用户名: 密码: 验证码:
基于稀疏表示的图像分类与目标跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分类与目标跟踪是计算机视觉分析领域的分支研究方向,在人机互交、智能交通、无人机制导、智能安防等领域均具有重要的应用价值。稀疏表示(SparseRepresentation)理论是一种新兴的信号表示方法,也是一种对哺乳动物大脑皮层编码机制的模拟,近年来在计算机视觉分析领域得到了较为广泛的关注。此方法因使用超完备字典对信号进行分解,所以对信号的误差与噪声比传统方法更稳健。本文分别从基础理论和应用设计两个方面着手,重点对稀疏表示原理、稀疏表示分类器的设计和基于稀疏表示的图像分类、目标跟踪算法的国内外研究进展进行了调研,并在同行最新研究成果的基础上开展了深入研究。具体研究工作可概括如下:
     首先详细介绍了稀疏表示原理的研究意义,认真分析了信号稀疏表示的数学模型、稀疏性的度量方法以及稀疏表示原理在图像分类与目标跟踪中的应用情况。然后,解释了稀疏表示理论的最优解存在性的证明以及求解稀疏表示的贪婪算法与凸松弛方法。对特别是匹配追踪法及其扩展算法进行了详细阐述,另外,介绍了坐标下降法等Lasso问题求解方案,然后,提出了一种核函数非负稀疏表示分类算法以及一种结合判别分析的稀疏分类算法,为稀疏表示的计算机视觉应用奠定了基础。
     研究了基于稀疏表示的场景图像分类算法。首先分析了场景图像的特点,对此类任务的特殊难点进行了阐述。然后对常见的场景图像分类算法的方法和框架进行了探索,分析了这些方法的优点与不足。在以上研究的基础上,提出了一种基于多层核函数稀疏分类与多尺度分块旋转扩展的鲁棒图像分类算法。使用多种尺度的网格对训练图像进行分块,对分块图像进行旋转扩展,由此得到的字典能够近似测试图像局部的旋转扭曲与各种排列组合。为了增加字典类间的稀疏度,改善系统效率,提出了一种字典降维策略;然后通过核函数随机坐标下降(KRCD)方法高效求解稀疏分类中的凸优化问题,进而通过比较层稀疏模型中不同类测试图像的重构误差完成图像分类。此方法仅使用少量样本解决场景图像分类中最具挑战的类间相似性与类内多样性问题,与几类经典方法进行比较,此方法在小样本情况下具备更好的识别效果,对图像旋转或局部扭曲变形等复杂情况具有较好的鲁棒性。
     对目标跟踪算法进行了研究,深入分析了目标跟踪的难点问题,如:目标和背景之间共享相似特征、目标在运动过程中会产生形变、会被遮挡等复杂问题、目标短暂消失等问题等。对常见的目标跟踪框架即卡尔曼滤波与粒子滤波框架进行了研究,对这两种方法各自的优点和缺点进行了比较。针对经典稀疏分类目标跟踪算法中目标模板的建模和更新方式效率低、跟踪性能不可靠等问题,提出了一种基于时空约束与标准对冲的稀疏表示目标跟踪算法。对时空约束原理、目标基、背景基、时序特征池以及两类基更新机制进行了讨论,并提出了时序循环更新方法解决模版更新问题。最终,解释了在标准对冲算法框架下结合稀疏表示分类器实时地求取目标坐标的方法。在实验的基础上,证明此方法比几种经典目标跟踪算法更可靠。
     针对经典目标跟踪算法在光照改变、运动模糊等情况下精度不高,长时间目标跟踪不可避免发生跟踪丢失等问题,提出了一种基于核函数并行稀疏分类与稀疏分类器网格的合作目标跟踪算法。该算法也是在标准对冲框架下,结合使用核函数并行稀疏表示分类方法、自适应字典更新方法以及稀疏分类器网格等技术,保证目标跟踪算法在噪声、遮挡等恶劣环境下进行长时间跟踪的可靠性。由于跟踪算法对算法实时性的要求较高,一般的坐标下降方法求解Lasso问题速度无法满足要求,本文提出使用并行化的核函数随机坐标下降算法来高效求解稀疏系数,充分利用现代计算机多核处理器的功能解决效率问题;与其它基于稀疏表示的目标跟踪算法相似,分类器求取的分类信心值可等价转化为各粒子的代价值。然后,为了避免模板漂移问题,解释了目标字典和背景字典的在线更新方法;为了解决永久性跟踪失败的情况,设计了稀疏分类器网格的方法来粗略检测目标状态,并在目标出现之后重启主跟踪器。实验结果证明,本算法的各部分都能增强跟踪效果,相比其它几种经典目标跟踪算法,本算法具有更好的实时性和可靠性。
Sparse representation is a kind of data representation method which similar tohuman cortex, it is a fundamental theory for many signal processing problems, such ascomputer vision, audio signal analysis, and blind signal processing. Among manyresearch fields, the computer vision is well known for its tight connection to sparserepresentation, and it has drawn a lot of interests of researchers recently.
