用户名: 密码: 验证码:
AZ31镁合金板材温热变形行为的数值分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有质轻、比强度、比刚度高以及良好的散热性和减振性等特点,在汽车、航空航天以及3C行业具有广阔的应用前景。但由于镁合金的密排六方晶体(HCP)结构,决定其在室温下塑性很不理想,而在温热状态下具有良好塑性变形能力。镁合金在温热变形过程中会发生晶界滑移及动态再结晶,能细化晶粒、增强组织均匀性,有效地改善了合金的微观组织,提高材料的力学性能。因此如何控制热变形条件,使微观组织演化向着所希望的方向发展就具有重要的理论和实际意义。
     对镁合金合金变形过程中晶界滑移及动态再结晶的研究手段主要有理论研究和试验研究两种。由于试验条件与研究手段的限制,要对合金变形过程直接进行动态观察相当困难,不能揭示热塑性成形过程复杂的微观物理现象。因此本文在分析变形条件与动态再结晶相互关系的基础上,建立考虑动态再结晶影响的宏细观本构模型。通过实验与模拟技术相结合的方法,研究变形条件对晶界效应及动态再结晶演化的定量影响规律。模拟镁合金板材成形过程中微观组织演化趋势,获得成形过程中各物理场的分布规律,进而预测镁合金板材的成形性能,为成形工艺的优化提供了依据。为此,本文着重进行了以下几个方面的研究:
     首先采用等温拉伸试验和金相观察方法,研究了AZ31镁合金在温热条件下的动态再结晶行为。研究变形条件对组织演变以及动态再结晶体积分数的影响。该项研究为后续本构方程以及动态再结晶组织演化数值模拟提供了研究基础。
     在分析变形条件对流变应力影响的基础上,分析应力指数、变形激活能、峰值应变、硬化率曲线、临界应变以及变形条件对动态再结晶体积分数的影响,并建立考虑动态再结晶影响的宏细观本构模型。该本构模型可以描述镁合金动态再结晶对宏观力学特性的影响规律,为镁合金板材成形提供理论依据,发展了薄板温热成形理论。
     利用热粘塑性本构模型,对AZ31镁合金薄板在不同温度下的单向拉伸进行了有限元数值仿真。采用代表性体积元的方法建立起考虑晶界影响的有限元模型,研究AZ31镁合金薄板晶界效应与温热变形条件变化的关系。该研究明确了变形条件对晶界演化的影响,得到变形过程中晶粒的应力应变分布,这为研究动态再结晶过程中由位错密度增加引起的再结晶形核分布提供了依据。
     将元胞自动机方法与再结晶理论相结合,建立镁合金动态再结晶组织演化模型。并通过数值模拟的方法研究了变形条件对镁合金热拉伸过程中动态再结晶动力学的影响。研究结果表明计算所得的AZ31镁合金热拉伸过程的应力应变曲线、组织转变及拉伸终了组织中晶粒尺寸分布等与实验结果一致。AZ31镁合金在热拉伸过程中发生了明显的动态再结晶,先形核长大的再结晶晶粒其晶界在变形条件满足时则成为再次再结晶的形核位置,使晶粒尺寸更加细化和均匀化。动态再结晶动力学分析结果表明,与典型再结晶动力学曲线相比,温度低、应变速率大时AZ31镁合金薄板热拉伸过程未发生完全再结晶,再结晶动力学曲线呈不完全“S”形。
     最后基于上述研究基础,将基于元胞自动机方法得到的材料本构模型引入冲压成形数值仿真中,研究结果表明镁合金温热变形条件下,应力和应变呈均匀分布,晶粒尺寸在凹模圆角处较小,在侧壁拉伸区较大。并通过试验的方法对仿真结果进行了验证,结果表明数值模拟与试验研究相一致。
     通过对镁合金温热变形微观组织演化的理论和数值模拟研究,一方面能够揭示镁合金温热变形微观组织演化规律,另一方面能增加研究手段的多样性,有助于丰富镁合金板材成形理论。对镁合金动态再结晶组织演化的研究能够实现对镁合金板材成形性能的定量预测,可以为制定镁合金的塑性加工工艺提供必要的理论依据,进而促进镁合金板材成形技术的推广和应用。
Magnesium alloys are the lightest structural material therefore are very suitable for application in the transportation industry, aerospace and 3C industry. However, magnesium alloy has traditionally been considered one of the less shapable metals at room temperature due to its close-packed hexagonal structure, while its formability is excellent at warm condition. The previous investigations have shown that magnesium alloy might undergo the grain boundary (GB) sliding and dynamic recrystallization (DRX) pheomena during hot working processes. The grain refinement during DRX is insignificant at high temperatures due to the rapid grain growth. So controlling warm deforming condition is important to make the microstructure evolution of magnesium alloy to the expecting status.
