用户名: 密码: 验证码:
近临界水对块状油页岩中有机质的提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩是一种含有有机质的沉积岩,可以通过干馏制取页岩油,属于非常规油气资源。油页岩资源在地球上储量非常丰富,折算成页岩油的储量可达目前石油探明储量的3倍以上。我国页岩油储量仅次于美国列在世界第二位,有非常大的开发前景。
     油页岩资源的原位开采方法具有无需采矿、可开发较深层与高厚度的资源、产油率高、占地面积少和环境污染低等优点。目前诸多国家与大型能源公司都在积极研发各种地下原位开采技术。然而我国油页岩资源大多品位低、埋藏深,超过300m深的油页岩资源占有相当大的比例。根据传统的油页岩原位干馏技术,尚不能进行开发利用。
     针对我国油页岩资源埋藏深、品位低的情况,我们提出了利用近临界水作为热传导介质和提取剂对地下油页岩资源进行原位开采的思想。本文利用高温高压反应釜研究了近临界水对大尺寸油页岩块的提取效果,考察了近临界水的提取条件、油页岩样品的质地、尺寸等因素对近临界水提取油页岩内部有机质的影响。分析了近临界水提取物的组成以及油页岩基质性状在提取过程中的变化。证明了近临界水法提取块状油页岩中有机质的可行性,为近临界水法原位提取地下油页岩的研究提供了一定的实验基础和理论依据。主要研究内容及结果如下:
     (一)研究了260℃的低温近临界水对油页岩内部原有沥青化合物的萃取情况。发现在较低温度下,升高体系压强可以增强近临界水对块状油页岩的渗透作用,从而促进对有机质的提取。
     萃取沥青的组成非常复杂,除了含有大量烃类物质外还存在一些环酮、茚酮、噻吩、酚类等杂原子和芳香族化合物,且其中杂原子化合物含量要比NMP-CS2混合溶剂萃取沥青中的含量高。
     (二)通过对不同温度下萃取沥青的气质分析发现,升高萃取温度可以提高近临界水对油页岩内部沥青的提取能力,且获得了更多的小分子化合物。说明一些较大分子量的有机物在温度较高的近临界水中更容易转化成小分子。当提取温度高于330℃时,近临界水可以使油页岩内部的干酪根有机质分解成沥青化合物并提取出来。当近临界水的温度升至350℃时,对油页岩内部干酪根的提取效率有非常显著的提高,并且可以获得比365℃近临界水条件下更高的提取率。
     (三)350℃近临界水提取出的干酪根分解沥青主要由正构烷烃、烯烃、类异戊二烯烷烃、直链的2-酮和一元羧酸组成,芳香类化合物含量相对较低。而在油页岩残渣内的残余有机质中含有较多的芳香化合物。反映出近临界水对脂肪族化合物的提取更据有倾向性。
     (四)对不同尺寸的油页岩样品进行提取实验发现,当提取时间达到20h左右时,沥青的提取率几乎不再受油页岩样品尺寸影响。这是由于油页岩内部干酪根有机质在近临界水的作用下发生溶胀与分解,体积增大,产生的应力使块状油页岩样品在垂直断面上出现了许多沿着页岩层理方向的裂缝。另外,由于内部有机质的释放,油页岩样品表面与内部出现了许多毛细孔隙,并且随着提取时间的增加孔隙现象会越发显著。
     油页岩块上这些裂缝与孔隙等传质通道的形成,大大提高了近临界水对块状油页岩内部有机质的提取效率。而对大尺寸油页岩内部干酪根有机质提取的可行性也为近临界水的地下油页岩原位提取设想提供了一定参考依据。
     (五)根据近临界水对油页岩内部有机质作用力的变化将整个传质过程分解成:油页岩与水相对静止、近临界水的渗透、干酪根的溶胀分解、沥青质的渗出、沥青的溶解和提取物与近临界水“油水分离”6个阶段。
     由于不同阶段近临界水产生作用的不同,干酪根在不同提取时间转化成沥青的速率呈现出明显的阶段性变化。在提取时间为2h之前干酪根几乎没有发生分解。2~10h是沥青生成速率最快的时间段,干酪根内部结合相对较弱的部分快速分解。10~50h时间段内干酪根中结合力相对较强部分物质开始逐渐断裂,沥青形成速率有所下降。50h后由于干酪根大分子中大部分有机质已经断裂,新沥青的生成变得很少,而释放出来的化合物越来越多的会转化成气体小分子。
     干酪根在不同的提取时间段发生的化学反应也是不同的。干酪根裂解初期释放得有机物主要是小分子环烃、芳烃和类异戊二烯烷烃,然后是正构烷烃、烯烃、酮和羧酸等直链化合物的断裂,最后是干酪根亚单元核心部分的芳烃类化合物。另外干酪根的裂解产物在近临界水中还会发生二次裂解以及水解、加氢、水合、氧化、脱羧、烷基化等一系列反应。也正是通过这些反应,干酪根有机质才得以被近临界水从油页岩内部提取出来。
     (六)近临界水对桦甸、抚顺、农安和扶余等不同地区油页岩的提取实验都获得了较好的提取效果。其中,近临界水对桦甸、抚顺和农安地区油页岩块的最大沥青提取率值都超过了各样品的Fischer测试含油率值。而对扶余油页岩岩芯的提取率也达到了Fischer测试含油率的90%以上。
     各地区油页岩的近临界水提取物组成大体相似,主要组成为正构烷烃、异构烷烃和芳香烃化合物,另外还有一定量的环烷烃、烯烃、醇、酮、酚等化合物。抚顺、农安和扶余油页岩的提取物中异构烃和芳烃组分含量都高于桦甸油页岩的提取物,产物的流动性也比桦甸油页岩提取沥青好。
Oil shale is an organic-rich fine-grained sedimentary rock which can generateshale oil after retorting. It is a kind of unconventional oil and gas resource. Oil shaleresources are abundant in the earth. Estimates of global deposits, converted into shaleoil, are3times higher than the proved oil reserves. The resource of shale oil in Chinais second in the world next after the United States. It has a very great developmentprospects.