     Image classification and target tracking are branches of computer vision analysis;they have been used to construct many systems such as human-computer interface,intelligent transpotation, UAV navigation, intelligent security and shown greatimportance of practical value. Sparse representation is a newly devoleped signalrepresentation theory, it simulates data representation function of manmal cortex. Inrecent years, it has been wildly used in computer vision analysis applications. Theadvantage of sparse representation theory comparing to common methods for signalprocess is that it is more robust to errors and noises. This thesis mainly focuses on thetheory of sparse representation and its applications such as sparse representationclassifier,image classification and target tracking. Related work of other researchers isintroduced, based on those research results, further investigation are also carried out.
     The purpose of researching sparse representation theory is introduced; relatedtheories and applications are summarized; mathematical models of sparse representationfor signals, the methods for measuring sparsity and sparse representation principles forimage classification and target tracking are discussed in this thesis. Then, the existenceof optimal solution of sparse representation is proved; greedy methods and convexrelaxation methods are introduced. Furthermore, coordinate decent for solving Lassoproblems are introduced as well; a kernel non-negative sparse representationclassification method and a discriminative analysis based sparse representation methodare proposed, those two methods could be the fundamental basis for many sparserepresentation problems.
     The sparse representation based scene image classification method is an importantpart of this thesis. The specialty of scene images and a number of difficulties areintroduced. Frameworks of common scene classification methods, their merit anddemerit are discussed as well. Based on these discussions, a hierarchical kernel sparserepresentation classification and multi-scale block rotation-extension (HKSRC-MSBRE) based robust image recognition method is proposed to deal with the randompermutations and combinations of local images in image recognition tasks. At first, themulti-scale grids are used to cut the training image into pieces, and thenrotation-extended methods are applied to create a dictionary which is adapted to randompermutations and combinations of local images in test sets. To enhance the sparsity ofthe dictionary and increase the efficiency of the system, a new strategy is proposed toreduce the dimensions of the dictionary; then, a kernel random coordinate descentmethod is proposed to solve the convex optimization problem in the KSRC; at last, themethod for calculating the class label of each image is proposed. The experimentalresults show the proposed method has robust performances when dealing with randompermutations and combinations of local images, and it has outperformed otherstate-of-art image recognition methods.
     The sparse representation based target tracking method is an important part of thisthesis as well. In order to fully explore this problem, many tough situations arediscussed: such as target and its background sharing similar patterns, deformations andocclusions. Common target tracking framework such as Kalman filter and Particle filterare studied. By casting the tracking problem as a kind of sparse approximation problem,a novel algorithm based on STC and SRC is proposed for object tracking in complicatedscenes. Space constraint is given to ensure background patterns in the template havesmall weights, time constraint is given to handle the target appearance variances. Sparserepresentation classification method for tracking have been proposed to calculate lossvalues and experimental results showed that time-space constraints and sparserepresentation classification method have better results than standard l1-loss method.Proposed tracking algorithm outperforms better than other state-of-art trackingalgorithms in many difficult situations.
     At last, in order to solve tough problems such as varying lighting conditions,motion blurring and tracking failure in long-term tracking, a kernel parallel sparserepresentation classification and sparse classifier girds based cooperative target trackingmethod is proposed in this thesis. This tracking method is under normalhedgeframework, it combines a few novel technics such as kernel parallel sparserepresentation classification, automatic dictionary updating and sparse classifier grids,and those technics ensure the reliabilities for long term tracking. Unlike other computervision applications, tracking is a real-time task, and its algorithm must be highlyefficient. The proposed parallel method could fully utilize the multi-core CPU, thus solve the efficiency problem. Similar to other sparse representation based trackingmethods, classification confidence values equal to loss values; furthermore, in order toavoid drifting problems, the online updating method of target dictionary andbackground dictionary is proposed as well. The sparse classifier grids are designed toroughly detect the target after it reappears and reboot the main tracker. Experimentalresults show each part of proposed method could enhance the tracking performance,comparing to other state-of-art methods, the proposed method offers better real-timeperformance and reliability.
引文
[1] G. K. Wallace. The JPEG still picture compression standard[J]. Communications of the.ACM,1991,34(4):30-44.
    [2] D. S. Taubman, M. W. Marcellin, M. Rabbani. JPEG2000: Image compression fundamentals,standards and practice[J]. Journal of Electronic Imaging,2002,11(2):286-287.
    [3] A. K. Jain, R. P. W. Duin, J. C. Mao. Statistical pattern recognition: a review[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
    [4] K. Huang, S.Aviyente. Sparse representation for signal classification[J]. Advances in neuralinformation processing,2007.
    [5]张莉,周伟达.核聚类算法[J].计算机学报,2002,25(6):587-590.
