用户名: 密码: 验证码:
多学科设计优化的分解、协同及不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多学科设计优化方法是从现代复杂系统设计的实际应用背景出发而提出的。在解决模型复杂、设计约束与设计变量多、设计过程中信息量大的优化设计问题时优化效率较高。本文对多学科设计优化理论与方法进行了深入而系统的研究,归纳而言,工作主要集中在以下几个方面。
     本文首先对灵敏度分析技术进行了研究。在多学科设计优化过程中,灵敏度分析技术起着重要的作用,它不仅在优化时能提供导数信息,而且其中的一种特殊灵敏度分析技术——全局灵敏度方程可用来进行多学科系统的分解。本文系统地研究与比较了适合多学科设计优化的各种灵敏度分析方法。在全局灵敏度方程基础上,导出二阶全局灵敏度方程,并利用二阶全局灵敏度方程对多学科系统进行了基于学科的分解。利用二阶全局灵敏度方程进行分解使系统分解后与原多学科系统维持较好的一致性。
     在多学科设计优化中,由于一些工程仿真模型较复杂且计算费时,因此常用近似模型来代替。本文从两方面对近似模型进行研究。首先,对多学科设计优化中常使用的五种近似技术——响应面模型、Kriging模型、BP神经网络模型、多元自适应回归样条、径向基函数进行了研究与比较,对其适用情况进行了分析。其次,在Kriging模型的基础上,提出了一种增强型Kriging近似模型,其理论基础是贝叶斯推论。增强型Kriging模型不需要对模型参数进行重新计算,只需用新的样本数据对Kriging模型进行更新,从而提高模型的近似精度。由于模型建立过程中,样本信息来源不同,因此可灵活地处理模型的精度,并且模型可重复使用。
     本文在基于并行子空间优化方法的基础上,提出了一种基于二阶全局灵敏度方程的系统分解与基于增强型Kriging近似技术进行协同的多学科设计优化方法。方法首先利用二阶全局灵敏度方程对多学科系统进行分解,整个多学科系统的耦合由二阶全局灵敏度方程来维持。各个多学科子系统进行独立优化,得到各个学科子系统的优化解。利用增强型Kriging近似技术对分解后的多学科子系统优化解进行协同,得到一个全局优化解。如此循环,最终收敛到原系统的最优解。相比全局灵敏度方程,二阶全局灵敏度方程能更为精确的对多学科系统进行分解,更好地维持系统的一致性,从而减少了整个多学科系统进行分解与协同的优化迭代次数。由于增强型Kriging近似技术使用各个子系统优化后得到的新样本点对模型进行更新,提高了近似模型的精度,因此使用增强型Kriging技术对分解后的系统协调能力较强,多学科设计优化迭代中全局优化解能更快地收敛到最优解。
     在多学科设计优化过程中,设计变量的不确定性将影响优化结果的不确定性,因此,本文最后对多学科设计优化过程中的不确定性进行了研究。文章探讨了多学科设计优化中不确定性的各种来源,并将不确定性的来源分为输入量的不确定性和模型的不确定性。本文利用概率方法定量地处理多学科设计优化中的不确定性,研究了多学科设计优化中的不确定传播。由于不确定性计算的复杂性,尽管不确定性已被认识,但在多学科设计优化中较少被考虑。本文采用Kriging方法建立不确定性计算的代理模型,并进行了多学科不确定性设计优化。
In today’s engineering design, the number of design variables involved and the amount of data handled becomes so large that attempting to optimize the design by traditionally sequential approach is both intractable and costly. Multidisciplinary design optimization (MDO) emerges as an enabling methodology for the design of complex systems. The increasing economic competition of industrial markets and growing complexity of engineering problems has sparked increasing interest to MDO in recently years.
     Comprehensively and systemically the present thesis studies the theories and methods of MDO. Broadly speaking, the investigation focuses on the following four aspects.