     There is no need to mining out the oil shale by the in-situ retorting technology.The in-situ technology can exploit the deep and high thickness oil shale resourceswith several advantages as high conversion rate, few occupied space and lowenvironmental pollution. Accordingly, many countries which are rich in oil shale andsome large energy companies are actively developing the in-situ retortingtechnologies of oil shale. However, the traditional in-situ retorting technology is notapplied to Chinese oil shale for the low oil content level and high bed depth resources.
     Concentrating on the characteristics of the oil shale resources in our country, weput forward the concept of using sub-critical water as a heat transfer medium andextractant to the in-situ conversion of oil shale. In this paper, high temperature andhigh pressure reactor was used to simulate the sub-critical water extraction process ofoil shale underground. The impacts of the extraction conditions of sub-critical, thesize, texture and level of the oil shale sample on the organics extraction were studied.The composition of the extracts, the extraction and mass transfer mechanism ofsub-critical water were analyzed. The extraction experiments proved the feasibility ofextracting organic matter from the large-sized oil shale lumps by sub-critical waterand provided some experimental and theoretical basis for the in-situ conversionconcept.The main research contents and results are shown as follows:
     (I) Sub-critical water extraction of the natural bitumen in oil shale was performed at a low temperature,260°C. The results showed that the increase of system pressurecould enlarge the infiltration of sub-critical water at this temperature and enhance theextraction of bitumen.
     The composition of the extracted bitumen was very complex. The bitumen wasconsisted of hydrocarbons, ketones, indanones, thiophenes, phenol derivatives andother heteroatomic and aromatic compounds. The content of heteroatomic compoundsin the bitumen was significantly higher than that in the NMP-CS2extracted bitumenfrom oil shale.
     (II) The extract ability of sub-critical water improved with the increase oftemperature and more small molecular weight organics could be extracted compounds.It showed that some larger molecules were more likely to decomposed in sub-criticalwater at a higher temperature. When the temperature was higher than330°C, thekerogen matters in oil shale began to be decomposed in sub-critical water. And whenthe temperature was increase to350°C, the extraction efficiency of sub-critical waterwould have a significantly improvement. The maximum extract yield ofkerogen-decomposed bitumen at350°C was higher than that at365°C.