    [6] C. C. Kang, S. C. Liao, S. M. Xiang, C. H. Pan. Kernel sparse representation with localpatterns for face recognition[C]. Image Processing (ICIP),201118th IEEE InternationalConference on,2011:3009-3012.
    [7] M. P. Yong, S. Yamane. Sparse Population Coding of Faces in the Inferotemporal Cortex[J].Science,1992,256(1):1327-1330.
    [8] S. G. Mallat, Z. F. Zhang. Matching Pursuits With Time-Frequency Dictionaries[J], SignalProcessing, IEEE Transactions on,1993,41(12):3397-3415.
    [9] S. B. Chen, D. Donoho. Basis pursuit In Signals, Systems and Computers[C], ConferenceRecord of the Twenty-Eighth Asilomar Conference on,1994:41-44vol.1.
    [10]汪胜前.图像的小波稀疏表示及收缩去噪算法[D].上海交通大学博士论文,2002.
    [11] P. P. Petrushev, A. Cohen, H. Xu, R. A. DeVore. Nonlinear Approximation and the Space Bv[J]. American Journal of Mathematics,1999,121(3):587-628.
    [12] X. Mei, H. B. Ling. Robust Visual Tracking and Vehicle Classification via SparseRepresentation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2011,33(11):2259-2272.
    [13] Z. J. Han, J. B. Jiao, B. C. Zhang, Q. X. Ye, J. Z. Liu. Visual object tracking via sample-basedadaptive sparse representation (AdaSR)[J]. Pattern Recognition,2011,44(9):2170-2183.
    [14] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma. Robust Face Recognition via SparseRepresentation[J]. Pattern Analysis and Machine Intelligence,IEEE Transactions on,2009,31(2):210-227.
    [15]宋相法,焦李成.基于稀疏表示的多标记学习算法术[J].模式识别与人工智能,2012,25(1):124-129.
    [16] M. Jaward, D. BULL, N. Canagarajah. Sequential monte carlo methods for contour tracking ofcontaminant clouds[J]. Signal Processing,2010,90(1):249-260.
    [17] Q. Chen, Q. S. Sun, P. A. Heng, D. S. Xia. Two-stage object tracking method based on kerneland active contour[J]. Circuits and Systems for Video Technology, IEEE Transactions on,2010,20(4):605-609.
    [18] L. Jing, P. Vadakkepat. Interacting MCMC particle filter for tracking maneuvering target[J].Digital Signal Processing,2010,20(2):561-574.
    [19] Q. Wang, F. Chen, W. L. Xu, M. H. Yang. Online Discriminative Object Tracking with LocalSparse Representation[C]. Applications of Computer Vision (WACV),2012IEEE Workshopon,2012:425-432.
    [20] R. Rigamonti, M. A. Brown, V. Lepetit. Are sparse representations really relevant for imageclassification[C]. Computer Vision and Pattern Recognition (CVPR),2011IEEE Conferenceon,2011:1545-1552.
    [21] L. Zhang, M. Yang, X. C. Feng. Sparse representation or collaborative representation:Whichhelps face recognition[C]. Computer Vision (ICCV),2011IEEE International Conference on,2011:471-478.
    [22] S. H. Gao, I. W. H. Tsang, L. T. Chia. Kernel Sparse Representation for Image Classificationand Face Recognition[J]. Lecture Notes in Computer Science,2010,63(14):1-14.
    [23] P. R. Hill, D. R. Bull. Sub-pixel motion estimation using kernel methods Signal [J]. SignalProcessing: Image Communication,2010,25(4):268–275.
    [24] C. Shen, J. Kim, H. Wang. Generalized kernel-based visual tracking, Circuits and Systems forVideo Technology[J]. IEEE Transactions on,2010,20(1):119–130.
    [25] Z. Zivkovic, A. T. Cemgil, B. Krse. Approximate Bayesian Methods For Kernel-Based ObjectTracking[J]. Computer Vision and Image Understanding,2009,113(6):743–749.
    [26] C. Y. Chung, H. Chen. Video object extraction via mrf-based contour tracking Circuits andSystems for Video Technology[J]. IEEE Transactions on,2010,20(1):149–155.
    [27] J. Gai, R. L. Stevenson. Robust contour tracking based on a coupling between geodesic activecontours and conditional random fields[J]. Journal of Visual Communication and ImageRepresentation,2011,22(1):33–47.
    [28] M. S. Choi, W.-Y. Kim. A novel two stage template matching method for rotation andillumination invariance[J]. Pattern Recog-nition,2002,35(1):119–129.
    [29] J. Pan, B. Hu, J. Q. Zhang. Robust and accurate object tracking under various types ofocclusions[J]. Circuits and Systems for Video Technology, IEEE Transactions on,2008,18(2):223–236.
