu的5f电子和H的2s电子没有杂化成键作用,氢分子和钚表面的作用为Van der Waals相互作用。当离解为原子态吸附时,Pu的5f电子和H的2s电子有杂化相互作用,此时有更多的电子相互作用。
     CO分子在δ-Pu表面分子态吸附为C端吸附,吸附主要发生在第一层。电子从Pu表面转移到CO分子上,表面功函明显的增加。相互作用主要源于CO分子的5σ和2π*轨道与Pu5f、Pu7s、Pu6d、Pu6p杂化轨道相互作用。(111)面最稳定吸附态是Hcp心位垂直吸附,吸附能为1.764eV(SP)和1.791eV(NSP), C原子距离Pu表面为1.922A和1.950A。离解为C原子和O原子吸附的体系能量稍高于分子态最稳定吸附体系能量,在较低温度下倾向于以分子态吸附。(100)面心位垂直吸附是最稳定的吸附态,其次是象桥位>桥位垂直>顶位垂直。心位垂直和象桥位吸附的吸附能分别为1.754eV(SP, center)和1.780eV(NSP, center)、1.717eV(SP, like-bridge)和1.778eV(NSP, like-bridge),相应的CO分子键长为1.23(?) (center)和1.20(?)(like-bridge)。键长增加、伸缩振动红移,表明CO分子活化。离解能垒为0.2eV,离解的C、O原子将占据能量最低的心位,与(111)面相反,离解吸附在能量上优于分子态吸附。
     0:在Pu表面吸附后发生活化,O2分子键长增加,直到键断裂,离解成两个原子态发生吸附,氧原子优先处于心位和桥位。优化过程能量变化曲线和过渡态搜索结果都表明O2分子的离解吸附没有较大的能垒需要克服,这一过程在室温下自发发生。吸附能大小为两个氧原子的吸附能减去氧分子离解能。(100)面吸附能为8.14eV(NSP)和7.29eV(SP)。(111)面为7.56eV(NSP)和6.82eV(SP)。离解吸附后的电荷布局数,诱导表面功函、电子态等和前面O原子吸附的研究结果一致。
     N2在δ-Pu表面各个吸附构型的吸附能相差较小,都在0.25-0.45eV范围内,属于较弱物理吸附,各个构型在一定温度内都可能存在。在低覆盖度(0.25ML)下,顶位垂直吸附相对最稳定,垂直吸附优于平行吸附。而到了较高的覆盖度,所有垂直吸附的吸附能大小几乎相同,而所有平行吸附构型优化后都翻转为垂直吸附,这是由于高覆盖度下,N2分子之间的排斥力使得发生构型翻转,最终的平衡结构都近于垂直或倾斜吸附。电子从第一层Pu原子流向吸附的N2,但电子转移作用很小,N2分子的负电荷一般在-0.3 eV以内,态密度分析表明成键态的占据电子很少。
     H2O分子为较弱的物理吸附,(100)面各吸附能在0.05eV-0.20eV,(111)面在0.02eV-0.15eV,在有限温度下可以多种吸附态并存,吸附使水分子本身结构的改变极其微小,电子转移是极其微弱的,表面功函增加也很小。HO基面的吸附以氧端垂直吸附为优,稳定性为心位>桥位>顶位。Pu原子和OH基团之间有明显的电子转移。
     论文第四章使用密度泛函理论计算了H、O、He等原子在δ-Pu金属体相中可能存在的结构和嵌入能。所有原子稳定存在于间隙位正中心,八面体间隙位较四面体间隙位更稳定。八面体间隙嵌入能,H为-3.12 eV(NSP)和-2.22eV(SP), O为-7.21eV(NSP)和-6.14eV(SP)。四面体间隙嵌入能,H为-2.43 eV(NSP)和-1.53eV(SP), O为-4.76eV(NSP)和-3.49 eV(SP)。H原子在八面体间隙位有更多的电子转移到H原子,H与Pu的作用更强,体系也更稳定,空间几何效应也使八面体间隙位更稳定。而两种间隙位氧原子负电荷差别很小,电子相互作用近似,能量的差别主要和空间几何效应有关。H原子最可能扩散路径为相邻不同间隙位的交替扩散,八面体间隙到四面体间隙的扩散能垒为1.06eV,反向扩散能垒0.38eV。平行晶轴方向四面体间隙到四面体间隙交替直线扩散的能垒为1.83eV,八面体间隙到八面体间隙交替扩散路径的势垒最高,大小为2.52eV。O最可几扩散路径为相邻不同间隙位之间的交替扩散,八面体间隙到四面体间隙的扩散能垒为1.12eV,反向2.72eV。四面体间隙到四面体间隙扩散能垒为6.40eV,八面体间隙到八面体间隙扩散能垒8.85eV。O扩散势垒都较高,氧原子在δ-Pu金属完美晶体中不易移动,稳定存在各个间隙位。钚金属在含氧气氛中易被氧化,形成很薄的氧化膜后不易进一步氧化,这可能也与氧原子不易向体相迁移有关。
     与O和H的情况不同,氦原子嵌入能为正值,即使体系能量升高,向不稳定发展。氦原子使周围最近的一圈Pu原子向外扩张,使体系能量降低,不同间隙位的能差变小。对比H、O原子,氦对结构的影响要稍大。扩散能垒计算结果为:八面体到八面体间隙为3.51 eV;四面体到四面体间隙为2.16 eV;八面体到四面体间隙1.42 eV,四面体到八面体间隙0.34 eV。不同间歇位交替扩散为最可几的扩散路径。He在晶体中的迁移要比O原子的迁移容易的多。同样计算了C和N的间隙位结构和能量。对比可知,只有氦的嵌入使体系热力学稳定降低,且氦原子对结构的影响最大,由于Pu-He的相互作用较小,间隙扩散能垒较低,因此氦容易在金属体相中扩散迁移。C、N、O、H能稳定存在钚金属中的间隙位,和Pu原子发生强相互作用。其中C、O的嵌入能近似,成键作用非常强,可以推断能够形成稳定的钚氧和钚碳化合物。由于扩散能垒较高,表面的化合物一旦形成,就不容易向体相进一步演化。H和N的相互作用要相对较弱,扩散也相对容易。
     δ-Pu金属体相单个空穴形成能时为0.786 eV(NSP)、0.784 eV (SP)。不同文献报道值介于0.7eV-1.7 eV之间,由于模型和方法不同,存在一定区别是合理的。以空穴为中心,空穴周围最近一圈的Pu原子向内收缩,第二圈的Pu原子略向外移。当两个空穴距离较远位置时,平均空穴形成能为0.767eV (NSP)和0.764eV(SP),和单个空穴形成能相差不大,结构变化也类似于单个空穴的情况。当两个空穴聚集在一起时,平均空穴形成能为0.636eV (NSP)和0.628eV(SP),小于单个空穴形成所需的能量。这表明聚集的空穴二聚体要比两个单独存在的空穴更稳定,预示着自辐射损伤产生的空穴有逐渐聚集的趋势。
     第五章中,参考Baskes方法建立了针对δ-Pu金属的MEAM势。使用不同从头算方法和基组对Pu-He和He-He势能曲线进行了扫描,然后利用非线性最小二乘法拟合势能函数。将势函数引入相应的分子动力学程序,建立了Pu中氦行为的MD模拟方法。初步模拟表明,He原子位于八面体间隙位,最近的一圈Pu原子以He为中心向外驰豫,He原子结合能为2.90 eV,与前期的密度泛函计算结果一致。He原子在钚金属中形成了氦团簇,随着氦原子的增加,氦团簇也逐渐长大,一直到26个氦原子时,氦团簇仍然在生长。氦团簇周围的位错缺陷随着氦团簇的生长形成加剧,在氦团簇尺寸较小时(n<26),缺陷没有发生集体漂移。较小尺寸的两个氦团簇在一定临界距离内会发生融合的现象。初步模拟验证工作表明建立的方法能够准确的描述氦在钚金属中的体相行为。
     在最后的第六章中,我们对整个计算模拟工作的结果进行了回顾,并提出了后续研究方向。
In the past decade, with the rapid development of computer hardware and quantum mechanics algorithm, computational modeling has become a powerful tool which can provide great insight in predicting properties of materials. This dissertation is devoted to the study of plutonium aging mechanism by computational modeling. Atomic and molecular adsorption onδ-plutonium surface have been studied in detail using the generalized gradient approximation to density functional theory, while some atoms diffusion behavior in perfect 8-Pu metal was studied by using density functional theory. Also the simulations of helium behaviors inδ-Pu metal are carried by molecular dynamics method.