     (III) The results of the GC-MS analysis of the kerogen-decomposed bitumenextracted by sub-ctitical water at350°C showed that the major components of thebitumen were n-alkanes,1-alkene, isoprenoid alkanes, alk-2-one and n-alkanoic acids.The content of aromatics was low in the extracts while it was high in the remainingbitumen which was survived in the oil shale residue. It indicated a selectivity ofsub-critical water that sub-critical water was apt to extract aliphatics relative toaromatics although it was capable of releasing the two kinds of compounds fromkerogen.
     (IV) Three sizes of oil shale lumps (<1cm,2-4cm and6–10cm in diameter)were extracted by sub-critical water at350°C. The results showed that, the extractyield would not be affected by the size of oil shale when the extraction time washigher than20h. It was because that the oil shale lumps were fractured alone the shaletexture in direction parallel to bedding under the action of sub-critical water and thefractures were considered to be due to the tensile stress generated by expansion associated with kerogen conversion to bitumen. The results of the SEM and BETanalysis of shale residue showed that many micro-and macro-pores appeared on thesurface and interior of the samples. And the pore phenomenon would be more andmore significant with the increase in extraction time.
     The fractures and the pores greatly improved the extraction ofkerogen-decomposed bitumen by sub-critical water. And the feasibility of extractinglarge-sized oil shale lumps by sub-critical water would provide some reference for theconception of oil shale in-situ extraction by sub-critical water.
     (V) According to the changing actions of sub-critical water on kerogen, thewhole extraction and mass transfer process was divided into six stages:①Inactionof water,②Permeating of sub-critical water,③Swelling and decomposition ofkerogen,④Effusion of asphaltene and pre-asphaltene,⑤Dissolution of bitumenand⑥Self-separation of oil and water.
     The formation rate of kerogen-decomposed bitumen was also affected by theactings changes of sub-critical water. At first, before2h, few kerogen wasdecomposed in oil shale because the sub-critical water was undergoing the permeatingprocess. Following that, during2-10h, weak-binding kerogen fragments had beenreleased from oil shale and it was the fastest formation phase of the bitumen products.After that, in10-50h, the tight-linked organic fragments were gradually releasedfrom kerogen. After50h extraction in sub-critical water, most of the organics had beenbroken down from kerogen and the new forming bitumen was very less. In addition,the released compounds would be converted into gaseous compounds in sub-criticalwater.
     The chemical reactions of kerogen were also changed with the extension ofextraction. Small molecular weight cyclic hydrocarbons, aromatics and isoprenoidswere firstly released from kerogen. After that, the straight chain compounds such asn-alkanes,1-alkenes, alk-2-ones and n-alkanoic acids were cracked from the kerogenmacromolecule. Finally, some other aromatic compounds, which mighe be the corepart of the sub-units of kerogen, were released from kerogen. Moreover, with thecracking of kerogen in sub-critical water, there are also many reactions happen on the extracts, such as the secondary cracking, hydration, oxidation and rearrangementreactions. Through these reactions, the kerogen in oil shale were decomposed andextracted out by sub-critical water.
     (VI) The oil shale lumps from Fushun, Nong’an and Fuyu were extracted bysub-critical water. The extract yields of the kerogen-decomposed bitumen from thesesamples were high. In which, the extract yields from Fushun and Nong’an oil shalewere higher than the oil yield from the Fischer analysis assay respectively and theextract yield of bitumen from Fuyu oil shale was also more than90%of the Fischeroil yield.
     The compositions of the bituem from different oil shale samples were similar.The major components were n-alkanes, isohydrocarbons and aromatics with a certainamount of cyclic alkanes, n-alkenes, alcohols, ketones and phenols. The contents ofisohydrocarbons and aromatics in the bitumen from Fushun, Nongan and Fuyu oilshale were much higher and the flowability of these bitumen products were muchbetter than the Huadian oil shale bitumen.
引文
[1] British Petroleum Company. BP statistical review of world energy [R].2012-6.
    [2]中国石油和化学工业联合会,2011上半年中国石油和化学工业经济运行报告[J].中国石油和化工,2011,8:6-2.
    [3] John A Turner. A Realizable Renewable Energy Future [J]. Science,1999,285:687-689.
    [4] Nick Johnstone, Ivan Hascic, David Popp. Renewable energy policies andtechnological innovation: Evidence Based on Patent Counts [J]. Environmentaland Resource Economics,2010,45(1):133-155.
    [5]郑慧.德国利用可再生能源的措施与启示[J].2011,4,73-76.