    [30] H. T. Nguyen, A. W. M. Smeulders. Fast occluded object tracking by a robust appearancefilter[J]. IEEE Trans. Pattern Anal. Mach. Intell,2001,26(8):1099–1104.
    [31] C. Gentile, O. Camps, M. Sznaier. Segmentation for robust tracking in the presence of severeocclusion[J]. IEEE Trans. Image Process,2004,13(2):166–178.
    [32] N. Bouaynaya, D. Schonfeld. On the optimality of motion based particle filter[J]. Circuits andSystems for Video Technology, IEEE Transactions on,2009,19(7):1068–1072.
    [33] T. Brox, B. Rosenhahn, J. Gall, D. Cremers. Combined region and motion-based3d trackingof rigid and articulated objects[J]. Pattern Analysis and Machine Intelligence, IEEETransactions on,2010,32(3):402–415.
    [34] N. Tarannum, M. R. Pickering, M. R. Frater. Automatic, robust global motion estimation usingclustering signal[J]. Processing: Image Communication,2011,26(2):61–74.
    [35] H. Medeiros, J. Park, A. Kak. Distributed object tracking using a cluster-based kalman filter inwireless camera networks[J]. Selected Topics in Signal Processing, IEEE Journal of,2008,2(4):448–463.
    [36] L. Jing, P. Vadakkepat. Interacting mcmc particle filter for tracking maneuvering target[J].Digital Signal Processing,2010,20(2):561–574.
    [37] J. Zhao, Z. Li. Particle filter based on particle swarm optimization resampling for visiontracking[J]. Expert Systems with Applications,2010,37(12):8910–8914.
    [38] Z. Khan, I. Gu, A. Backhouse. Robust visual object tracking using multi-mode anisotropicmean shift and particle filters[J]. Circuits and Systems for Video Technology, IEEETransactions on,2011,21(1):74–87.
    [39] D.V. Lindley. The use of prior probability distributions in statistical inference and decision.Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability[J].Berkeley, CA,1961:453-468.
    [40] J. M. Bernardo, A. F. M. Smith. Bayesian Theory[M]. New York: Wiley,1996.
    [41] E. Parzen. On estimation of a probability density function and mode[J]. Annals ofMathematical Statistics,1962,33(3):1065-1076.
    [42] E. A. Patrick, F. P. Fischer. A generalized k-nearest neighbor rule[J]. Information and Control,1970,16(2):128-152.
    [43] M. L. Minsdy, S.A. Papert. Perceptrons: An introdunction to computational geometry[M].Cambridge, MA: MIT Press,1969.
    [44] V. Cherkassky, F. Mulier. Learning from data: concepts, theory and methods[M]. New York:Wiley,1998.
    [45] C. J. C. Burges. A tutorial on support vector machine for pattern recognition[J]. Data MiningKnowl. Discovery,1998,2(2):121-167.
    [46] N. Cristianini, J. S. Taylor. An introduction to support vector machines and other kernel-basedlearning methods[M]. UK: Cambridge University Press,2000.
    [47] A. K. Jain, J. Mao, K. M. Mohiuddin. Artificial neural networks: a tutorial[J]. IEEE Computer,1996,29(3):31-44.
    [48] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data viathe EM Algorithm[J]. Journal of the Royal Statistical Society, Series B (Methodological),1977,39(1):1-38.
    [49] R. Xu, D. Wunsch. Survey of Clustering Algorithms[J]. IEEE Transactions on NeuralNetworks,2005,16(3):645-678.
    [50] D. E. Gustafson, W.C. Kessel. Fuzzy clustering with a fuzzy covariance matrix[C].Proceedings of IEEE Conference Decision Control, San Diego, CA,1979:761-776.
    [51] Y. Freund, R. E. Schapire, N. Abe. A short introduction to boosting[J]. Journal-JapaneseSociety For Artificial Intelligence,1999,14(1612):771-780.
    [52] P. K. Mallapragada, R. Jin, A. K. Jain, Y. Liu. SemiBoost: Boosting for Semi-SupervisedLearning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(11):2000-2014.
    [53] M. Belkin, P. Niyogi, V. Sindhwani. Manifold Regularization: A geometric framework forlearning from labeled and unlabeled examples[J]. Journal of Machine Learning Research,2006,7:2399-2434.
    [54] T. Joachims. Transductive Inference for Text Classification using Support VectorMachines[C]. Proceedings of the16th International Conference on Machine Learning, Bled,Slovenia,1999:200-209.
    [55] G. D. Guo, C.R. Dyer. Learning from examples in the small sample case: face expressionrecognition[J]. IEEE Transactions on Systems, Man, and Cybernetics,2005,35(3):477–488.
    [56] W. M. Hu, O. Wu, Z. Y. Chen, Z. Y. Fu, S. Maybank. Recognition of Pornographic WebPages by Classifying Texts and Images[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2007,29(6):1019-1034.