     In the first chapter, we focus on the research status of plutonium aging mechanism, and three mechanisms induced the aging of plutonium are presented. Methods and means, especially the results of the research are also presented to give some references to the related study. Based on the review of the status of plutonium computer simulation study, we presented our research ideas and direction.
     Chapter 2 gives a brief description of the calculation methods which include the Born-Oppenheimer approximation, density-functional theory, Bloch theorem, local density approximation and generalized gradient approximation of the exchange-correlation energy, pseudo-potential methods, and supercell method. Also, the principle of molecular dynamics, the progress in related finite difference technique and interatomic potentials are summarized. At last some software using in this work are pointed out.
     In chapter3, Adsorption of some atom and molecule onδ-Pu surfaces using the generalized gradient approximation of the density functional theory with RPBE functional have been studied at both the spin-polarized level and the nonspin-polarized level.
     For hydrogen atom, we find that the center position of the (100) surface is the most favorable site with a adsorption energy of 3.16eV and an optimum distance of the hydrogen adatom to the Pu surface of 0.063nm at the non-spin-polarized level (NSP). For the spin-polarized (SP) (100) surface, the center site is again the preferred site with an adsorption energy of 2.26eV and an optimum hydrogen distance of 0.060nm. For theδ-Pu(111) surface, there is the same adsorption behavior of H atom. At NSP level, the center position ofδ-Pu(111) surface is the preferred adsorption site with adsorption energy 3.10eV and distance 0.139nm. At SP level, the center site is also the preferred site with adsorption energy of 2.20eV and a hydrogen distance of 0.139nm. The coordination numbers have a significant role in the chemical bonding process. Mulliken charge distribution analysis indicates that the interaction of Pu with H mainly takes place in the first layer and that the other two layers are only slightly affected. The adsorption of hydrogen atom onδ-Pu surfaces make the surface work functions of Pu metal distinctly increased.
     For oxygen atom, the center position of the (100) surface is the most favorable site both at NSP and SP level calculation. The chemisorption energy and optimum distance of the oxygen adatom to the Pu surface are 7.614 eV,0.051nm (NSP) and 6.326eV,0.051 nm (SP) respectively. For theδ-Pu(111) surface, Hcp and Fcc sites are both favorable adsorption site with the same chemisorption energy and geometric structure. At the NSP level, chemisorption energy is 7.454 eV and optimum distance of the oxygen adatom to the Pu surface is 0.131 nm. For the SP surface, these values are 6.153eV and 0.131 nm respectively. The coordination numbers have a significant role in the chemical bonding process. Mulliken charge distribution analysis indicates that the interaction of Pu with O mainly takes place in the first layer and that the other two layers are only slightly affected. The surface work functions increases due to oxygen atom adsorption. The adsorption is strong ionic bonding action. The bonding between the oxygen and the Pu atom is due to the hydridization of O2p and Pu5f, Pu7s, Pu6d orbitals.
     Adsorption of atomic carbon onδ-Pu surfaces have been investigated systematically using DFT with RPBE functional. The adsorption energies, adsorption structures, Mulliken population, work functions, layer and projected density of states have been calculated in wide ranges of coverage, which have never been studied before as far as we know. It is found that forδ-Pu(111) surface the Hcp-center sites are the energetically favorable sites for all the coverage range considered. Forδ-Pu(100) surface the center sites are the energetically favorable sites. The repulsive interaction has been identified, and the adsorption energy decreases with the coverage, while work function increases linearly with the coverage. It has been found that the C-Pu interaction is very strong due to the hybridization between the C2p states and the Pu5f, Pu6p, Pu6d states of topmost layer plutonium atoms.
     Adsorption of atomic nitrogen has been investigated systematically in wide ranges of coverage. It is found that the center sites are the energetically favorable sites for all the coverage range considered adsorption energy 2.4-2.7 eV. Forδ-Pu(111) surface Hcp site are slightly more stable than Fcc site, which differed from most transition metal surfaces with hexagonal close-packed structure. The repulsive interaction has been identified, and the adsorption energy decreases with the coverage, while work function increases linearly with the coverage. It has been found that the N-Pu interaction is due to the hybridization between the N2p states and the Pu5f, Pu 6p, Pu 6d states of topmost layer Plutonium atoms. The N-Pu interaction is weak due to the partially occupied anti-bonding states from N 3s and Pu 7s hybridization.
     Molecule hydrogen adsorption and the reaction barrier for dissociation onδ-Pu surfaces have been studied. On the 100 surface, vertical approaches on the center site both without and with spin polarization were found to be the most favorable molecular adsorption sites. The adsorption energy and the optimum distance were 0.1147eV,0.378nm and 0.0554eV,0.386nm respectively. Molecule hydrogen is active, for dissociate adsorption it was found that the most favorable dissociation channel needs activation energies of 0.527eV or 0.562eV On 111 surface, vertical approaches on the center site are also the most favorable molecular adsorption sites, with adsorption energy 0.0940eV at the non-spin-polarized and 0.0554eV at spin-polarized levels. The most favorable dissociation activation energy is 0.226eV, which molecule hydrogen dissociated to two center adsorption atomic hydrogen.