     There are two main research methods to develop the sliding GB and DRX of magnesium alloy during warm deformation. However, it is different to observe GB sliding and DRX at warm deforming conditions of magnesium alloy due to the limitation of test conditions and research way. Therefore, based on the relationship between the deforming conditions and dynamic recrystallization, the macro-micro constitutive model including the effect of DRX has been developed. According to the experimental and numerical method, the quantitative influence of deforming conditions on GB effect and DRX evolution has been studied. The microstructure evolution has been simulated during forming process of magnesium alloy sheet. And the distribution of physical field has been obtained. According to the researches, the formability of magnesium alloy sheet can be predicted and the forming technology can be optimized.
     Through isothermal tensile test and metallographical observation, the DRX of AZ31 magnesium alloy sheet has been studied. The effect of deforming conditions has been explored, and the influence of deforming conditions on the volume fraction of DRX has been analyzed. This research can be used as the foundation to construct the constitutive model and simulate the evolution of DRX.
     Based on the analysis of effect of deforming conditions on the flow stress, stress exponential, deforming activation energy, peak strain, hardening ratio curves, critical strain and influence of deforming conditions on the volume fraction of DRX have been studied. According to these researches, a macro-micro constitutive model containing the effect of DRX has been put forward. This constitutive model can describe the effect of DRX on the macro-mechanical properties of magnesium alloy sheet, and it can be used as a theoretical method for formation of magnesium alloy sheet and improve the warm forming theory of thin sheet.
     The uniaxial tension of AZ31 magnesium alloy sheet at different temperatures is simulated using the thermoviscoplastic constitutive model. A representative volume element taking from the tension model is constructed to simulate the relationship between GB and deforming conditions. The results show the influence of deforming conditions on the GB and distribution of the stress and strain in grain and GB.
     Combining the Cellular Automata (CA) method with DRX theory, the DRX evolution model of magnesium alloy has been developed. The effect of deforming condition on the DRX kinetics during warm tension of magnesium alloy has been analyzed. The results show that the stress-strain curves, the structural transformation and the grain size distribution of ultimate tension agree with the test results. The phenomenon of DRX is obvious during warm tension of AZ31 magnesium alloy. When the deforming condition fits the critical condition of DRX, the grain boundary of DRX grains first nucleating and growing will become the position of next nucleation. This will make the grain fined and homogeneous. The results of analysis of DRX kinetics show that the DRX of warm tension of AZ31magnesium alloy does not complete at lower temperature and high strain rate. Compared with the classical recrystallization kinetics curve, the DRX kinetics curve is incomplete shape of S.
     Based on the above research, the constitutive model according to the CA method is introduced into the numerical simulation of stamping. The results show that the distribution of stress and strain of cup is homogeneous. Grain size at region of die profile is smaller than it at wall of cup. And the grain size of numerical simulation agrees well with the experimental results.
     The research of theoretical and numerical simulation of microstructure evolution of magnesium alloy at warm deforming conditon can make microstructure evolution rule obvious and improve the forming theory of magnesium alloy sheet. The forming properties of magnesium alloy sheet can be quantitatively predicted according to the study of DRX evolution. The research of DRX evolution can supply necessary theory of plastic processing technic and promote the forming technique of magnesium alloy sheet.
引文
[1] G S Cole, A M Sherman. Light weight materials for automotive applications. Materials Characterization, 1995, 35:3-9.
    [2] M K Kulekci. Magnesium and its alloys applications in automotive industry. Int J Adv ManufTechnol, doi:10.1007/s00170-007-1279-2.
    [3]中国机械工程学会铸造专业学会编.铸造合金手册,第三卷-铸造非铁合金,北京:机械工业出版社,1993: 166.
    [4]陈振华等编著.镁合金.北京:化学工业出版社,2004.
    [5]杨彬.镁合金研究及制备发展概况.铸造设备研究,2001, (1): 36-39.
    [6] L A Dobrzański, T Tański, ????ek, Z Brytan. Structure and properties of magnesium cast alloys. J Mater Proc Tech, 2007, 192-193:567-574.
    [7]陈振华主编.变形镁合金.北京:化学工业出版社,2005.
    [8]第一汽车制造厂长春汽车材料研究所编写组编.机械工程材料手册(有色金属材料)[第四版].北京:机械工业出版社,1991.
    [9]曾正明主编.实用钢铁材料手册(第2版).北京:机械工业出版社,2007.
    [10]李春胜,黄德彬.非金属材料-机械工程材料手册(下册).北京:电子工业出版社,2007.
    [11] B L Mordike, T Ebert. Magnesium properties-application-potential. Mater Sci Eng A, 2001, A302: 37-45.
    [12]叶久新,陈明安等.镁合金及其成型技术在工业中的应用.湖南大学学报,2002,29(3):112-116.
    [13]张士宏,王忠堂等.镁合金的塑性加工技术.金属成形工艺,2002,21(5):1-4.