    [57] Y. Hashim, S. A. Khan. Trained table based recognition&classification (TTRC) approach inhuman motion reconstruction&analysis[C]. InEmerging Technologies,2008. ICET2008.4thIEEE International Conference on,2008:217-222.
    [58] X. J. Zhu, J. Yang, A. Waibel. Segmenting hands of arbitrary color[C]. In Automatic Face andGesture Recognition,2000. Proceedings. Fourth IEEE International Conference on,2000:446-453.
    [59] A. L. M. Levada, N. D. A. Mascarenhas, A. Tannús. On the asymptotic variances of GaussianMarkov random field model hyperparameters in stochastic image modeling[C]. In PatternRecognition,2008. ICPR2008.19th International Conference on,2008:1-4.
    [60] R. Paget, I. D. Longstaff. Texture synthesis and unsupervised recognition with anonparametric multiscale markov random field model[C]. In Pattern Recognition,1998.Proceedings. Fourteenth International Conference on,1998:1068-1070.
    [61] P. Vácha, M. Haindl. Illumination invariants based on markov random fields[C]. In PatternRecognition,2008. ICPR2008.19th International Conference on,2008:1-4.
    [62] J. Flanagan. Adaptive dialog based upon multimodal language acquisition[C]. In Proceedingsof the4th IEEE International Conference on Multimodal Interfaces, IEEE Computer Society,2002:135.
    [63] C. Vogler, D. Metaxas. Adapting hidden Markov models for ASL recognition by usingthree-dimensional computer vision methods[C]. InSystems, Man, and Cybernetics,1997.Computational Cybernetics and Simulation.1997IEEE International Conference on,1997:156-161.
    [64] I. Astrov, S. Tatarly. Fingerprint recognition for varied degrees of image distortion usingthree-rate hybrid Kohonen neural network[C]. In Audio, Language and Image Processing,2008. ICALIP2008. International Conference on,2008:363-369.
    [65] I. Astrov, S. Tatarly, E. Rustern. Low-quality fingerprint recognition using three-rate hybridKohonen neural network[C]. In Information, Communications&Signal Processing,20076thInternational Conference on,2007:1-5.
    [66] H. C. Choi, S. Y. Kim, S. H. Oh, S.Y. Oh, S. Y. Cho. Pose invariant face recognition with3Dmorphable model and neural network[C]. In Neural Networks,2008. IJCNN2008.(IEEEWorld Congress on Computational Intelligence). IEEE International Joint Conference on,2008:4131-4136.
    [67] O. Choi, I. S. Kweon. Reducing ambiguity in feature point matching by preserving localgeometric consistency[C]. In Image Processing,2008. ICIP2008.15th IEEE InternationalConference on,2008:293-296.
    [68] T. Kondo. Feedback GMDH-type neural network using prediction error criterion and itsapplication to3-dimensional medical image recognition[C]. InSICE Annual Conference,2008:1050-1055.
    [69] N. Fang. The study of electronic image recognition system using fuzzy sets theory[C].In Fuzzy Systems and Knowledge Discovery,2007. FSKD2007. Fourth InternationalConference on,2007:176-180.
    [70] J. Zhige, X. L. Liu. Modeling Spatial Relationships for Remote Sensing Image ProcessingBased on Fuzzy Set Theory[C]. In Computer Science and Software Engineering,2008International Conference on,2008:1101-1104.
    [71] U. Loerch, H. W. Guesgen. Qualitative spatial reasoning under uncertainty in geographicalinformation systems[C]. In Systems, Man, and Cybernetics,1997. Computational Cyberneticsand Simulation.1997IEEE International Conference on,1997:2169-2174.
    [72] L. Wendling, J. Desachy, M. Zehana. Fuzzy segmentation and sample-based objectrecognition in remote sensing images[C]. In Geoscience and Remote Sensing Symposium,1994. IGARSS'94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysisand Interpretation, International,1994:882-884.
    [73] K. Ikeuchi, T. Shakunaga, M. D. Wheeler, T. Yamazaki. Invariant histograms and deformabletemplate matching for SAR target recognition[C]. In Computer Vision and PatternRecognition,1996. Proceedings CVPR'96,1996IEEE Computer Society Conference on,1996:100-105.
    [74] L. Prasad, S. S. Iyengar. High performance algorithms for object recognition problem bymultiresolution template matching[C]. In Tools with Artificial Intelligence,1995. Proceedings.,Seventh International Conference on,1995:62-365.
    [75] R. E. Suri. A biologically-inspired concept for active image recognition[C]. In Integration ofKnowledge Intensive Multi-Agent Systems,2003. International Conference on,2002:379-384.
    [76] E. L. Wright, J. Northern. Design of a Configurable ATR System Using MATLAB[C].In Region5Conference,2008IEEE,2008:1-5.