     For CO molecule, the C-side center vertical position ofδ-Pu(100) surface is the preferred adsorption site with adsorption energy of 1.754eV (SP) and 1.780eV(NSP). And, the stability of adsorption configuration at other sites is like-bridge> bridge vertical> top vertical. Meanwhile, all parallel approaches turn to the corresponding C-side vertical or bridge vertical approaches, indicating C-side adsorption are more stable than O-side adsorption, and parallel approaches will not existent. The difference of adsorption energies for different sites such as like-bridge, bridge vertical, top vertical and center vertical is less than 0.2eV, that shows that CO adsorption on Pu(100) surface is the coexistence of several adsorbed at a limited temperature range. The hcp center Vertical position ofδ-Pu(111) surface is the preferred adsorption site with adsorption energy of 1.764eV (SP) and 1.791eV(NSP). The coordination numbers have a significant role in the chemical bonding process. The interaction between Pu atom and CO molecule results mainly from the contribution of 4σ、5σand 2π* orbital of CO molecule and 5f、7s、6d and 6p orbital of surface Pu atom. CO adsorption on Pu(111) surface tend to molecule adsorption state.
     For oxygen molecule, dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. The dissociative oxygen atom preferred adsorption on center site. For (100) surface the most stable chemisorbed site has an energy 8.14 eV(NSP) and 7.29 eV(SP). For (111) surface the most stable chemisorbed site has an energy 7.56 eV(NSP) and 6.82 eV(SP). The work functions increase, charge population, DOS and PDOS are similar with atomic oxygen adsorption behaviors.
     Adsorption of molecule nitrogen has been investigated systematically in wide ranges of coverage. The adsorption energies are in the range of 0.25-0.45eV for all the case. It indicates that adsorption of molecule nitrogen is weak physical adsorption. The difference of adsorption energies for different adsorption configurations is less than 0.2 eV, it shows there are several adsorption configurations coexistence at a limited temperature range. At lower adsorption coverage (0= 0.25 ML), Top vertical adsorption configuration is most stable adsorption situation and all vertical configurations are more stable than corresponding parallel configurations. But at higher adsorption coverage all parallel configurations are turn to vertical configurations. This is due to repulsive interaction between molecule nitrogen. DOS and PDOS show occupation of bonding states is weak.
     The adsorption energy of molecule water is very small. For (100) surface, the value are in the range of 0.05eV-0.20eV. For (111) surface, the value are in the range of 0.02eV-0.15eV. This indicates adsorption belong very weak physical adsorption.
     In chapter4, The diffusion behavior of atom such as hydrogen, oxygen in perfect 8-Pu metal was studied by use of the density functional theory Doml3 and periodical model. The embedding energy and diffusion barriers of the single hydrogen were calculated at GGA level. A single hydrogen atom has the minimum embedding energy about -3.12eV and-2.22eV in the octahedral interstitial site of fccδ-Pu at Non-spin polarization and Spin-polarization level respectively. Hydrogen atom inδ-Pu crystal most preferably diffuses along the path linked with different interstitials. The diffusion barrier of along the path from octahedral interstitial site to tetrahedral interstitial site is 1.06eV. The diffusion barrier of reverse path is 0.38eV.
     A single oxygen atom has the minimum embedding energy about -7.205eV and-6.140eV in the octahedral interstitial site of fccδ-Pu at Non-spin polarization and Spin-polarization level respectively. The embedding energy in tetrahedral interstitial site is little larger than that in tetrahedral interstitial site. Oxygen atom in 8-Pu crystal most preferably diffuses along the path linked with different interstitials. The diffusion barrier of along the path from octahedral interstitial site to tetrahedral interstitial site is 1.12eV. The diffusion barrier of reverse path is 2.72eV.
     A single helium is stable in octahedral interstitial site with less embedding energy of 3.371 eV(NSP) and 3.137eV(SP). The embedding energy in tetrahedral interstitial site is 4.452 eV(NSP) and 4.433 eV(SP). Differed from hydrogen and oxygen atom, the embedding energy of helium is positive, which indicate that helium atoms embedding increase the total energy of system and make system instable. Helium atom inδ-Pu crystal most preferably diffuses along the path linked with different interstitials. The diffusion barrier of along the path from octahedral interstitial site to tetrahedral interstitial site is 0.34 eV. The diffusion barrier of reverse path is 1.42 eV. The diffusion of helium is easy.
     The mono-cavity formation energy inδ-Pu metal is 0.786 eV(NSP) or 0.784 eV(SP). The di-cavity formation energy inδ-Pu metal is 0.636 eV(NSP) or 0.628 eV(SP). This shows there is a trend of cavity accumulation.
     In chapter 5, the helium behavior in plutonium crystals has been simulated by molecular dynamics method. The modified embedded atom method (MEAM) potential is use for describing the interactions of plutonium-plutonium. The analytical potential energy curve for the Pu-He and He-He are scanned using B3P86 method, and then fitted to the exp-6 function using least squares. The growing and coalescence of helium clusters have been investigated at 300 K.
     In the final Chapter, we summarize the computer simulation results, and some directions of further researches are pointed out.
引文
1. Seaborg G T, Segre E. The transuranium elements [J]. Nature,1947; 4052:863-5.
    2. Terminello I J. Challenges in Plutonium and Actinide Materials Science, http://www, mrs, org/publications/bulletin,2001.
    3. Wick O J. Plutonium Hand book-A Guid to the Technology[M].Gordon and Breach: Science Publishers,1967:36
    4. Michaudon A F, Buican H G. Plutonium-A Historical Overview [J].Los Alamos Science 2000.26:3-4
    5. Hecker S S, Martz J C.Aging of Plutonium and Its Alloy [J].Los Alamos Science,2000. 26:238-243.
    6. Wolfer W G. Radiation Effects in Plutonium-What Is Known? Where Should We Go from Here? [J].Los Alamos Science 2000.26:274-285.
    7. Wolfer W G, Soderlind P, Landa A. Volume Changes in delta-Pu from Helium and Other Decay Products [J]. J. Nucl.Mater.,2006;355:21-29.
    8. Haschke J M, Allen T H, Morales L A. Surface and Corrolion Chemistry [J]. Los Alamos Science,2000; 26:252-265.
    9. Peterson D E, Kassner M E. The Ga-Pu (Gallium-Plutonium) System [J] Bull. Alloy Phase Diagr.,1988; 9:261-267.
    10. Chebotarev N T, Smotriskaya E S, Andrianov M A, Kostyuk O E. Some Results of a Study of the Pu-Al-Ga Phase the International Diagram [A]. In:Proceedings of the 5 Conference on Plutonium and Other Actinides[C].H. Blank and R. Lindner eds. New York:North Holland Publishing Co.1975,37.
    11. Danneskiold J. Los Alamos Experiment Speeds up Aging of Nuclear Weapons with "Spiked" Plutonium, www, lanl, gov,2003.