    [14]王渠东,丁文江.镁合金研究开发现状与展望.世界有色金属,2004,7:8-11.
    [15]林金保,王渠东,陈勇军.镁合金塑性成形技术研究进展.轻金属,2006,10:76-80.
    [16] Michael M Avadesian, Hugh Baker, editors. Magnesium and Magnesium alloys, ASM Specialty Handbook, OH: ASM International, 1999: 22.
    [17]《轻金属材料加工手册》编写组编.轻金属材料加工手册.北京:冶金工业出版社,1979.
    [18]工程材料实用手册编辑委员会编.工程材料实用手册,第三卷,铝合金,镁合金(第二版).中国标准出版社,2002.
    [19] F H Froes, D Eliezer, E Aghion. The science, technology, and applications of magnesium. JOM, 1998, 50(9): 30-34.
    [20] W E Frazier, D Polakovics, W Koegel. Qualifying of metallic materials and structures for aerospace applications. JOM, 2001, 53(3): 16-18.
    [21]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势.世界有色金属,2004,7:12-20.
    [22] J Deetz. The use of wrought magnesium in bicycles. JOM, 2005, 57(5): 50-53.
    [23]夏德宏,郭梁,余涛.镁及镁合金广阔的应用前景.金属世界,2005,2:47-48.
    [24]祁庆琚,刘勇兵,杨晓红.镁合金的研究及其在汽车工业中的应用与展望.汽车工程,2002,24(2):94-100.
    [25]汪之清.国外镁合金压铸技术的发展.铸造,1997(8): 48-51.
    [26]羊秋林.汽车用轻量化材料.北京:机械工业出版社,1991.
    [27] H E Friedrich, B L Mordike. Magnesium Technology-Metallurgy, Design Data, Applications. Berlin: Springer-Verlag Berlin Heidelberg, 2006.
    [28]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用.中国有色金属学报, 2003,13(2): 277-288.
    [29]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg合金的最新发展及应用前景.金属学报,2001,37(7): 673-685.
    [30] H Friedrich, S Schumann. Research for a“new age of magnesium”in the automotive industry. J Mater Process Tech, 2001, 117: 276-281.
    [31] C J Bettles, M A Gibson. Current wrought magnesium alloys: strengths and weaknesses. JOM, 2005, 57(5): 46-49.
    [32] D L Albright, F Bergeron, R Neelameggham, A Luo, H Kaplan, M O Pekguleryuz. Magnesium technology 2002, partⅡ: Wrought products, alloy processing, R&D strategies, corrosion, welding. JOM, 2002, 38(6): 22-24.
    [33] J W Christian, S Mahajan. Deformation twinning. Prog Mater Sci, 1995, 39: 1-157
    [34] M H Yoo, S R Agnew, J R Morris, K M Ho. Non-basal slip systems in HCP metals and alloys: source mechanisms. Mater Sci Eng A, 2001, A319-321: 87-92.
    [35] R M Wang, A Eliezer, E Gutman. Microstructures and dislocations in the stressed AZ91D magnesium alloys. Mater Sci Eng A, 2002, 344: 279-287.
    [36] A Staroselsky, L Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int J Plasticity, 2003, 19:1843-1864.
    [37] M R Barnett, Z Keshavarz, A G Beer, D Atwell. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater, 2004, 52: 5093-5103.
    [38] S R Agnew, P Mehrotra, T M Lillo, G M Stoica, P K Liaw. Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations. Acta Mater, 2005, 53:3135-3146.
    [39] S R Agnew, ? Duygulu. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plasticity, 2005, 21: 1161-1193.
    [40] R Gehrmann, M M Frommert, G Gottstein. Texture effects on plastic deformation of magnesium. Mater Sci Eng A, 2005, 395: 338-349.
    [41] S Graff, W Brocks, d Steglich. Yielding of magnesium: Form single crystal to polycrystalline aggregates. Int J Plasticity, 2007, 23: 1957-1978.
    [42] B Mingler, O B Kulyasova, R K Islamgaliev, G Korb, H P Karnthaler, M J Zehetbauer. DSC and TEM analysis of lattice defects governing the mechanical properties of an ECAP-processed magnesium alloy. J Mater Sci, 2007, 42:1477-1482.
    [43] J Jiang, A Godfrey, W Liu, Q Liu. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Mater Sci Eng A, 2008, 483-484: 576-579.
    [44] Y Chino, K Kimura, M Hakamada, M Mabuchi. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy. Mater Sci Eng A, 2008, 485: 311-317.
    [45] R W Armstrong. In: Bunshah, R F(Ed), Advances in Materials Research, Vol.5, Wiley-Interscience, NY, 1971, p.101.
    [46] A Kaibyshev. Superplasticity of Alloy, Intermetallides and Ceramics. Springer-verlag, NY, 1992.