    [77] M. Yagi, T. Shibata. An associative-processor-based mixed signal system for robust grayscaleimage recognition[C]. In Circuits and Systems,2002. ISCAS2002. IEEE InternationalSymposium on,2002: V-137.
    [78] Y. Z. Zhan, J. F. Ye, D. J. Niu, C. Peng. Facial expression recognition based on Gabor wavelettransformation and elastic templates matching[J]. International Journal of Image and Graphics,2006,6(1):125-138.
    [79] M. F. Abdelkader, R. Chellappa., Q. F. Zheng, A. L. Chan. Integrated motion detection andtracking for visual surveillance[C]. Proceedings of the Fourth IEEE International Conferenceon Computer Vision System (ICVS). New York: IEEE,2006:28.
    [80] R. V. Babu, P. Patrick, B. Patrick. Robust tracking with motion estimation and localKernel-based color modeling[J]. Image Vision Computing.2007,25(8):1205-1216.
    [81] A. Elgammal, R. Duraiswami, D. Harwood, L. S. Davis. Background and foregroundmodeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE.2002,90(7):1151-1163.
    [82] C. Bahlmann, Y. Zhu, V. Ramesh, M. Pellkofer, T. Koehler. A system for traffic signdetection, tracking, and recognition using color, shape, and motion information.[C].In Intelligent Vehicles Symposium,2005. Proceedings. IEEE,2005:255-260.
    [83] C. E. Smith, C. A. Richards, S. A. Brandt, N. P. Papanikolopoulos. Visual tracking forintelligent vehicle-highway systems[J]. Vehicular Technology, IEEE Transactions on,1996,45(4):744-759.
    [84] W. M. Hu, X. J. Xiao, D. Xie, T. N. Tan, S. Maybank. Traffic accident prediction using3-Dmodel-based vehicle tracking[J]. Vehicular Technology, IEEE Transactions on,2004,53(3):677-694.
    [85] K. N. Kim, R. S. Ramakrishna. Vision-based eye-gaze tracking for human computerinterface[C]. In Systems, Man, and Cybernetics,1999. IEEE SMC'99Conference Proceedings.1999IEEE International Conference on,1999:324-329.
    [86] R. Sharma, V. I. Pavlovic, T. S. Huang. Toward multimodal human-computer interface[J].Proceedings of the IEEE,1998,86(5):853-869.
    [87] B. Noureddin, P. D. Lawrence, C. F. Man. A non-contact device for tracking gaze in a humancomputer interface[J]. Computer Vision and Image Understanding,2005,98(1):52-82.
    [88] P. Benavidez, M. Jamshidi. Mobile robot navigation and target tracking system[J]. In Systemof Systems Engineering (SoSE),20116th International Conference on,2011:299-304.
    [89] T. Chiku, J. Miura, J. Satake. Stereo-based road boundary tracking for mobile robotnavigation[C]. In Robotics and Biomimetics (ROBIO),2011IEEE International Conferenceon,2011:331-336.
    [90] C. T. Lam, C. T. Chou, K. H. Chiang, L. C. Fu. Human-Centered Robot Navigation—Towardsa Harmoniously Human-Robot Coexisting Environment[J]. Robotics, IEEE Transactions on,2011,27(1):99-112.
    [91] A. Prusak, O. Melnychuk, H. Roth, I. Schiller, R. Koch. Pose estimation and map buildingwith a Time-Of-Flight-camera for robot navigation[J]. International Journal of IntelligentSystems Technologies and Applications,2008,5(3):355-364.
    [92] P. Pathirana, A. Savkin, S. Nahavandi. Precision missile guidance for systems intercepting atsmall attack angles: a H tracking approach[C]. In Proceedings of the InternationalConference on Computational Intelligence, Robotics and Autonomous Systems: CIRAS2003.CIRAS Organising Committee,2003.
    [93] A. Watson, L. Mihaylova, D. Vorley. Bearings Only Versus Bearings and Extent Tracking forMissile Guidance Systems Utilising Particle Methods[C]. In Proc. of the MCM ITPConference,2010:907-912.
    [94] Z. J. Han, J. B. Jiao, B. C. Zhang, Q. X. Ye, J. Z. Liu. Visual object tracking via sample-basedadaptive sparse representation (AdaSR)[J]. Pattern Recognition.2011,44(9):2170-2183.
    [95] P. O. Hoyer. Modeling receptive fields with non-negative sparse coding [J]. Neucomputing,2003:547-552.
    [96] C. J. Zhang, J. Liu, Q. Tian, C. S. Xu, H. Q. Lu, S. D. Ma. Image classification bynon-negative sparse coding, low-rank and sparse decomposition[C]. Computer Vision andPattern Recognition (CVPR),2011IEEE Conference on.2011:20-25.
    [97] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems[J]. CORE Discussion Paper,2010:2.