    12.王同权,于万瑞,冯煜芳.钚材料的老化[J].原子核物理评论,2006;23:349-353
    13. Schwartz D, Zocco T. Improved Differential Scanning Calorimeters Enable Scientists to Make More-accurate Studies of Plutonium and Its Alloys, the Actinide Research Quarterly,3rd quarter,2001,1.
    14. Kusnezov D, Soudah J. Advanced Simulation and Computing PROGRAM PLAN FY05. A Publication of the Office of Advanced Simulation & Computing. NNSA Defense Programs, September 2004,1-15.
    15. Wu X. Density Functional Theory Applied to d- and f-Electron Systems [D], Ph. D. Dissertation, The University of Texas at Arlington,2001.
    16. Kaltsoyannis N. Recent developments in computational actinide chemistry [J]. Chem. Soc. Rev.,2003; 32(1):9-16.
    17. Hay P J, Martin R L. Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree-Fock and density functional methods:UF6, NpF6, and PuF6 [J]. J. Chem. Phys.1998; 108:3875-3881.
    18. Morss L R,Edelstein N M,Fuger J. The Chemistry of the Actinide and Transactinide Elements [M].Springer Netherlands.2006:1893-2012.
    19. Privalov T, Schimmelpfennig B, Wahlgren U, Grenthe I. Structure and thermodynamics of uranium(Ⅵ) complexes in the gas Phase:a comparison of experimental and ab Initio data[J]. J. Phys. Chem. A.2002; 10:11277-11282.
    20. Kovacs A, Konings R J M. Theoretical study of UX6 and UO2X 2(X= F, Cl, Br, I) [J]. J. Mol. Stru.2004; 684:35-42.
    21. Gagliardi L, Roos B O. Uranium triatomic compounds XUY (X, Y=C, N, O):a combined multiconfigurational second-order perturbation and density functional study [J]. Chemica. Phy. Lett.2000; 331:229-234.
    22. Gagliardi L, Heaven M C, Krogh J W. The electronic spectrum of the UO2 molecule[J]. J. Am. Chem. Soc.2005; 127:86-91.
    23. Tsushima S, Uchida Y, Reich T. A theoretical study on the structures of UO2(CO3)34-, Ca2UO2(CO3)30, and Ba2UO2(CO3)30[J]. Chemica. Phy. Lett.2002; 357:73-77.
    24. Wang Q, Pitzer R M. Structure and spectra of UO2F2 and its hydrated species [J]. J. Phys. Chem. A.2001; 105:8370-8375.
    25. Vallet V,Wahlgren U,Schimmelpfennig B, Szabo Z, Grenthe I.The mechanism for water exchange in [UO2(H2O)5]2+ and [UO2(oxalate)2(H2O)]2-, as studied by quantum chemical methods[J]. J. Am. Chem. Soc.2001; 123:11999-12008.
    26.蒙大桥,蒋刚,刘晓亚,罗德礼,张万箱,朱正和.Pu3体系的结构与势能函数[J].物理学报.2001;50:1268-1273.
    27.蒙大桥,刘晓亚,张万箱,王红艳,李权,朱正和.Pu2体系的结构与势能函数[J].原子与分子物理学报.2000;17:411-415.
    28. Meng D Q, Zhu Z H, Jiang G.Geometrical configurations of Pu4 and the Jahn-Teller effect [J]. J. Mol. Stru.2002;610:241-245.
    29.帅茂兵,王欣,武胜,赵鹏骥.铀与氢初始反应产物形成热力学的理论研究[J].化学学报.2001;59:867-870.
    30.刘晓亚,蒋刚,陈涵德,李权,朱正和.OUH体系的结构和分析势能函数[J].化学学报.2002;60:189-193.
    31.李权,王红艳,蒋刚,朱正和.PuCO体系的分子反应动力学研究[J].化学学报,2002;60:215-220.
    32.李权,王红艳,蒋刚,朱正和.Pu(7Fg)+CO(X1∑+,0,0)的分子反应动力学[J].物理化学学报,2002;18:302-306.
    33.邹乐西,孙颖,薛卫东,朱正和,汪蓉,罗德礼.氢化钚与空气反应的热力学平衡计算[J].原子与分子物理学报.2000;17:459-464.
    34.张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    35. Jeanloz R. Science-based stockpile stewardship [J].Phys. Today,2000; 12:44-50.
    36. Sadigh B, Wolfer W G. Gallium stabilization of δ-Pu:Density-functional calculations[J]. Physc. Rev. B,2005; 72(205):122-127.
    37. Wolfer W G, Kubota A, Soderlind P A, Landa A I, Oudot B, Sadigh B, Sturgeon J B, Surh M P, Density Changes in Ga-Stabilized delta-Pu, and What They Mean[J]. J. Alloy. Comp, 2007; 444:72-79.
    38. Soderlind P, Landa A, Wolfer W G. Atomic-volume Variations of alpha-Pu Alloyed with Al, Ga, and Am from First-principles Theory [J]. J. Comp. Aid. Mater. Design,2007; 14:349-355.
    39. Prodan I D, Scuseria G E, Martin R L.Assessment of metageneralized gradient approximation and screened Coulomb hybrid density functionals on bulk actinide oxides[J] Phys. Rev. B.2006;73:045104.1-045104.10.
    40. Wu X, Raya A K, A density functional study of plutonium dioxide [J]. Eur. Phys. J. B. 2001; 19:345-351.
    41. Petit L, Svane A, Szotek Z, Temmerman W M.First-Principles Calculations of PuO2±x [J]. Science,2003; 301:498-501.
    42. Kotliar G, Vollhardt D.Strongly Correlated Materials:Insight From Dynamical Mean-Field Theory [J]. Physics Today,2004,53-59
    43. Savrasov S Y, Kotliar G, Abrahams E.Correlated electrons in δ-plutonium within a dynamical mean-field picture [J].Nature,2001;410:793-795.
    44. Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H, Abrahams E. Calculated Phonon Spectra of Plutonium at High Temperatures [J].Science,2003;300:953-955
    45. Wong J, Krisch M, Farber D L, Occelli F, Schwartz A J, Chiang T C, Wall M, Boro C, Xu R Q. Phonon Dispersions of fcc-Plutonium-Gallium by Inelastic X-ray Scattering [J].Science,2003; 301:1078-1080.
    46. McQueeney R J, Lawson A C, Migliori A, Kelley T M, Fultz B, Ramos M, Martinez B, Lashley J C, Voge S C.Unusual Phonon Softening in δ-Phase Plutonium[J].Phys. Rev. Lett..2004; 92:146401.1-146401.4.
    47. Eriksson O, Cox L E. Possibility of a δ-like surface for α-Pu:Throey [J]. Phys. Rev.,1992; B46:13576-13583.
    48. Ray A K, Boettger J C. An all-electron LCGTO study of square and hexagonal plutonium monolayers [J].J.Eur. Phys.,2002; B27:429-433.