    [47] E. N. da C Andrade. The Flow in Metals under Large Constant Stresses. Proc R Soc London, Ser A, 1914, 90: 329-342.
    [48] T Watanabe, H Fujii, H Oikawa, K I Arai. Grain boundaries in rapidly solidified and annealed Fe-6.5mass% Si polycrystalline ribbons with high ductility. Acta Metal, 1989, 37: 941-952.
    [49] M R Barnett, A Ghaderi, I Sabirov, B Hutchinson. Role of grain boundary sliding in the anisotropy of magnesium alloys. Scripta Mater, 2009, 61:277-280.
    [50] R Panicker, A H Chokshi, R K Mishra, R Verma, P E Krajewski. Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy. Acta Mater, 2009, 57: 3683-3693.
    [51] A Prakash, S M Weygand, H Riedel. Modeling the evolution of texture and grain shape in Mg alloy AZ31 using the crystal plasticity finite element method. Comput Mater Sci, 2009, 45: 744-750.
    [52] H K Lim, D H Kim, J Y Lee, W T Kim, D H Kim. Effect of grain size on the tensile deformation of wrought Mg-MM-Al-Zn-Sn alloy. Mater Lett, 2008, 62: 2271-2274.
    [53] Y N Wang, J C Huang. Texture analysis in hexagonal materials. Mater Chem Phys, 2003, 81:11-26.
    [54] S R Agnew, P Mehrotra, T M Lillo, G M Stoica, P K Liaw. Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion. Mater Sci Eng A, 2005, 408:72-78.
    [55]T Walde, H Riedel. Modeling texture evolution during hot rolling of magnesium alloy AZ31. Mater Sci Eng A, 2007, 443: 277-284.
    [56] X Y Lou, M Li, R K Boger, S R Agnew, R H Wagoner. Hardening evolution of AZ31B Mg sheet. Int J Plasticity, 2007, 23: 44-86.
    [57] H Ding, L Liu, S Kamado, W Ding, Y Kojima. Evolution of microstructure and texture of AZ91 alloy during hot compression. Mater Sci Eng A, 2007, 452-453:503-507.
    [58] T Walde, H Riedel. Simulation of earing during deep drawing of magnesium alloy AZ31. Acta Mater, 2007, 55: 867-874.
    [59] L Jiang, J J Jonas, R K Mishra, A A Luo, A K Sachdev, S Godet. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater, 2007, 55: 3899-3910.
    [60] B Beausir, S Suwas, L S Tóth, K W Neale, J-J Fundenberger. Analysis of texture evolution in magnesium during equal channel angular extrusion. Acta Mater, 2008, 56, 200-214.
    [61] M T Pérez-Prado, O A Ruano. Texture evolution during grain growth in annealed MG AZ61 alloy. Scripta Mater, 2003, 48: 59-64.
    [62] H K Lim, D H Kim, J Y Lee, W T Kim, D H Kim. Effects of alloying elements on microstructures and mechanical properties of wrought Mg-MM-Sn alloy. J Alloy Comp, 2008, 468: 308-314.
    [63] N Ogawa, M Shiomi, K Osakada. Forming limit of magnesium alloy at elevated temperatures for precision forging. Int J Mach Tool Manu, 2002, 42: 607-614.
    [64] F K Chen, T B Huang, S J Wang. A study of flow-through phenomenon in the press forging of magnesium-alloy sheets. J Mater Proc Tech, 2007, 187-188:770-774.
    [65]邢劼,惣田訩?楊続躍,三浦博己,酒井拓. AZ31マグネシウム合金の降温中多軸鍛造による微細粒組織の生成.軽金属,2004, 54(11): 527-531.
    [66]松本良,小坂田宏造. AZ31マグネシウム合金の鍛造特性に及ぼす熱処理の影響.軽金属,2007,57(7):274-279.
    [67]吕炎,徐福昌,薛克敏,单德彬,王真,许沂,孔祥永,赵玉珍,郝南海.镁合金上机匣等温精锻工艺的研究.哈尔滨工业大学学报,2000,32(4): 127-129.
    [68] D J Yoon, S J Lim, H G Jeong, E Z Kim, C D Cho. Forming characteristics of AZ31B magnesiu malloy in bidirectional extrusion process. J Mater Proc Tech, 2008, 201: 179-182.
    [69] L Li, H Zhang, J Zhou, J Duszczyk, G Y Li, Z H Zhong. Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium prole with longitudinal weld seams. Mater Design, 2008, 29: 1190-1198.
    [70]张青来,卢晨,丁文江.分流挤压镁合金管材工艺研究.轻合金加工技术,2003,31(10): 28-30.
    [71]何祝斌,王小松,苑世剑,许爱军. AZ31B镁合金挤压管材的内高压成形性能.金属学报,2007,43(5): 537-538.
    [72] Y H Ji, J J Park. Analysis of thermo-mechanical process occurred in magnesium alloy AZ31 sheet during differential speed rolling. Mater Sci Engi A, 2008,485: 299-304.