     The sensitivity analysis (SA) is an important element of MDO research field. It is used not only for derivatives computation in single disciple but also for system decomposition. The first research area of thesis focuses on the sensitivity analysis. Firstly, The SA methods that fit MDO are studied systemically. Several individual disciplinary SA methods are introduced, also the details of each method. And comparisons of these methods are presented. On this basis of global sensitivity equation, the second order global sensitivity equation is derived. Based on the second order global sensitivity equation, the multidisciplinary system could be decomposed into several independent subsystems.
     Surrogate models are an effective approach for alleviating some of the problems associated with the direct use of modern computerized analysis techniques in MDO environment. Surrogate models shift the computational burden from the optimization problem to the problem of building the surrogate models. Additionally, surrogate models filter out the noise inherent to most numerical analysis procedures by providing smooth approximate functions. The second research area of thesis is two-fold. One, a large-scale comparison of five popular means for building approximation models is presented. Second, Based on Kriging surrogate of computer simulations and experiments, a new means enables the creation of surrogate models that are advanced Kriging surrogate fitted with data obtained from deterministic numerical models and/or experimental data using optimal sampling. The statistical theory of Bayesian inference is used to support the building of surrogates. Information from computer simulations of different levels of accuracy and detail is integrated, updating surrogates sequentially to improve their accuracy. Surrogates are updated in sequential stages. They are flexible in their accuracy level and can be reusable because they can be updated as information is gathered.
     The primary goal of MDO is to decompose a large multidisciplinary system into a related grouping of smaller, more tractable, coupled subsystems. The third research area involves on the decomposition of the MDO. Based on the second order global sensitivity equations and advanced Kriging approximation, a new MDO method is proposed. The method optimizes decomposed subspaces concurrently, followed by a coordination procedure of global approximation. The global approximation used in the coordination procedure is formed using the advanced Kriging approximation strategy. Optimization of a global approximation problem is used as a coordination procedure for directing system convergence and resolving subspace conflicts. The global approximation problem is formed using information generated during concurrent subspace optimization. At each subspace, non-local analyses are approximated at the subspaces using second order global sensitivity equations. Local analyses are performed using analyses packages available to the subspace design team. System coupling is maintained and updated using second order global sensitivity equations approach.
     Finally, the fourth area of research involves the uncertainty in multidisciplinary design optimization. This study examines sources of uncertainty and classifies these errors into two categories, that is, the bias error associated with the disciplinary design tool and the precision error of the input data. For the formulation presented in this thesis, we employ probability methods to uncertainty. In this research an investigation of how uncertainty propagates through a multidisciplinary system analysis subject to the bias errors and the precision errors is undertaken. Though the usefulness of multidisciplinary design optimization formulation to evaluate uncertainty encountered in the design process is widely acknowledged, its implementation is rare. One of the reasons is due to the complexity and computational burden when evaluating the uncertainty in MDO. The approach proposed to this problem is to employ Kriging approximation to create a uncertain surrogate, and then perform the evaluation of uncertainty in MDO.