    [98] C. C. Kang, S. C. Liao, S. M. Xiang, C. H. Pan. Kernel sparse representation with localpatterns for face recognition[C]. Image Processing (ICIP),201118th IEEE InternationalConference on,2011:3009-3012.
    [99] S. H. Gao, I. W. H. Tsang, L. T. Chia. Kernel Sparse Representation for Image Classificationand Face Recognition [J]. Lecture Notes in Computer Science,2010,63(14):1-14.
    [100]朱明清,王智灵,陈宗海.基于灰色预测模型和粒子滤波的视觉目标跟踪算法[J].控制与决策,2012,27(1):53-57.
    [101] W. E. Vinje, J. L. Gallant. Sparse coding and decorrelation in primary visual cortex duringnatural vision[J]. Science,2000,287(5456):1273-1276.
    [102] B. A. Olshausen, D. J. Field. Sparse coding of sensory inputs[J]. Current Opinion inNeurobiology,2004,14(4):481-487.
    [103] A Hyv rinen, P. O. Hoyer. A two-layer sparse coding model learns simple and complex cellreceptive fields and topography[J]. Vision Research,2001,41(9):2413-2423.
    [104] P. O. Hoyer. Modeling receptive fields with non-negative sparse coding[J]. Neucomputing,2003:547-552.
    [105] J. L. Starck, E. J. Candes, D.L. Donoho. The curvelet transform for image denoising[J]. IEEETransactions on Image Processing.2002,11(6):670-684.
    [106] E. L. Pennec, S. Mallat. Sparse geometric image representations with bandelets[J]. IEEETransactions on Image Processing.2005,14(4):423-438.
    [107] M. N. Do, M. Vetterli. The contourlet transform: An efficient directional multiresolutionimage representation[J]. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [108] E. J. Candes. Ridgelets: theory and applications[D]. PhD dissertation, Stanford University,1998.
    [109] D. L. Donoho, M. Elad. Optimally sparse representation in general (non-orthogonal)dictionaries via L1minimization[C]. Proceedings of the National Academy of Sciences of theUnited States of America,2003,100(5):2197-2202.
    [110] E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: Universalencoding strategies[J]. IEEE Transaction on Information Theory.2006,52(12):5406-5425.
    [111] Temlyakov. Greedy algorithms and m-term approximation with regard to redundantdictionaries[J]. Journal of Approximation Theory,1999,98(1):117-145.
    [112] J. A. Tropp, A. C. Gilbert. Signal recovery from random measuremets via orthogonalmatching pursuit[J]. IEEE Transaction on Informaion Theory.2007,53(12):4655-4666.
    [113] D. L. Donoho, Y. Tsaig, I. Drori, J.-L.Starck. Sparse solution of underdetermined linearequations by stagewise Orthogonal Matching Pursuit[J]. IEEE Trans. Inf. Theory,2012,58(2):1094-1121.
    [114] N. Karmarkar. A New Polynomial Time Algorithm for Linear Progrmming[J]. Combinatorica,1984,4(4):373-395.
    [115] R. Tibshirani. Regression shrinkage and selection via the lasso[J]. Journal of the RoyalStatistical Society. Series B (Methodological),1996:267-288.
    [116] W. J. Fu. Penalized regressions: the bridge versus the lasso[J]. Journal of Computational andGraphical Statistics,1998,7(3):397-416.
    [117] J. Friedman, T. Hastie, H. Hoefling. Pathwise coordianate optimization[J]. Annals of AppliedStatistics,2007,1(2):302-332.
    [118] A. Genkin, D. D. Lewis, D. Madigan. Large-scale bayesian logistic regression for textcategorization[J]. Technometrics,2007,49(3):291-304.
    [119] M. Yuan, Y. Lin. Model selection and estimation in regression with grouped variables[J].Journal of the Royal Society Series B,2006,68(1):49-67.
    [120] Y. Y. Li, S. Osher. Coordinate descent optimization for L1minimization with application tocompressed sensing; a greedy algorithm[J]. Inverse Problems and Imaging,2009,3(3):487-503.
    [121] H. Li, C. Shen, Q. Shi. Real-time visual tracking using compressive sensing[C]. In ComputerVision and Pattern Recognition (CVPR),2011IEEE Conference on,2011,20(25):1305-1312.
    [122]蔺海峰,马宇峰,宋涛.基于SIFT特征目标跟踪算法研究[J].自动化学报,2010:1204-1208.
    [123] G. D. Guo, S. Z. Li, K. Chan. Face recognition by support vector machines[C]. AutomaticFace and Gesture Recognition,2000.Proceedings.Fourth IEEE International Conference on,2000:196-201.
    [124]李红伟,王俊,王海涛.一种基于差分演化的粒子滤波算法[J].电子与信息学报,2011,7(33):1639-1643.
    [125] F. F. Li, R. VanRullen, C. Koch, P. Perona. Rapid natural scene categorization in the nearabsence of attention[J]. Proceedings of the National Academy of Sciences,2002,99(14):9596-9601.