    49. Huda M N, Ray A K. Electronic Structure and Bonding of Oxygen on Plutonium Layers [J]. Eur. Phys. J. B,2004; 40:337-346.
    50. Huda M N, Ray A K. A density functional study of atomic hydrogen adsorption on plutonium layers [J]. Physica B,2004;352:5-17.
    51.李赣,赖新春,孙颖.FLAPW方法研究δ-Pu钚单层表面几何和电子结构[J].物理化学学报,2005,;21(6):686-689.
    52. Wu X, Raya A K. Density functional study of water adsorption on the PuO2(110) surface[J].Phys. Rev. B.,2002;65:085403.1-085403.7.
    53. Hay J P.Theoretical studies of hydrogen and water adsorption on actinide oxide surface[J]. Mater. Res. Soc. Symp. Proc..2006;893
    54.郑晖张万箱张广才刘海风钚材料自辐射损伤的计算机模拟.中国工程物理研究院科技年报.2005
    55.郑晖.氦泡生长实验数据的反演模拟计算方法[J]物理学报2007;56:389-393.
    56. Ao B Y, Wang X L, Hu W Y,Yang J Y. Molecular dynamics simulation of helium-vacancy interaction in plutonium[J]. J. Nucl. Mater.,2009; 385:75-78.
    1.徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(中册)[M].北京:科学出版社,1985.
    2. J. A. Pople等,江元生译.分子轨道近似方法理论[M].北京:科学出版社,1976.
    3.王志中,李向东.半经验分子轨道理论与实践[M].北京:科学出版社,1981.
    4. Errol Lewars.Computational chemistry:introduction to the theory and applications of molecular and quantum mechanics [M]. New York:Kluwer academic publishers,2003.
    5.肖慎修等.密度泛函理论的离散变分方法在化学和材料物理中的应用[M].北京:科学出版社,1998.
    6.林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    7. 杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002.
    8. 陈凯先等.计算机辅助药物设计:原理、方法及应用[M].上海:上海科学技术出版社,2002.
    9. 杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    10. Norman L A et al., Molecular mechanics [M]. American chemical society, monograph, 1982:177.
    11.张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    12. Dirac P A M.The principles of quantum mechanics [M]. Oxford:Clarendon Press, 1958:1.
    13.曾谨言.量子力学[M].北京:科学出版社,2001:1.
    14.唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    15.廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M]北京:清华大学出版社,1984
    16. Pople J A. Nobel lecture:Quantum Chemical Models[J]. Rev. Mod. Phys.1999; 71(5): 1267-1274
    17. Hehre W J, Radom L, Shleyer P V R, Pople J. ab inito Molecular Orbital Theory[M]. New York:Wiley,1986.
    18. Clark T. A Handbook of Computational Chemistry [M]. New York:Wiley,1985.
    19. Frisch M, Frisch E. GAUSSIAN98 User's Reference (2nd edition). GAUSSIAN Inc: 1999
    20. Dreizler R M, Gross E K U. Density Functional Theory [M].Berlin:Springer-Veitag, 1990.
    21. Kohn W. Nobel Lecture:Electronic Structure of Matter-Wave Functions and Density Functionals [J]. Rev. Mod. Phys.1999; 71(5):1253-1266
    22. Koch W, Holthausen M C.A Chemist's Guide to Density Functional Theory [M]. New York:Wiley-VCH,2001.
    23. Thomas L H. The calculation of atomic fields [J]. Proc Cambridge Philsoe, 1927;23(5):542-548
    24. Fermi E. Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo[J].Accad. Naz. Lincei,1927,6:602-607
    25. Teller E.On the Stability of molecules in the Thomas-Fermi theory [M]. Rev. Mod. Phys.,1962:34 (4):627-631
    26. Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J].Phys Rev,1964; 136: B864-B871.
    27. Kohn W, Sham L J.Self-Consistent Equations including Exchange and Correlation Effects[J].Phys. Rev. B,1965:A1133-A1138.
    28. Kohn W, Meir Y. Van der Waals Energies in Density Functional Theory[J].Phys. Rev. Lett.,1998;80:4153-4156.
    29. Barth V, Hedin U. A local exchange-correlation potential for the spin polarized case. I [M]. J. Phys. C:Solid State Phys.1972;5:1629-1642
    30. Wigner E. Effects of the electron interaction on the energy levels of electrons in metals [J].Trans. Faraday Soc.,1938,34:678-685.
    31. Hedin L, Lundqvist B I.Explicit local exchange-correlation potentials [J].J. Phys. C,1971; 4(14):2064-2083.
    32. Vosko S H, Wilk L, Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis [J].Can. J. Phys.,1980; 58: 1200-1211.
    33. Perdew J P, Zunger A.Self-interaction correction to density-functional approximations for many-electron systems[J].Phys. Rev. B,1981;23:5048-5079.
    34. Langreth D C, Perdew J P.Theory of Nonuniform Electronic Systems [J]. Phys. Rev. B., 1980; 21:5469-5493.
    35. Perdew J P.Transport and relaxation of hot condition electrons in an organic dielectric [J]. Phys.Rev. B.,1986; 33:8822-8827.
    36. Perdew J P. Generalized gradient approximations for exchange and correlation:a look backward and forward [J]. Physica B,1991; 172:1-2.
    37. Perdew J P, Wang Y. Theory of the cyclotron resonance spectrum of a polaron in two dimensions [J]. Phys.Rev. B,1986;33:8800-8809.
    38. Perdew J P, Chevary J A, Vosko Sh. Atom, molecules, solid and surfaces: Approximation of the generalized gradient appoximation for exchange and correlation [J]. Phys. Rev. B,1992;46:6671-6687
    39. Perdew J P. In:Ziesche P, Eshring H.Eletronic Structure of Solids [M]. Berlin:Akademie Verlag,1991.
    40. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [M]. Phys. Rev. A,1988; 38:3098-3100.
    41. Becke A D. Density-Functional Thermochemistry L.The Effect of the Exchange-only Gradient Correction [J]. J. Chem. Phys.1992; 96:2155-2160.
    42. Becke A D. Density-functional theory chemistry N. A new dynamical correlation functional and implications for exact-exchange mixing [J]. J. Chem. Phys.1996; 104: 1040-1046.
    43. Filippi C, Umrigar C J, Taut M. Comparison of exact and approximate density functionals for an exactly soluble model [J]. J. Chem. Phys.1994; 100:1290-6.
    44. Ashcroft N W, Mermin N D. Solid State Physics (1st edition)[M]. Philadelphia:Saunders College,1976.
    45.黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社,1988.
    46. Charles Kittel, Introduction to Solid State Physics [M]. New York:Wiley,1996.
    47. Chadi D J, Cohen M L.Special Points in the Brillouin Zone [J]. Phys Rev B,1973; 8:5747-5753.
    48. Joannopoulos J D, Cohen M L. Electronic charge densities for ZnS in the wurtzite and zincblende structures [J]. J. Phys:Condens Matter,1973; 6:1572-1579.