引文
[1] Anon. AIAA White Paper: Current State of the Art of Multidisciplinary Design Optimization. AIAA Technical Committee for MDO, Washington, D.C., September, 1991
    [2] Sankar M. R.. Multidisciplinary Design Optimization of Airborne Warning and Control System: [Master Thesis]. India, Bombay: Institute of Technology Bombay, 2002
    [3] Budianto Irene Arianti. A Collaborative Optimization Approach to Improve the Design and Deployment of Satellite Constellations: [Ph.D. Dissertation]. Georgia: Georgia Institute of Technology, 2000
    [4]余雄庆,姚卫星,薛飞.关于多学科设计优化计算框架的探讨.机械科学与技术,2004,23(3),286~289
    [5] Dudley J.. Multidisciplinary Optimization of the High-Speed Civil Transport. In: Proceedings of the AIAA 33rd Aerospace Sciences Meeting, Reno, Nevada, 1995. AIAA Paper 95-0124
    [6] Bolebaum C.L.. Formal and Heuristic System Decomposition in Structural Optimization. NASA Langley Research Center, Technical Report: NASA-CR-4413, 1991
    [7] Winer Eliot H.. Development of Visualization Techniques As an Aid in Multidisciplinary Design Optimization: [Ph.D. Dissertation]. New York: University of New York at Buffalo, 1999
    [8]陈禹六.大系统理论及其应用(第一版).北京:清华大学出版社,1988
    [9]冯培恩,邱清盈,潘双夏.机械产品的广义优化设计进程研究.中国科学(E), 1999, 29(4): 338~346
    [10]陈树勋.工程大系统的普遍型分解协调优化.中国机械工程,1999, 10(7): 799~802
    [11]陈博鸿.多学科综合优化设计中的建模、规划和求解策略:[博士学位论文].武汉:华中理工大学CAD中心,2000
    [12]邱清盈.机械广义优化设计的若干关键技术问题研究:[博士学位论文].杭州:浙江大学图书馆,2000
    [13]余雄庆.基于Agent模型的多学科设计优化方法.机械科学与技术,2002,21(5):844~851
    [14]陈琪锋,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用.航空学报,2002,23(3):245~248
    [15]张弫,郑时镜,于本水.运用MDO进行远程防空导弹总体方案研究.系统工程与电子技术,2002,24(1):1~7
    [16]王爱俊,陈大融.多学科设计优化方法及其在微型飞行器设计中的应用.中国机械工程,2001,12(12):1351~1353
    [17]张科施.飞机设计的多学科优化方法研究.西北工业大学:[博士学位论文].西安:西北工业大学图书馆,2006
    [18]廖馨,王振华.多学科设计优化中的设计过程建模及重构技术.航空制造技术, 2007, (3): 87~91
    [19]吴宝贵,黄洪钟,陶冶等.复杂产品多学科设计优化的视图建模.大连理工大学.清华大学学报(自然科学版),2006,46(11): 1816~1819
    [20] Giesing Joseph P., Barthelemy Jean-Francosi M.. A Summary of Industry MDO Applications and Needs. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Florida, 1998. AIAA Paper 98-4737
    [21] Rogers J. L.. A Knowledge-Based Tool for Multilevel Decomposition of a Complex Design Problem. NASA Langley Research Center, Technical Report: NASA-TP-2903, 1989
    [22] Parkinson A. R., Balling R. J. and Free, J. C.. OPTDESX: An X Window-Based Optimal Design Software System. In: Proceedings of the 4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland Ohio, September 1992. AIAA Paper 92-4759
    [23] Lee H., Goel S., and Tong S. S. et al. Toward Modeling the Concurrent Design of Aircraft Engine Turbines. In: Proceeding of the ASME International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati Ohio, 1993. ASEM Paper 93-GT-193
    [24] Herendeen D., Ludwing M. and Marco J. S.. The Impact of Database Technology on Multidisciplinary Design Optimization. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland Ohio, September 1992. AIAA Paper 92-4831
    [25] Kroo I., Takai M.. A Quasi-Procedural, Knowledge-Based System for Aircraft Design. In: Proceedings of the AIAA/AHS/ASEE Aircraft Design, Systems and Operations Meeting, Atlanta, Georgia, September 1992. AIAA Paper 88-4428