    [6]付文莉.可再生能源,未来能源之星[J].电源技术,2008,9:636-639.
    [7]钱伯章,朱建芳.天然气水合物:巨大的潜在能源[J].天然气与石油,2008,26(4):47-53.
    [8]吴震.新型洁净能源可燃冰的研发现状[J].节能,2009,2:7-8.
    [9]戚传梅,姜佳丽,邹春玉.解决“气荒”:从页岩气到可燃冰[J].广东化工.2011,38(7):80-81.
    [10]李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,8(4):392-400.
    [11]孙超,朱筱敏,陈普,等.页岩气与深盆气成藏的相似与相关性[J].油气地质与采收率,2007, l4(1):26-31.
    [12]李玉喜.我国非常规油气资源类型和潜力[R].北京:国土资源部,2007.
    [13]张金川,金之钧,袁明生.页岩气成藏机理和分布[M].天然气工业,2004,24(7):15-18.
    [14]范泊江.中国非常规天然气资源及前景分析[R].北京:中国石油大学.2007.
    [15] Hou X L. Prospect oil shale and shale oil industry (A). Proceedings InternationalConference on Oil Shale and Shale oil [C]. Beijing China, Chemical Industrypress,1988:7-15.
    [16]闫澈,姜秀民.中国油页岩的能源利用研究[J].中国能源,2000,9:22-26.
    [17]姜秀民,刘德昌,郑楚光,等.油页岩燃烧性能的热分析研究[J].中国电机工程学报,2001,21(8):55-59.
    [18]王璞,王东坡,常平,等.油页岩中生物及有机质与金属元素富集的关系及机理探讨[J].长春地质学院学报,1996,26(1):47-53.
    [19]秦匡宗,劳永新,黄醒汉.油页岩有机碳的演化模式与评价方法[J].石油与天然气地质,1985,6(3):288-299.
    [20]裴存民,周中毅.干酪根的性质对油气形成影响的研究[J].地球化学,1989(4):322-333.
    [21]张大江,黄第藩,李晋超,等.油页岩干酪根热降解的动力学性质及其地球化学意义[J].石油与天然气地质,1983,4(4):383-392.
    [22] Bernard Durand. Kerogen: Insoluble organic matter from sedimentary rocks [M].Paris: Editions Technip,1980.
    [23] Hutton, Adrian C, Bharati, et al. Chemical and petrographic classification ofkerogen/macerals [J]. Energy Fuels,1994,8(6):1478-1488.
    [24] B Durand. Sedimentary organic matter and kerogen. Definition and quantitativeimportance of kerogen, in: Durand, B (ed.), Kerogen: insoluble organic matterfrom sedimentary rocks [M]. Paris: Editions Technip,1980.
    [25] M. Vandenbrouckea, C. Largeau, Kerogen origin, evolution and structure [J],Organic Geochemistry,2007,38(5):719–833.
    [26]钱家麟,王剑秋.世界油页岩科技进展[J].燃料化学学报,1982,10(3):76-88.
    [27]赵隆业,杨美伶.重视油页岩资源的开发和利用[J].中国地质,1984(3):16-19.
    [28] A Ots, S Huuskonen, K Koponen, et al. Estonian oil shale properties andutilization in power plants [J]. Energetik,2007,53(2):8-18.
    [29]赵隆业,陈基娘,王天顺.油页岩定义和,油页岩界线的讨论[J].田地质与勘探,1991(1):15-16.
    [30] K Urov, A Sumberg. Characteristics of oil shales and shale-like rocks of knowndeposits and outcrops [J]. Oil Shale,1999,16(3):1-64.
    [31] A C Hutton. Petrographic classification of oil shales [J]. International Journal ofCoal Geology,1987,8(3):203-231.
    [32]刘招君,孟庆涛,柳蓉.中国陆相油页岩特征及成因类型[J].古地理学报,2009,11(1):105-114.
    [33] Alali, Jama. Jordan oil shale, availability, distribution, and investmentopportunity. International Oil Shale Conference [C],2006, Amman, Jordan:2008.
    [34]刘长胜.油页岩的综合开发利用[J].炭加工与综合利用,2010(3):37-42.
    [35]陈洁渝,严春杰,李子冲,等.油页岩灰渣的综合利用[J].矿产保护与利用,2006,(6):42-45.