    [73] H Watanabe, T Mukai, K Ishikawa. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties J Mater Sci, 2004, 39: 1477-1480.
    [74]曲家惠,张正贵,王福,左良. AZ31镁合金室温异步轧制的织构演变.材料研究学报,2007,21(4): 354-358.
    [75]杨平,孟利,毛卫民,蔡庆武.利用道次间退火改善镁合金轧制成形性的研究.材料热处理学报,2005,26(2): 34-38.
    [76]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性.中国有色金属学报,2005,15(1): 1-11.
    [77]王凌云,范永革,黄光杰,黄光胜,潘复生,刘正宏. AZ31B镁合金板材的织构.材料研究学报,2004, 18(5): 466-470.
    [78] E Doege, K Dr?der. Sheet metal forming of magnesium wrought alloys-formability and process technology. J Mater Proc Tech, 2001, 115: 14-19.
    [79] Q F Chang, D Y Li, Y H Peng, X Q Zeng. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet. Inter J Mach Tool Manu, 2007, 47:436-443.
    [80] T B Huang, Y A Tsai, F K Chen. Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets. J Mater Proc Tech, 2006,177:142-145.
    [81] F K Chen, T B Huang, C K Chang. Deep drawing of square cups with magnesium alloy AZ31 sheets. Inter J Mach Tool Manu, 2003, 43: 1553-1559.
    [82]张文忠,王志刚,堂田邦明.镁合金AZ31板材成形性能研究.航天制造技术,2004,6:1-3.
    [83]陈振华,程永奇,夏伟军,傅定发. AZ31镁合金薄板热拉深工艺研究.湖南大学学报,2005,32(1): 83-86.
    [84]张士宏,王忠堂,周丽新,徐永超.镁合金板件温热成形技术的几个新进展.材料导报,2006,20(8): 114-118.
    [85] G J Richardson, C M Sellars, W J McG Tegart. Recrystallization during creep of nickel. Acta Metall, 1966,14:1225-1236.
    [86]H J McQueen. Elevated-temperature deformation at forming rates of 10-2 to 102 s-1. Metall Mater Trans A, 2002, 33: 345-362.
    [87] M J Luton, C M Sellars. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall, 1969, 17: 1033-1043.
    [88] H J McQueen, W J M Tegart. Deformation of metals at high-temperatures. Sci Am, 1975, 232: 116-125.
    [89] R A Petkovic, M J Luton, J J Jonas. Recovery and receystallization of carbon-steel of between intervals of hot working. Can Metall Auart, 1975, 14: 137-145.
    [90] J J Jonas. Dynamic recrystallization—scientific curiosity or industrial tool? Mater Sci Eng A, 1994, 184: 155-165.
    [91] S E Ion, F J Humphreys, S H White. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Metall, 1982, 30: 1909-1919.
    [92] A Galiyev, R Kaibyshev, G Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater, 2001,49: 1199-1207.
    [93] T Al-Samman, G Gottstein. Dynamic recrystallization during high temperature deformation of magnesium. Mater Sci Eng A, 2008, 490:411-420.
    [94] M R Barnett, A G Beer, D Atwell, A Oudin. Influence of grain size on hot working stresses and microstructures in Mg–3Al–1Zn. Scripta Mater, 2004, 51: 19-24.
    [95] Q Guo, H G Yan, Z H Chen, H Zhang. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation. Mater Charact, 2007, 58: 162-167.
    [96] D L Yin, K F Zhang, G F Wang, W B Han. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater Sci Eng A, 2005, 392:320-325.
    [97] J C Tan, M J Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci Eng A, 2003, 339: 124-132.
    [98] S B Yi, S Zaefferer, H G Brokmeier. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Mater Sci Eng A, 2006, 424: 275-281
    [99] J A del Valle, M T Pérez-Prado, O A Ruano. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater Sci Eng A, 2003, 355: 68-78.
    [100] Y J Chen, Q D Wang, H J Roven, M P Liu, M Karlsen, Y D Yu, J Hjelen. Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression. Scripta Mater, 2008, 58: 311-314.
    [101] S C V Lim, M S Yong. Plane-strain forging of wrought magnesium alloy AZ31. J Mater Proc Tech, 2006, 171: 393-398.
    [102] H Ding, L Liu, S Kamado, W Jiang, Y Kojima. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy. J Alloy Comp, 2008, 456: 400-406.
    [103] W Yu, Z Liu, H He, N Cheng, X Li. Microstructure and mechanical properties of ZK60-Yb magnesium alloy. Mater Sci Eng A, 2008, 478: 101-107.
    [104] H Zhang, Q Yan, L Li. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process. Mater Sci Eng A, 2008, 486: 295-299.
    [105] M T Pérez-Prado, J A del Valle, J M Contreras, O A Ruano. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Mater, 2004, 50: 661-665.