    [26] Gage P., Kroo I.. Development of the Quasi-Procedural Method for Use in Aircraft Configuration Optimization. In: Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio, September, 1992. AIAA Paper 92-4693
    [27] Engineous Software, Inc.. iSIGHT Designer's Guide, Version 3.1. Morrisville, North Carolina, 1998
    [28] LMS Numerical Technologies. LMS Optimus Revision 2.0 Users Manual. Leuven, Belgium, 1997
    [29] http://www-fp.mcs.anl.gov/OTC/Guide/SoftwareGuide/Blurbs/synaps.html
    [30] Weston R. P., Townsend J. C. and Eidson T. M. et al. A Distributed Computing Environment for Multidisciplinary Design. In: Proceedings of the 5th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, Florida, September 1994. AIAA Paper 94-4372
    [31] Evans, A., Lytle J. and Follen G. at el. An Integrated Computing and InterdisciplinarySystems Approach to Aeropropulsion Simulation—NPSS. In: Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, Florida, June 1997. ASME Paper 97-GT-303
    [32] Ridlon S.. A Software Framework for Enabling Multidisciplinary Analysis and Optimization. In: Proceeding of the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, Washington, September 1996. AIAA Paper 96-4133
    [33] George J., Peterson J. and Southard S.. Multidisciplinary Integrated Design Assistant for Spacecraft (MIDAS). In: Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics, and Materials Conference, New Orleans, Louisiana, April 1995, 1790~1799. AIAA Paper 95-1372
    [34] Hale M. A., Craig J. I. and Mistree F. et al. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems. Concurrent Engineering: Research and Applications, 1996, 4(2): 171~186
    [35] Walton J. D., Korsmeyer D. J. and Batra R. K. et al. The DARWIN Workspace Environment for Remote Access to Aeronautics Data. In: Proceedings of the 35th Aerospace Sciences Meeting, Reno, Nevada, January 1997. AIAA Paper 97-0667
    [36] Braun, R. D., Wright H. S and Croom M. A. et al.. Design of the ARES Mars Airplane and Mission Architecture. Journal of Spacecraft and Rockets. 2006, 43(5): 1026~1034
    [37] Radovcich N., Layton D.. The F-22 Structural Aeroelastic Design Process with MDO Examples. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 1998. AIAA Paper 98-4732
    [38] Bennett J., Fenyes P. and Haering W. et al.. Issues in Industrial Multidisciplinary Optimization. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 1998. AIAA Paper 98-4727
    [39] http://www.engineous.com/turbomachinery_cases.htm
    [40] http://www.engineous.com/release9_16_isight7.htm
    [41] http://www.boeing.com/news/releases/2002/q1/nr_020206p.html
    [42] Balling R. J., Sobieski J.. Optimization of Coupled Systems: A Critical Overview of Approaches. In: Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, Florida, September 1994. AIAA Paper 94-4330
    [43] Balling R. J., Sobieski J.. An Algorithm for Solving the System-Level Problem in Multilevel Optimization. In: Proceedings of the 5th IAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, Florida, September 1994. AIAA Paper 94-4333
    [44] Hulme K. F., Bloebaum C. L. A Comparison of Solution Strategies for Simulation-basedMultidisciplinary Design Optimization. In: Proceedings of the 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 1998. AIAA Paper 98-4977
    [45] Lyness J. N., Moler C. B.. Numerical Differentiation of Analytic Functions. SIAM Journal on Numerical Analysis, 1967, 4(2): 202~210
    [46] Squire W., Trapp G.. Using Complex Variables to Estimate Derivatives of Real Functions. SIAM Review, 1998, 10(1): 100~112
    [47] Rall Louis B.. Automatic Differentiation: Techniques and Applications. New York: Springer-Verlag, 1981
    [48]张海斌,薛毅.自动微分的基本思想与实现.北京工业大学学报, 2005, 31(3):332~336