    [36] Brendow D K. Global oil shale issues and perspectives [J]. Oil Shale,2003,20:81-92.
    [37] Mohammad M S, Rami H H. The use of oil shale ash in Portland cementconcrete [J]. Cement and Concrete Composites,2003,25:43-50.
    [38]安佰超.油页岩灰渣提取氧化铝及其应用[D].吉林省:吉林大学,2010.
    [39]连玉环.油页岩残渣制备白炭黑及改性研究[D].辽宁省:大连理工大学,2007.
    [40] OECD. World Energy Outlook2010, ISBN978-92-64-08624-1[R]. Paris, IEA,2010.
    [41]车长波,杨虎林,刘招君等.我国油页岩资源勘探开发前景[J].中国矿业,2008,17(9):1-4.
    [42]朱杰,车长波,张道勇.中国油页岩开发利用现状及发展前景[J].中国矿业,2012,21(7):1-4.
    [43] Dyni, John R. Oil Shale, Survey of energy resources [C]. World Energy Council,2010,93-123.
    [44] Luck, Taylor. Jordan set to tap oil shale potential [C]. International Oil ShaleSymposium, Tallinn, Estonia:2006.
    [45] San Leon. Energy Awarded Moroccan Oil Shale Exploration Project [R]. OilVoice,http://www.oilvoice.com/n/San_Leon_Energy_Awarded_Moroccan_Oil_Shale_Exploration_Project/05a3d3f1.aspx.2009-06-01.
    [46]李术元,岳长涛,王剑秋,等.世界油页岩开发利用近况--记美国第28国际际油页岩会议[J].中外能源,2009,14(2):16-24.
    [47]李术元,马跃,钱家麟.世界油页岩研究开发利用现状--并记2011年国内外三次油页岩会议[J].2012,17(2):8-17.
    [48]肇永辉.抚顺矿区油页岩资源炼油技术的改造与应用[J].中国高新技术企业,2011(36):61-63.
    [49]刘招君,柳蓉,中国油页岩特征及开发利用前景分析[J].地学前缘,2005,12(3):315-323.
    [50]吴怡喜,陈晓菲,黄建宁,等.油页岩干馏工艺炼油及页岩油的回收[J].内蒙古石油化工,2011,8:19-20.
    [51]陈晓菲,高武军,赵杰,等.中国油页岩开发利用现状及发展前景[J].洁净技术,2010,6:29-31.
    [52]黄建宁,李森林.运用冶金焦化生产技术开发油页岩炼制新工艺[J].重型机械,2009,(4):12-15..
    [53]抚顺矿业集团公司工程技术研究中心.油页岩炼油工艺装备的开发与前景展望[C].中国油页岩产业发展交流会,龙口,2011.
    [54]柳蓉,刘招君.国内外油页岩资源现状及综合开发潜力分析[J].吉林大学学报(地球科学版),2006,36(6):892-898.
    [55]刘招君,董清水,叶松青,等.中国油页岩资源现状[J],吉林大学学报(地球科学版)2006,36(l):869-876.
    [56]侯祥麟,中国页岩油工业[M],北京:石油工业出版社,1984.
    [57]李海明.油页岩资源开发利用现状与趋势[J].承德石油高等专科学校学报,2011,13(4):27-33.
    [58] Louw, S.J.; Addison, et al. Studies of the Scottish oil shale industry. Vol.1History of the industry, working conditions, and mineralogy of Scottish andGreen River formation shales [M]. Final report on US Department of Energy.1985:35;38;56–57.
    [59] Brendow, K. Oil shale-a local asset under global constraint [J]. Oil Shale,2006,26(3):357–372.
    [60] Aarna, Indrek. The3rd International Oil Shale Symposium in Tallinn [J]. OilShale,2009,26(3):349-356.
    [61] Qian Jialin; Wang Jianqiu. World oil shale retorting technologies [C].International Oil Shale Conference, Amman, Jordan, Jordanian NaturalResources Authority:2006.
    [62]Zhou X L. General description o f Fushun oil shale retort ing factory in China [J].Oil Shale,1996,13(1):711.
    [63] He Y G. Mining and utilization of Chinese Fushun oil shale [J]. Oil Shale,2004,21(3):259-264.