    49. Monkhorst H J, Pack J D. Special points for Brillouinzone integrations [J]. Phys Rev B, 1976; 13:5188-5192.
    50. Evarestov R A, Smirnov V P. Special points of the Brillouin zone and their use in the solid state theory [J]. Phys Status Solidi,1983;119:9-40
    51. SchlUter M, Cheikowsky J R, Louie S G, Cohen M L. Self-consistent pseudopotential calculations for Si(111) surfaces:Unreconstructed (1x1) and reconstructed (2x1) model structures [J]. Phys Rev B,1975; 12:4200-4214.
    52. Cheikowsky J R, Cohen M L. (110) surface states in III-V and II-VI zinc-blende semiconductors", [J]. Phys Rev B,1976; 13:826-834.
    53. Kerper G P, Louie S G, Cohen M L. Electronic structure of the ideal and reconstructed Si(001) surface [J]. Phys. Rev. B,1978; 17:706-715.
    54. Schliiter M, Cohen M L. Nature of conduction-band surface resonances for Si(111) surfaces with and without chemisorbed overlayers[J]. Phys Rev B,1978; 17:716-725.
    55. Ihm I, Louie S G, Cohen M L. Self-consistent pseudopotential calculations for Ge and diamond (111) surfaces [J]. Phys Rev B,1978; 17:769-775.
    56. Philips J C. Energy-Band Interpolation Scheme Based on Pseudopotential [J]. Phys Rev, 1958; 112:685-695.
    57. Cohen M L, Heine V. The fitting of pseudopotentials to experimental data and their subsequent application [J]. Solid State Physics,1970;24():37-46
    58. Yin M T, Cohen M L. Theory of ab initio pseudopotential calculations [J]. Phys Rev B, 1982; 25:7403-7412.
    59. Martin R M. Electronic structure:basic theory and practical methods [M]. Cambridge: Cambridge University Press,2004.
    60.谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    61.肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用[M].北京:科学出版社,1998.
    62.袁岚峰.[D].博士学位论文.北京:中国科学技术大学,2001.
    63. Reimann S M, Manninen M. Electronic structure of quantum dots [J] Rev. Mod. Phys, 2002; 74:1283-1342.
    64. Brivio G P, Trioni M I. The adiabatic molecule-metal surface interaction:Theoretical approaches [J].Rev.Mod.Phys,1999; 71:231-265.
    65. Pickett W E. Electronic structure of the high-temperature oxide superconductors [J].Rev. Mod.Phys,1989; 61:433-512.
    66. Senatore G, March N H. Recent progress in the field of electron correlation [J] Rev.Mod.Phys,1994; 66:445-479.
    67. Foulkes W M C. et al. Quantum Monte Carlo simulations of solids [J].Rev.Mod.Phys, 2001; 73:33-83.
    68. Dai X, et al. Calculated Phonon Spectra of Plutonium at High Temperatures [J] Science, 2003; 300:953-955.
    69.汪文川等译.分子模拟—从算法到应用[M].北京:化学工业出版社,2002.
    70.陈念贻,许志宏,刘洪霖等.计算化学及其应用[M].上海:上海科学技术出版社,1985:275-391.
    71. Pearlman D A, Case D A, Caldwell J W, Ross W S, Cheatham Ⅲ T E, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, A Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules[J]. Comp. Phys. Commun,1995; 91:1-41.
    72. Alder B J, Wainwright T E. Phase tranaition for a hardsphere system [J]. The Jaurnal of Chemical Physics,1957; 27:1208-1209.
    73. Wen Y H, Zhou F X, Liu Y W. Molecular dynamics simulations of Microstructure of nanocrystalline Copper [J]. Chinese Physics Letters,2001; 31(3):411-413.
    74. Wen Y H, Zhou F X, Liu Y W. The influence of grain size and temperature on the mechanical deformation of nanocrystalline materials:molecular dynamies simulation [J]. Chinese Physics,2001; 10(5):407-412.
    75. Phillpot S R, Wolf D, Gleiter H. Molecular-dynamics study of the synthesis and characterization of a fully dense,threedimensionally nanocrystalline materials[J]. Journal of Applied Physics,1995; 78(2):847-861.
    76. Faux D A. Molecular dynamics studies of sodium diffusion in hydrated Na-Zeolite-4A [J]. Jaurnat of Physics Chemistry B,1998; 102:10658-10662.
    77. Schiotz J, Tolls F D D, Jacobsen W. Softening of nanocrystalline metals at very small grain size [J]. Nature,1998; 391:561-563.
    78. Swygenhoven H V, Caro A. Molecular dynamics computer simulation of nanophase Ni: structure and mechanical properties [J]. Nanostructured Materials,1997; 9:669-672.
    79. Zeng P, Zajac S, Clapp P C, Rifkin J A. Nanoparticle sintering simulations[J]. Materials Science and Engineering A,1998; 252:301-306.
    80. Chen Z Y, Ding J Q. Molecular dynamics studies on dislocalion in crystallites of nanocrystalline α-iron [J]. Nanostructured Materials,1998; 10(2):205-215.
    81. Lybrand T P. In:Reviews in Computational Chemistry [M], Vol.1. Lipkowitz K B and Boyd D B (Eds). New York:VCH,1990,295-320
    82. Leach R A. In:Reviews in Computational Chemistry [M], Vol.1. Lipkowitz K B and Boyd D B (Eds). New York:VCH,1991,1-47
    83. Andrew R L. Molecular Modelling - Principle and Applications, Addison:Wesley Longman,1996.
    84.文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展,2003;33(1):65-73.
    85. Verlet L. Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules [J]. Physical Review,1967;159:98 - 103.
    86. Swops W C, Anderson H C, Berena P H, Wilson K R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:application to small water clusters [J]. Journal of Chemical Physics, 1982;76:637-649.
    87. Honeycutt R W. The potential calculation and some applications [J]. Methods in Computational Phyaica,1970; 9:136-211.
    88. Beeman D. Some multistep methods for use in molecular dynamics calculations [J]. Journal of Computational Physics,1976; 20:130-139.
    89. Gear C W. Numerical Initial Value Problems in Ordinary Differential Equation [M]. Englewood Cliffs, N J:Prentice-Hall,1971:1-54.
    90. Ahman A R. Correlations in the motion of atoms in liquid argon [J]. Physical Review A, 1964; 138:405-411.
    91. Rahman A, Stillinger F H. Molecular dynamics study of liquid water [J]. Journal of Chemical Physics,1971; 55:3336-3359.
    92. Daw M S, Baslces M I. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review H,1984; 28(12):8486-8495
    93. Finnis M W, Sinclair J E. A simple empirical n-body potential for transition-metals [J]. Philosophic Magazine A,1984; 50(1):45-55
    94. Baskes M 1. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B,1992; 46(5):2727-2742.
    95. Baskes M I, lohnson R A. Modified embedded-atom potentials for hcp metals [J]. Modelling Simul Mater Sci Eng,1994; 2:147-163.