    [49] Barthelemy J. F.,Hall L.E.. Automatic Differentiation as a Tool in Engineering Design. Structural Optimization, 1995, 9(2): 76~82
    [50] Lewis Robert Michael. Numerical Computation of Sensitivities and the Adjoint Approach. NASA Langley Research Center, Technical Report: NASA/CR-97-206247, 1997
    [51]颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究.航空计算技术,2005,35(1):1~6
    [52] Hajela P., Bloebaum C.L. and Sobieski J.. Application of Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis. Journal of Aircraft, 1990, 27(12): 1002~1010
    [53] Sobieski J.. Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design: Recent Advances and Results. Journal of Aircraft, 1990, 27(12): 993~1001
    [54] Sobieski J.. Sensitivity of Complex, Internally Coupled Systems. AIAA Journal, 1990, 28(1): 153 ~162
    [55] Renaud, J. E., Gabriele, G. A.. Direct Handling of Equality Constraints in Multi-level Optimization. In: Proceeding of the Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco, California, 1990, 36~43
    [56] Pan J., Diaz A. R.. Some Results in Optimization of Non-Hierarchic Systems. In: Ravani B., editor. Proceeding of the 17th ASME Design Automation Conference: Advances in Design Automation, Montreal, Canada, September 1989. New York: ASME, 1989, DE-Vol 19(2): 15~20
    [57] Renaud J. E., Gabriele Gary A.. Sequential Global Approximation in Non-Hierarchic System Decomposition and Optimization. In: Gabriele Gary A., editor. Proceedings of the 17th ASME Design Automation Conference: Advances in Design Automation, Miami, Florida, September 1991. New York: ASME, 1991, DE-Vol 32(1): 191~200
    [58] Simpson Timothy W., Booker Andrew J. and Ghosh Dipankar et al. Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion. Structural and Multidisciplinary Optimization, 2004, 27(5), 302~313
    [59] Giunta Anthony A., Wojtkiewicz Steven F. Jr. and Eldred Michael S.. Overview of Modern Design of Experiments Methods for Computational Simulations. In: Proceedings of the 41th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2003. AIAA Paper 2003-0649
    [60] Myers, R. H., and Montgomery, D. C., Response Surface Methodology: Process and Product Optimiza-tion Using Designed Experiments, John Wiley & Sons, Inc., New York, NY, 1995
    [61] Simpson Timothy, Dennis Lin and Chen Wei. Sampling Strategies for Computer Experiments: Design and Analysis. Internal Journal Reliability and Application, 2002, 2(3), 209~240
    [62] Mckay M.T., Beckman R.J. and Conover W.J.. A Comparison of Three Methods for Selecting Values of Input Variables in Analysis of Output From a Computer Codes. Technometrics, 1979, 21(2) :239~245
    [63] Jin R., Chen W. and Sudjianto A.. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments. Journal of Statistical Planning and Inference, 2005, 134(1): 268~287
    [64] Sacks J., Schiller S.B. and Welch J.. Designs for Computer Experiments. Technometrics, 1989, 31(1), 41~47
    [65] Johnson M.,Moore L. and Ylvisaker D.. Minimax and Maximin Distance Designs. Journal of Statistical Planning and Inference,1990(2),26: 131~148
    [66]刘锦萼,杨喜寿.概率论与数理统计(第一版).北京:科学出版社,2001
    [67]阎平凡,黄端旭.人工神经网络:模型、分析与应用(第一版).合肥:安徽教育出版社,1993
    [68] Friedman J.H.. Multivariate Adaptive Regression Splines. The Annals of Statistics,1991,19(1): 1~141
    [69]杜元园.基于多元自适应回归样条的民营企业信用评级研究:[硕士学位论文].吉林:吉林大学图书馆,2006
    [70]王洪礼,向建平,葛根.多元自适应样条回归预报浮游植物总量分析.海洋技术,2006,25(3):7~9
    [71]李智慧.基于贝叶斯MARS的入侵检测算法研究:[硕士学位论文].哈尔滨:哈尔滨工程大学图书馆,2007
    [72] Hardy R.L.. Multiquadric Equations of Topography and other Irregular Surface. Journal of Geophysical Research, 1971, 76(8): 1905~1915
    [73] Duchon J.. Spline Minimizing Rotation Invariant Semi-Norm in Sobolev Space. London: Springer-Verlag, 1976.