    [106] J A del Valle, O A Ruano. Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy. Mater Sci Eng A, 2008, 487: 473-480.
    [107] Y S Lee, M C Kim, S W Kim, Y N Kwon, S W Choi, J H Lee. Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming. J Mater Proc Tech, 2007, 187-188: 103-107.
    [108] E I Poliak, J J Jonas. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta mater, 1996, 44: 127-136.
    [109] J Kroc, J Balík, P Luká?. Modelling of work hardening. Mater Sci Eng A, 1997, 234-236: 936-939.
    [110] A Manonukul, F P E Dunne. Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper. Acta Mater, 1999, 47: 4339-4354.
    [111] T Sakai, J J Jonas. Overview no.35 dynamic recrystallization: mechanical and microstructural considerations. Acta Metall, 1984, 32: 189-209.
    [112] D J Jensen. Modelling of microstructure development during recrystallization. Scripta Metal, 1992, 27: 1551-1556.
    [113] H S Zurob, Y Brechet, G Purdy. A model for the competition of precipitation and recrystallization in deformaed austenite. Acta Mater, 2001, 49: 4183-4190.
    [114] W Roberts, B Ahlblom. A nucleation criterion for dynamic recrystallization during hot working. Acta Metall, 1978, 26: 801-813.
    [115] B Derby, M F Ashby. On dynamic recrystallization. Scripta Metall, 1987, 21: 879-884.
    [116] A D Rollett, M J Luton, D J Srolovitz. Microstructural simulation of dynamic recrystallization. Acta Metal, 1992, 40: 43-55.
    [117] P Peczak, M J Luton. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization. Acta Metal, 1993, 41:59-71.
    [118] P Peczak. A Monte Carlo study of deformation temperature on dynamic recrystallization. Acta Metal, 1995, 43:1279-1291.
    [119] H W Hesselbarth, I R G?bel. Simulation of recrystallization by cellular automata. Acta Metal, 1991, 39: 2135-2143.
    [120] R K Shelton, D C Dunand. Computer modeling of particle pushing and clustering duringmatrix crystallization. Acta Mater, 1996,44: 4571-4585.
    [121] R L Goetz, V Seetharaman. Modeling dynamic recrystallization using cellular automata. Scripta Mater, 1998, 38: 405-413.
    [122] D Raabe(项金钟,吴兴惠译).计算材料学,北京:化学工业出版社,2002:254.
    [123] R L Goetz, V Seetharaman. Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model. Metall Mater Trans A, 1998, 29: 2307-2321.
    [124] Y Liu, T Baudin, R Penelle. Simulation of normal grain growth by cellular automata. Scripta Mater, 1996, 34:1679-1683.
    [125] V Marx, F R Reher, G Gottstein. Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Mater, 1999, 47: 1219-1230.
    [126] R Ding,Z X Guo. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater, 2001, 49: 3163-3175.
    [127] G Kugler, F Turk. Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater, 2004, 52: 4659-4668.
    [128]肖宏,柳本润.采用Cellular automata法模拟动态再结晶过程的研究.机械工程学报,2005, 41: 148-152.
    [129]郑成武,兰勇军,肖纳敏,李殿中,李依依.热变形低碳钢中奥氏体静态再结晶介观尺度模拟.金属学报, 2006, 42:474-480.
    [130]丁汉林. AZ91镁合金高温变形行为的实验研究与数值模拟.博士论文.上海交通大学. 2007.
    [1] K H Matucha,师昌绪,柯俊,R W卡恩.非铁合金的结构与性能.北京:科学出版社,1999.
    [2] I J Polmear. Magnesium alloys and applications. Mater Sci Tech. 1994, 10: 1-14.
    [3]陈振华主编.变形镁合金.北京:化学工业出版社,2005.
    [4] J C Tan, M J Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. and Eng A, 2003, 339: 124-132.
    [1] P F Bariani, Dal Negro T. Material response to continuously varying rate of straining during hot forging operation. Annals of the CIRP. 1991, 48: 183-187.
    [2] J K chakravartty, G K Dey, S Banerjee, Y V R K Prasad. Characterization of hot deformation behaviour of Zr-2.5Nb-0.5Cu using processing maps. J Nucl Mater, 1995, 218: 247-255.
    [3] O Sivakesavam, Y V R K Prasad. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy incompression: a study with processing map. Mater Sci Eng A, 2003,362:118-124.
    [4] N Srinivasan, Y V R K Prasad, P Rama Rao. Hot deformation behaviour of Mg-3Al alloy—A study using processing map. Mater Sci Eng A, 2008, 476:146-156.
    [5] Y V R K Prasad, K P Rao. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability. Mater Sci Eng A, 2008, 487: 316-327.
    [6] T Sakai, J J Jonas. Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metall Mater, 1984, 32:189-209.