    96. Baskes M I. Calculation of the behaviour of Si ad-dimers on Si(001) [J]. Model. Simul. Mater. Sci. Eng.,1997; 5:149-158.
    97. Jacobsen K W, Norskov J K, Puska M J. Interatomic interaclions in effective-raedium theory[J]. Physical Review B,1987; 35(14):7423-7442.
    98. http://chuangteng.caigou.com.cn/product_213752.shtml
    1. V. Ledentu, W. Dong, P.Sautet, Heterogeneous catalysis through subsurface sites [J]. J. Am. Chem. Soc..2000; 122:1796-1801.
    2. Rice B M, Garrett B C, Koszykowski M L, Foils S M, Daw M S. Kinetic isotope effects for hydrogen diffusion in bulk nickle and on nickle surface [J].J. Chem.Phys..1990; 92:775-791.
    3. Van Daelen M A, Neurock M, Van Santen R A.Reactivity of diatomic molecules on Cu (100)[J] Surf. Sci..1998,417; 247-260
    4. Takahashi H, Yuki K, Nitta T. Chemical modification of rutile TiO2(110) surface by ab initio calculations for the purpose of CO2 adsorption[J]. Fluid Phase Equilibria.2002; 194: 153-160.
    5. Bandura A V, Sykes D G, Shapovalov V. Adsorption of water on the TiO2(Rutile)(110) surface:A comparison of periodic and embedded cluster calculations[J]. J. Phy. Chem. B. 2004; 108:7844-7853.
    6. Bates S P, Kresse G, Gillan M J. The adsorption and dissociation of ROH molecules on TiO2(110) [J]. Surf. Sci..1998; 409:336-345.
    7.侯建国,俞英,土大喜,潘慧芳.铂与氢、水和苯分子相互作用的量子化学研究[J].石油学报.2003;19:64-71.
    8. Ren J, Huo C F, Wang J, Li Y W, Jiao H. Surface structure and energetics of oxygen and CO adsorption on α-Mo2C(0001)[J].Surf. Sci..2005; 596:212-221.
    9. Lu N X, Li J Q, Xu X J, Chen W K, Zhang Y F. Theoretical study of O2 adsorption on GaN surfaces [J].J. Mol. Stru..2004; 668:51-55.
    10. Muller C, Freysoldt C,Baudin M,Hermansson K.An ab initio study of CO adsorption on ceria(110)[J].Chem. Phys..2005; 318:180-190.
    11. Rougeau N, Teillet B D, Sidis V. Double H atom adsorption on a cluster model of a graphite surface [J].Chem. Phys. Lett..2006; 431:135-138.
    12. Maresca O, Allouche A, Aycard J P, Rajzmann M, Clemendot S, Hutschka F. Quantum study of the active sites of the y-alumina surface:chemisorption and adsorption of water, hydrogen sulfide and carbon monoxide on aluminum and oxygen sites [J].J. Mol. Stru.. 2000; 505:81-94.
    13. Gay I D, Harrison N M.A density functional study of water and methanol chemisorption on MgO(110)[J]. Surf. Sci..2005; 591:13-22.
    14.刘够生,宋兴福,汪瑾,于建国.水分子在MoO3原子簇模型表面吸附的密度泛函研究[J].分子催化.2005;19(2):136-140.
    15. Van Ek J, Sterne P A, Gonis A. Phase stability of plutonium[J].Phys. Rev.,1993; B48:16280-16289
    16. Boring A M, Smith J L. Plutonium condensed-matter physics:a survey of theory and experiment, in:Challenges in Plutonium Science [M]. Los Alamos Science, Vol.1, No.26, 2000:90-105.
    17.傅依备,汪小琳,朱正和.铀钚金属表面抗腐蚀性研究进展[M].中国工程科学,2000;2(12):59-65.
    18. Eriksson O, Cox L E. Possibility of a δ-like surface for a-Pu:Throey [J]. Phys. Rev., 1992, B46:13576-13583
    19. Ray A K, Boettger J C. An all-electron LCGTO study of square and hexagonal plutonium monolayers [J].J.Eur. Phys.,2002; B27:429-433.
    20. Huda M N, Ray A K. Electronic Structure and Bonding of Oxygen on Plutonium Layers [J]. Eur. Phys. J. B,2004; 40:337-346.
    21. Huda M N, Ray A K. A density functional study of atomic hydrogen adsorption on plutonium layers [J]. Physica B,2004; 352:5-17.
    22.李赣,赖新春,孙颖.FLAPW方法研究δ-Pu钚单层表面几何和电子结构[J].物理化学学报,2005;21(6):686-689.
    23. Delley B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules [J].J. Chem. Phys.,1990; 92:508-517.
    24. Delley B. A scattering theoretic approach to scalar relativistic corrections on bonding [J]. Int. J. Quant. Chem.,1998; 69:423-430.
    25. Delley B. From molecules to solids with the DMol3 approach[J] J. Chem. Phys., 2000; 113:7756-7764
    26. Perdew J P,Chevary J A,Vosko S H et al.Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys.Rev.,1992;B46:6671-6678
    27. Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett.,1996; 77:3865-3868.
    28. Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals [J]. Phys. Rev.,1999;B59:7413-7421
    29. Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, B13:5188-5192.
    30. Li W X, Stampfl C, Scheffler M Oxygen adsorption on Ag(111):A density-functional theory investigation [J].Phys. Rev. B,2002;65:075407-19.
    1 Lasser R. Tritium and Helium-3 in Metals[M]. Berlin:Springer-Verlag,1989:108.
    2吴仲成,彭述明,杨茂年,龙兴贵,刘晾.有效介质理论计算He原子在金属钒中的扩散行为[J]金属学报,2004;40:36-40.
    3 Delley B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules [J].J. Chem. Phys.,1990;92:508-517.
    4 Delley B. A scattering theoretic approach to scalar relativistic corrections on bonding[J]. Int. J. Quant. Chem.,1998;69:423-430
    5 Delley B. From molecules to solids with the DMol3 approach[J].J. Chem. Phys., 2000; 113:7756-7764.
    6 Perdew J P, Chevary J A, Vosko S H, et al.Atoms,molecules,solids and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Phys.Rev.,1992;B46:6671-6678.
    7 Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett.,1996;77:3865-3868.
    8 Hehre W J, Radom L, Schleyer P v R, et al.AbInitio Molecular Orbital Theory[M]. New York:Wiley,1986.
    9 Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals[J]. Phys. Rev.,1999;B59:7413-7421.
    10 Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations [J]. Phys.Rev., 1976,B13:5188-5292.
    11 Segall M D, Shah R, Pickard C J, Payne M C. Population analysis of plane-wave electronic structure calculations of bulk materials [J].Phys. Rev. B,1996;54: 16317-16320.