    [64] Yefimov Y, S. Doilov. Efficiency of processing oil shale in1000ton per dayretort using different arrangement of outlets for oil vapors [J]. Oil Shale,1999,16(4):455-463.
    [65] Sonne J, Doilov S. Sustainable utilization of oil shale resources and comparisonof contemporary technologies used for oil shale processing [J]. Oil Shale,2003,20(3):311-323.
    [66] Taciuk W. The alberta taciuk process-capacibilities for modern production ofshale oil [C]. Symposium on Oil Shale, Tallinn:[s. n.],2002.
    [67] Stephen J Schmidt. New direction for shale oil path to a secure new oil supplywell into this century [J]. Oil Shale,2003,20(3):333-346.
    [68] L Jalkanen, A M kinen, E H s nen, et al. The effects of large anthropogenicparticulate emissions on atmospheric aero sols, deposition and bioindicators inthe Eastern Gulf of Finland Region [J]. Sci Total Environ,2000,262:123-136.
    [69] Zhang Liping, Zeng Rongshu, Xu Wendong, et al. Effects of comprehensiveutilization o f oil shale on surrounding environment [J]. Coal Geology of China,2006,18(2):46-51.
    [70] Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil: contaminationand profiles [J]. Environ Pollution,1999,105(1):67-74.
    [71] Pavlenkova J, Kaasik M, Kerner E S, et al. The Impact of MeteorologicalParameters on Sulphuric Air Pollution in Kohtla-J rve[J]. Oil Shale,2011,28(2):337-352.
    [72] A Kahru, L P llumaa. Environmental hazard of the waste streams of Estonian oilshale industry: an ecotoxicological review [J]. Oil Shale,2006,23(1):53-93.
    [73] A Tuvikene, S Huuskonen, K Koponen, et al. Oil shale processing as a source ofaquatic pollution: monitoring of the biologic effects in caged and feral freshwaterfish. Environ Health Perspect.1999,107(9):74-752.
    [74] Zhang Jie, Jin Zhijun, Zhang Jinchuan. Unconventional oil and gas resourcepotential and distribution [J]. Petroleum&Petrochemical Today,2004,12(10):17-19.
    [75] Arvi Toomik, Valdo Liblik. Oil shale mining and processing impact onlandscapes in north-east Estonia [J]. Landscape and Urban Planning,1998,41(3-4):285-292.
    [76] Olga Gavrilova, Raivo Vilu, Leo Vallner. A life cycle environmental impactassessment of oil shale produced and consumed in Estonia [J]. Conservation andRecycling,2010,55(2):232-245.
    [77]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报,2004,24(l):2887-2892.
    [78] I Kamenev, R Munter, L Pikkov, et al. Wastewater treatment in the oil shaleindustry [J]. Oil Shale,2003,20(4):443-457.
    [79]李兰.抚顺市堆积矸石对地下水的污染[J].辽宁地质,1994(4):361-366.
    [80] Irina Blinova, Liidia Bityukova, Kaja Kasemets, et al. Environmental hazard ofoil shale combustion fly ash [J]. Journal of Hazardous Materials,2012,229-230:192-200.
    [81] Erik Teinemaa, Uuve Kirso, Michael R. Strommen, et al. Atmospheric behaviourof oil-shale combustion fly ash in a chamber study [J]. Atmospheric Environment,2002,36(5):813-824.
    [82] Gratt L B. Risk analysis of hazardous materials in oil shale [J]. Journal ofHazardous Materials,1985,10(2-3):317-350.
    [83] Alan K. Burnham. Slow Radio-Frequency Processing of Large Oil ShaleVolumes to Produce Petroleum-like Shale Oil [R]. Lawrence Livermore NationalLaboratory.2003-8-20[2007-06-28]. UCRL-ID-155045.
    [84]方朝合,郑德温,葛稚新.壳牌ICP技术现场试验[J].科技创新导报,2010(36):110-111.
    [85]钱伯章,朱建芳.世界原油质量趋势及非常规石油资源开发前景[J].天然气与石油,2007,25(3):40-45.
    [86] Shell Frontier Oil and Gas Inc. E-ICP Test Project: Oil Shale Research andDevelopment Project [R]. U.S. Department of the Interior Bureau of LandManagement, Colorado.2006-2.
    [87]赵阳升,冯增朝,杨栋,等.对流加热油页岩开采油气的方法[P].中国:CN1676870,2005-10-05.