    [7]黎文献,杨军军,肖于德.Al-Fe-V-Si合金高温变形热模拟.中南工业大学学报,2000,31(1): 56-59.
    [8] N D Ryan, H J McQueen, E Evangelista. Dynamic recovery and strain hardening in the hot deformation of type 317 stainless steel. Mater Sci Eng, 1986, 81: 259-272.
    [9] H J McQueen, N D Ryan. Constitutive analysis in hot working. Mater Sci Eng A, 2002, 322: 43-63.
    [10] J Guo, L Chen, Y Xu, F Lian. Investigation of the compressive creep behavior of AZ91D magnesium alloy. Mater Sci Eng A, 2007, 443:66-70.
    [11] H J McQueen, S Yue, N D Ryan, E Fry. Hot working characteristics of steels in austenitic state. J Mater Process Technol, 1995,53:293-310.
    [12] A Mwembela, E B Konopleva, H J McQueen. Microstructural development in Mg alloy AZ31 during hot working. Script Mater, 1997, 37: 1789-1795.
    [13]韩冰. 7075z铝合金高温塑性变形行为研究.硕士论文.广东工业大学. 2003.
    [14] M M Myshlyaev, H J McQueen, A Mwembela, E Konopleva. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater Sci Eng A, 2002, 337: 121-133.
    [15]周海涛. Mg-6Al-1Zn镁合金高温塑性变形行为及管材热挤压研究.博士论文.上海交通大学. 2004.
    [16]丁汉林. AZ91镁合金高温变形行为的实验研究与数值模拟.博士论文.上海交通大学. 2007.
    [17] N D Ryan, H J McQueen. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel. J Mater Process Technol, 1990, 21: 177-199.
    [18] M El Wahabi, J M Cabrera, J M Prado. Hot working of two AISI 304 steels: a comparative study. Mater Sci Eng A, 2003, 343: 116-225.
    [19] M R Barnett, A G Beer, D Atwell, A Oudin. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn. Scripta Mater, 2004, 51:19-24.
    [20] A Galiyev, R Kaibyshev, G Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Mater, 2001, 49: 1199-1207.
    [21] E I Poliak, J J Jonas. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater, 1996, 44: 127-136.
    [22] S Serajzadeh, A Karimi Taheri. An investigation on the effect of carbon and silicon on flow behavior of steel. 2002, 23: 271-276.
    [23] D Ponge, G Gottstein. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater, 1998, 46: 69-80.
    [1] C A P Horton, C J Beevers. Anisotropy of grain boundary sliding in zinc bicrystals examined in terms of a dislocation climb-glide mechanism. Acta Metal, 1968, 16: 733-741.
    [2] H Yoshida, K Yokoyama, N Shibata, Y Ikuhara, T Sakuma. High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. Acta Mater, 2004, 52: 2349-2357.
    [3] J Shi, M A Zikry. Grain–boundary interactions and orientation effects on crack behavior in polycrystalline aggregates. Inter J Solids Struct, 2009,46: 3914-3925.
    [4] Z Celinski, K J Kurzydlowski. Finite-element analysis of stress-concentrations on the grain-boundary in anisotropic bicrystals. Res Mechanica, 1982, 5: 89-99.
    [5] K J Kurzydlowski, A Garbacz. A model of the interaction between a dislocation and a sliding grain-boundary. Philos Mag A, 1985, 52: 689-697.
    [6] E Nes, B Holmedal, E Evangelista, K Marthinsen. Modelling grain boundary strengthening inultra-fine grained aluminum alloys. Mater Sci Eng A, 2005, 410-411: 178-182.
    [7] S Wei?, G Gottstein. Grain boundary motion during high temperature cyclic deformation of high purity aluminium bicrystals. Mater Sci Eng A, 1998, 256: 8-17.
    [8] Y Q Wu, H J Shi, K S Zhang, H Y Yeh. Numerical investigation of grain boundary effects on elevated-temperature deformation and fracture. Inter J Solids Struct, 2006, 43: 4546-4577.
    [9]胡丽娟,彭颖红,唐伟琴,李大永,张少睿. AZ31镁合金薄板动态再结晶对其拉伸性能的影响.中国有色金属学报, 2008, 18: 1571-1576.
    [10] McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state. J Mater Proc Tech, 1995, 53: 293-310.
    [11] McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A , 2002, A322: 43-63.
    [12] Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Mater Sci Eng A , 1997, 238:219-274.
    [13] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Mater Trans, 2003, 44: 426-435.
    [14] Liu J, Cui Z S, Li C X. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput Mater Sci, 2008, 45: 375-382.
    [1] H W Hesselbarth, I R G?bel. Simulation of recrystallization by cellular automata. Acta Metall, 1991, 39: 2135-2143.
    [2] B Derby. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater, 1991, 39:955-962.
    [3] R L Goetz, V Seetharaman. Modeling dynamic recrystallization using cellular automata. Scripta Mater, 1998, 38: 405-413.