    [74]吴宗敏.函数的径向基表示.数学进展,1998,27(3):202~208
    [75] Currin C., Mitchell T. and Morris T. et al. Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments. Journal of the American Statistical Association, 1991, 86: 953~963
    [76] Welch W. J., Buck R. J. and Sacks J.. Screening, Predicting, and Computer Experiments. Technometrics, 1992, 34(1): 15~25
    [77]张润楚,王兆军.关于计算机试验的设计理论和数据分析.应用概率统计,1994, 10(4): 420~436
    [78] Sacks J., Welch W. J. and Mitchell T. J. et al. Design and Analysis of Computer Experiments. Statistical Science, 1989, 4(4): 409~435
    [79] Mckay M. T., Beckman R. J. and Conover W. J.. A Comparison of Three Methods For Selecting Values of Input Variables in Analysis of Output From a Computer Codes. Technometrics, 1979, 21(2): 239~245
    [80]张尧庭,方开泰.多元统计分析引论(第一版).北京:科学出版社,1982
    [81] Golinski J.. An Adaptive Optimization System Applied to Machine Synthesis. Mechanism and Machine Theory, 1973, 8(4):419~436
    [82] Kodiyalam Srinivas. Evaluation of Methods for Multidisciplinary Design Optimization (MDO)-Phase I. NASA Langley Research Center, Technical Report: NASA/CR-1998-208716
    [83] Dennis J.E., Lewis Robert Michael. Problem Formulations and Other Optimization Issues In Multidisciplinary Optimization. In: Proceedings of the AIAA/NASA/USAF/ISSMO Symposium on Fluid Dynamics, Colorado Springs, Colorado, June 1994. AIAA Paper 94-2196
    [84] Kodiyalam S., Sobieski J.. Multidisciplinary Design Optimization: Some Formal Methods, Framework Requirements, and Application to Vehicle Design. International Journal of Vehicle Design, 2001, 25(1/2): 3~22
    [85] Braun R.. Collaborative Optimization: An Architecture for Large-scale Distributed Design: [Ph.D. Dissertation]. California: Stanford University, 1996
    [86] Alexandrov N.M., Lewis R.M.. Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design. AIAA Journal, 2002, 40(2):302~309
    [87] Sellar R. S., Batill S. M., and Renaud J. E.. Response Surface Based, Concurrent Subspace Optimization For Multidisciplinary System Design. In: Proceedings of the 34th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 1996. AIAA Paper 96-0714
    [88] Sobieski J., Agte Jeremy S. and Sandusky Robert R. Jr.. Bilevel Integrated System Synthesis. AIAA Journal, 2000, 38(1): 164 ~172
    [89] Sobieski J., Barthelemy J. F. and Riley K.M.. Sensitivity of Optimum Solutions to Problem Parameters, AIAA Journal, 1982, 20(9): 1291~1299
    [90] http://mdob.larc.nasa.gov/mdo.test/class2prob3.html
    [91]张为华,李晓斌.飞行器多学科不确定性设计理论概述.宇航学报,2004,25(6):702~706
    [92]熊雯,黄俊.鲁棒技术在飞机总体设计中应用的新发展.飞机设计,2004,2(4):45~50
    [93] Jin R., Chen W. and Sudjianto, A.. Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propagation for Robust Design. In: Proceeding of SAE Congress, Detroit, Michigan, March 2004
    [94] Gu X., Renaud J.E. and Batill S.M. et al. Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization. Structural and Multidisciplinary Optimization, 2000, 20(3): 190~213
    [95] Padmanabhan Dhanesh. Reliability-based Optimization For Multidisciplinary System Design: [Ph.D. Dissertation]. Indiana: University of Notre Dame, 2003
    [96]董玉革.机械模糊可靠性设计(第一版).北京:机械工业出版社,2001
    [97] Muhanna R. L., Mullen R. L.. Uncertainty in Mechanics Problems-Interval-Based Approach. Journal of Engineering Mechanics, ASCE, 2001, 127(6): 557~566
    [98] Giunta Anthony A., Eldred Michael S. and Swiler Laura P.. Perspectives on Optimization Under Uncertainty: Algorithms and Applications. In: Proceeding of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, September 2004. AIAA Paper 2004-4451
    [99] Du X., Chen W.. Methodology for Uncertainty Propagation and Management in Simulation-Based Systems Design. AIAA Journal, 2000, 38(8): 1471~1478
    [100] DeLaurentis D. A.. A Probabilistic Approach to Aircraft Design Emphasizing Stability and Control Uncertainties: [Ph.D. Dissertation]. Georgia: Georgia Institute of Technology, 1998
    [101] Mantis G. C.. Quantification and Propagation of Disciplinary Uncertainty via Bayesian Statistics: [Ph.D. Dissertation]. Georgia: Georgia Institute of Technology, 2002
    [102]陈立周.稳健设计(第一版).北京:机械工业出版社,2000
    [103] Batill Stephen M., Renaud John E. and Gu Xian Yu. Modeling and Simulation Uncertainty in Multidisciplinary Design Optimization. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, California, September 2000. AIAA Paper 2000-4803
    [104] http://mdob.larc.nasa.gov/mdo.test/class2prob5.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700