    [126] Q. Pedro, M. Florent, J-M. Odobez, G. P Daniel, T. Tuytelaars, V. G. Luc. Modeling sceneswith local descriptors and latent aspects[C]. In Computer Vision,2005. ICCV2005. TenthIEEE International Conference on,2005:883-890.
    [127] V. Aditya, M. Figueiredo, A. Jain, J. Z. Hong. Content-based hierarchical classification ofvacation images[C]. In Multimedia Computing and Systems,1999. IEEE InternationalConference on,1999:518-523.
    [128]殷飞,焦李成.基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别[J].模式识别与人工智能.2012,25(1):89-95.
    [129] S. H. Gao, I. W. Tsang, L. Chia. Kernel Sparse Representation for Image Classification andFace Recognition[J]. Lecture Notes in Computer Science,2010,63(14):1-14.
    [130] N. Yurii. Efficiency of coordinate descent methods on huge-scale optimizationproblems[J]. CORE Discussion Paper.2010,2.
    [131]张艳宁,郑江宾,王晓红.一种有效的遥感图像目标识别方法[J].信号处理,2002,18(1):1-4.
    [132] D. W. Aha, D. Kibler, M. K. Albert. Instance-based learning algorithms[J]. Machine learning,1991,6(1):37-66.
    [133] Y. Chen, Y. Rui, Huang T. S. Multicue HMM-UKF for real-time contour tracking[J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2006,28(9):1525-1529.
    [134] S. Q. Hu, G. Z. Liang, Z. L. Jing. Robust Object Tracking Algorithm in NaturalEnvironments[C]. Proceedings of International Conference on Natural Computation. Xi'an,China: Springer,2006:516-525.
    [135] A. G. A. Perera, C. Srinivas, A. Hoogs, G. W. Brooksby,W. Glen, W. S. Hu. Multi-ObjectTracking Through Simultaneous Long Occlusions and Split-Merge Conditions[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York:IEEE,2006:666-673.
    [136] H. Li, C. Shen, Q. Shi. Real-time visual tracking using compressive sensing[C]. in ComputerVision and Pattern Recognition (CVPR),2011IEEE Conference on.2011:1305-1312.
    [137] F. Chen, Q. Wang, S. Wang, W. Zhang, W. Xu. Object tracking via appearance modeling andsparse representation[J]. Image and Vision Computing. vol.2011,29(11):787-796.
    [138] Y. C. Pati, R. Rezaiifar, Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad. Orthogonal matchingpursuit: Recursive function approximation with applications to wavelet decomposition[C]. inProceedings of the27th Annual Asilomar Conference on Signals, Systems, and Computers.1993,[9]:40-44.
    [139] Y. Rui, Y. Q. Chen. Better proposal distributions: Object tracking using unscented particlefilter[C]. Conf on Computer Vision and Pattern Recognition. Hawaii,2001:786-793.
    [140] M. Isard, A. Blake. Condensation-conditional density propagation for visual tracking[J]. Int Jof Computer Vision,1998,29(1):5-28.
    [141]龚俊亮,何昕,魏仲慧,郭敬明.采用改进辅助粒子滤波的红外多目标跟踪[J].光学精密工程,2012,2:413-421.
    [142]吴川,杨冬,郝志成.基于粒子滤波的彩色图像跟踪[J].光学精密工程,2009,17(10):2542-2547.
    [143] M. Andriluka, S. Roth, B. Schiele. People-tracking-bydetection andpeople-detection-by-tracking[C]. In Computer Vision and Pattern Recognition,2008. IEEEConference on,2008:1-8.
    [144] P. Roth, S. Sternig, H. Grabner, H. Bischof. Classifier grids for robust adaptive objectdetection[C]. in Computer Vision and Pattern Recognition,2009. IEEE Conference on,2009.
    [145] J. K. Bradley, A. Kyrola, D. Bickson, C. Guestrin. Parallel coordinate descent for1-regularized loss minimization[C]. Arxiv preprint arXiv:1105.5379,2011.
    [146] K. Chaudhuri, Y. Freund, D. Hsu. A parameter-free hedging algorithm[J]. Advances in NeuralInformation Processing Systems,2009:297-305.
    [147] Y. Li, H. Ai, T. Yamashita, S. Lao, M. Kawade. Tracking in low frame rate video: A cascadeparticle filter with discriminative observers of different life spans[J]. Pattern Analysis andMachine Intelligence, IEEE Transactions on,2008,30(10):1728–1740.
    [148] Y. Rathi, N. Vaswani, A. Tannenbaum, A. Yezzi. Tracking deforming objects using particlefilter for geometric active contours[J]. Pattern Analysis and Machine Intelligence, IEEETransactions on,2007,29(8):1470–1475.
    [149] R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification (2nd Ed.)[M]. New York: Wiley,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700