    [4] P Peczak, M J Luton. The effect of nucleation models on dynamic recrystallizationⅠ. Heterogeneous stored-energy distribution. Phil Mag B, 1993, 68: 115-144.
    [5] P Peczak, M J Luton. The effect of nucleation models on dynamic recrystallizationⅡ. Heterogeneous stored-energy distribution. Phil Mag B, 1994, 70: 817-849.
    [6] G Kugler, R Turk. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput Mater Sci, 2006, 37: 284-291.
    [7] Y Liu, T Baudin, R Penelle. Simulation of normal grain growth by cellular automata. Scripta Mater, 1996, 34: 1679-1683.
    [8] S Raghavan, Satyam S Sahay. Modeling the grain growth kinetics by cellular automaton. Mater Sci Eng A, 2007, 445-446: 203-209.
    [9] Y He, H Ding, L Liu, K Shin. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle. Mater Sci Eng A, 2006, 429: 236-246.
    [10] C H J Davies, L Hong. The cellular automaton simulation of static recrystallization in cold-rolled AA1050. Scripta Mater, 1999, 40: 1145-1150.
    [11] N K Petersen, P Alstr?m. Phase transition in an elementary probabilistic cellular automaton. Physica A, 1997, 235: 473-485.
    [12] X Q Shi, Y Q Wu, H L, R Zhong. Second-order phase transition in two-dimensional cellular automaton model of traffic flow containing road sections. Physica A, 385:659-666.
    [13] D Raabe. Computational materials science: The simulation of materials, microstructure and properties. Wiley-VCH Verlag GmbH, Weinheim, 1998.
    [14] T Sakai, M G Akben, J J Jonas. Dynamic recrystallization during the transient deformation ofa vanadium microalloyed steel. Acta Metall, 1983, 31: 631-641.
    [15] H J McQueen. Initiating nucleation of dynamic recrystallization, primarily in polycrystals. Mater Sci Eng A, 1988, 101: 149-160.
    [16] R Ding, Z X Guo. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater, 2001, 49: 3163-3175.
    [17] B Derby, M F Ashby. On dynamic recrystallization. Scripta Metall, 1987, 21:879-884.
    [18] P Peczak. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metall Mater, 1995, 43:1279-1291.
    [19] W Roberts, B Ahlblom. A nucleation criterion for dynamic recrystallization during hot working. Acta Metall, 1978, 26:801-813.
    [20] T Sakai, J J Jonas. Overview no.35-Dynamic recrystallization: mechanical and microstructural considerations. Acta Metall, 1984,32:189-209.
    [21] F J Humphreys, M Hatherly. Recrystallization and related annealing phenomena. Pergamon Press, Oxford, 1995, p. 17.
    [22] S Takeuchi, A S Argon. Steady-state creep of single-phase crystalline matter at high temperature. J Mater Sci, 1976, 11:1542-1566.
    [23] D McLean. Grain boundaries in metals. Oxford University Press, Oxford,1957.
    [24] H P Stuwe, B Ortner. Recrystallization in hot working and creep. Metals Sci, 1974, 8: 161-167.
    [25] Y Estrin. Unified Constitutive Laws of Plastic Deformation. Academic Press, London, 1996, p. 69.
    [26] W T Read, W Shockley. Dislocation models of crystal grain boundaries. Phys Rev, 1950, 78: 275-289.
    [27] W T Read. Dislocation in Crystals. McGraw Hill, New York, 1953.
    [28]肖纪美,朱逢吾.材料能量学.上海:上海科学技术出版社,1999.
    [29] G Kugler, R Turk. Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater, 2004, 52: 4659-4668.
    [30] Shu-en Hsu, G R Edwards, O D Sherby. Influence of texture on dislocation creep and grain boundary sliding in fine-grained cadmium. Acta Metall, 1983, 31: 763-772.
    [31] H Watanabe, A Takara, H Somekawa, T Mukai, K Higashi. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy. Scripta Mater, 2005, 52: 449-454.
    [32] A G Beer, M R Barnett. Microstructure evolution in hot worked and annealed magnesium alloy AZ31. Mater Sci Eng A, 2008, 485: 318-324.
    [1] Y S Lee, M C Kim, S W Kim, Y N Kwon, S W Choi, J H Lee. Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming. J Mater Process Tech, 2007, 187-188: 103–107.
    [2] W J Kim, H K Kim, W Y Kim, S W Han. Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys. Mater Sci Eng A, 2008, 488: 468-474.
    [3] S Yi, J Bohlen, F Heinemann, D Letzig. Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Mater, 2010, 58: 592-605.
    [4] C CГорелик著,仝健民译.金属和合金的再结晶,北京:机械工业出版社,1985.
    [5] <<有色金属及其热处理>>编写组,有色金属及其热处理,北京:机械工业出版社, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700