    1. Barnes R S. Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation [J].Nature 1965,206:1307-1310
    2. Cowgill D F. Helium nano-bubble evolution in aging metal tritides [J].Fus. Sci. Technol. 2005,48:539-544.
    3. Donnelly S E. The density and pressure of helium in bubbles in implanted metals:a critical review [J].Radiat. Eff.1985,90:1-47.
    4. Trinkaus H, Singh B N. Helium accumulation in metals during irradiation-Where do we stand? [J].J. Nucl. Mat.2003,323:229-242.
    5. Henriksson K O E, Nordlund K, Krasheninikov A, Keinonen J. Difference in formation of hydrogen and helium clusters in tungsten [J]. Appl. Phys. Lett.2005, 87:163113-163115.
    6. Barnes R S, Redding G B, Cottrell A H. The observation of vacancy sources in metals [J].Philos. Mag.1958,3:97-9.
    7. Sass S L,Eyre B L.Diffraction from void and bubble arrays in irradiated molybdenum [J].Philos. Mag.1973,27:1447-1453.
    8. Kornelsen E V, van Gorkum A A. A study of bubble nucleation in tungsten using thermal desorption spectrometry:Clusters of 2 to 100 helium atoms[J]. J. Nucl. Mater. 1980,92:79-88.
    9. van der Kolk G J, van Veen A, caspers L M, de Hosson J T M. He Desorption of Defects in Metals [J]. J. Nucl. Mater.1985,127:56-66
    10. Evans J H, van Veen A, Casper L M. Radiation effects and defects in solids incorporating plasma science and plasma technology [J]. Radiat. Eff.,1983; 78:105-110.
    11. Trinkaus H. Singh B N. Helium accumulation in metals during irradiation-where do we stand?[J]. J. Nucl. Mater.2003; 323:229-242.
    12. Evans J H, van Veen A, Finnis M W. helium bubble diffusion in gold[J]J. Nucl. Mater.,1989;168:12-18.
    13. Vassen R, Trinkaus H, Jung P. Diffusion of. Helium in Magnesium and Titanium Before and. After Clustering [J]. J Nucl Mater,1991,183:1-8.
    14. Schober T, Trinkaus H, SserR L. A TEM studyof the aging of Zr tritides [J]. J. Nucl. Mater.,1986;141-143:453-457.
    15. COWGILL D F. Helium nano-bubble evolution in aging metal tritides [J]. Fusion Sci. Technol.,2005,48:539-544.
    16. Wilson W D,Bisson C L,Baskes M I. Self-trapping of helium in metals[J]. Phys. Rev. B,1981;24:5616-5624.
    17. Foiles S M, Hoyt J J. Computer simulation of bubble growth in metals due to He. SANDIA REPORT 2001-0661
    18. Wolfer W G. The Pressure for Dislocation Loop. Punching by a Single Bubble[[J]. Philos. Mag.1988,58:285-297.
    19. Wang L, Ning X J. Molecular Dynamics Simulations of helium Behaviour in Copper Crystals[J].Chin. Phys. Lett.2003,20(9):1416-1419.
    20. Liu T J, Wang Y X, Pan Z Y, Jiang X M, Zhou L, Zhu J. Atomistic Simulation of He Clustering and Defects Produced in Ni [J].Chin. Phys. Lett.2006,23(5):1261-1264.
    21. Ao B Y, Yang J Y, Wang X L, Hu W Y. Atomistic behavior of helium-vacancy clusters in aluminum[J]. J. Nucl. Mater.,2006;350:83-88.
    22.谢朝,侯氢,汪俊,孙铁英,龙兴贵,罗顺忠.金属钛中氦团簇融合的分子动力学模拟[M].物理学报,2008;57(8):5159-5164.
    23. Wang J, Hou Q, Sun T Y, Wu Zh Ch. Simulation of helium behaviour in titanium crystals using molecular dynamics.[M] Chin. Phys. Lett.,2006;23(7):1666-1669.
    24. Sun T Y, Long X G, Wang J, Hou Q. Molecular dynamics simulations of helium behaviour in titanium crystals[M].Chin. Phys. Lett.2008;25(5):1784-1787.
    25. Xia J X, Hu W Y, Yang J Y, AO B YDiffusion behaviors of helium atoms at two Pd grain boundaries[M].Trans. Nonferrous Met. Soc. China,2006;16:s804-s807.
    26. Wang J, Hou Q.Defect behavior induced by helium cluster growth in titanium crystals[M]. J.Appl.Physic.,2007;102:093510-1-093510.
    27. Chen M,Hou Q, Wang J, Sun T Y,Long X G, Luo Sh Zh. Anisotropicdiffusion of He in titanium:A molecular dynamics study[M].Solid State Communications,2008;148: 178-181.
    28.郑晖.氦泡生长实验数据的反演模拟计算方法[J]物理学报2007;56:389-393.
    29.敖冰云,汪小琳.中国国防科学技术报告,2006,GF-A0094337G
    30. Daw M S, Baskes M I. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals [J].Phys. Rev. B,1984,29:6443-6453.
    31. Baskes M I.Modified embedded-atom potentials for cubic materials and impurities[J].Phys. Rev. B,1992,46:2727-2742.
    32. Baskes M I, Lawson A C,Valone S M. Lattice vibrations in δ-plutonium:Molecular dynamics calculation [J].Phys. Rev. B,2005; 72:014129-7.
    33. Baskes M I, Lawson A C. vibrations in δ-plutonium:molecular dynamics calculations[J].Phys. Rev. B,2008; 77:224306-7.
    34.朱正和,俞华根.分子结构和势能函数[M].北京:科学出版社,1997:1-18.
    35. Grandinetti F,Vinciguerra V. Adducts of NF+2 with diatomic and simple polyatomic ligands:a computational investigation on the structure, stability, and thermo chemistry [J]. Int. J. Mass Spectrum.2002; 216:285-299.
    36. Hirst D M. Ab initio potential energy surfaces for excited states of the NO+2 molecular ion and for the reaction of N+ with O2 [J] J.Chem.phys.2001(115):9320-9329.
    37.朱正和.原子分子反应静力学[M].北京:科学出版社,1996:6-27.
    38.杜泉,王玲,谌晓洪,高涛.VOn±(n=0,1,2)的势能函数与光谱常数研究[J].物理学报,2006;55(12):6308-6314..
    39. Huber K P,Hlerzberg G. Molecular Spectra and Molecular Structure(IV):Constants of Diatomic Molecular[M].New York, Van Nostrand Reinhold Company,1979.
    40. Murrell J N, Sorbie K S. New analytic form for the potential energy curves of stable diatomic states [J].J. Chem. Soc. Faraday Trans.,1974;2:1552-1557.
    41.王庆美,任廷琦,朱吉亮.BiH(D, T)分子基态结构与势能函数[J].物理学报,2009;58:5266-5269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700