    [88]刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.
    [89] Ahmad T. Shawaqfeh, Adnan Al-Harahsheh. Solvation of Jordanian oil shaleusing different organic solvents by continuous contact mixing [J]. EnergySources,2004,26(14):1321-1330.
    [90] Koel M, Ljovin S, Hollis K, et al. Using neoteric solvents in oi1shale studies [J].Pure Appl. Chem,2001,73(q):153-159.
    [91] Feras Fraige, Hani Alnawafleh, Laila Al-Khatib, et al. Solvation variability ofJordanian oil shales [C].31st Oil Shale Symposium, Golden, Colorado:2011.
    [92]周国江,朱玉高,魏贤勇.油页岩CS2-NMP萃取物GC/MS分析[J].黑龙江科技学院学报,2006,16(6):390-391,399.
    [93] Shaohu Guo. Solvent-extraction of Jordanian oil-shale kerogen [J]. Oil shale.2000,17(3):266-270.
    [94] ES Vay soglu, OB Harput, BR Johnson, et al. Characterization of oil shales byextraction with N-methylpyrrolidone [J]. Fuel,1997,76(4):353-357.
    [95]吴鹏,周扬,李福林,等.油页岩溶剂萃取技术研究[J].矿产综合利用,2010,(6):37-40.
    [96]周国江,孙静.微波辅助萃取油页岩工艺条件的研究[J].洁净技术,2009,16(2):38-40.
    [97]周国江,孙静.微波辅助下油页岩CS2-NMP萃取物的GC/MS分析[J].黑龙江科技学院学报,2009,19(2):83-86.
    [98] S ren B wadt, Steven B Hawthorne. Supercritical fluid extraction inenvironmental analysis [J]. Journal of Chromatography A,1995,703(1-2):549-571.
    [99] T Greibrokk. Applications of supercritical fluid extraction in multidimensionalsystems [J]. Journal of Chromatography A,1995,703(1-2):523-536.
    [100]丁一刚,霍旭明.超临界流体的技术与应用[J].医药工程设计,2002,23(4):3-6.
    [101] Engelhardt H, Zapp J, Kolla P. Sample preparation by supercritical fluidextraction in environmental food and polymer analysis [J]. Chromatographia,1991,32(11-12):527-537.
    [102]陈岚,满瑞林.超临界萃取技术及其应用研究[J].现代食品科技,2006,22(1):199-202.
    [103]郭红丽.超临界萃取新技术在中药提取分离中的应用[J].内蒙古石油化工,2012,(3):97-98.
    [104]周也,田震,王丽雯.超临界萃取技术研究现状与应用[J].山东化工,2012,(5):37-39.
    [105]郝常明,黄雪菊.浅谈超临界流体萃取技术及其应用[J].医药工程设计,2003,24(2):1-4.
    [106] Kurnik R T, Reid R C. Solubility of solid mixtures in supercritical fluids [J].Fluid Phase Equilibria,1982,8(1):93-105.
    [107]郭树才,胡浩权,王锐.中国桦甸油页岩超临界萃取研究[J].燃料化学学报,1985,13(4):289-295.
    [108]朱亚杰,杨煌,熊亢侯,等.及油页岩的超临界抽提研究[C].油页岩科学研究论文集,1984,58-65.
    [109] R.M. Baldwin, K.W. Chen. Pyrolysis and hydropyrolysis of two carbonaceousAustralian oil shales in supercritical toluene and tetralin [J]. Fuel,1987,66(3):353-357.
    [110] M Allawzi, A Al-Otoom, H Allaboun,et al. CO2supercritical fluid extraction ofJordanian oil shale utilizing different co-solvents [J]. Fuel Process. Technol,2011,92(10):2016-2023.
    [111] Eugenia Bondar, Mihkel Koel. Application of supercritical fluid extraction toorganic geochemical studies of oil shales [J]. Fuel1998,77(3):211–213.
    [112] M.L. G-Hourcade, C. Torrente, et al. Study of the solubility of kerogen from oilshales (Puertollano, Spain) in supercritical toluene and methanol [J]. Fuel,2007,86(5-6):698-705.
    [113] H. Luik, I. Klesment. Liquefaction of kukersite concentrate at330-370oC insupercritical solvents [J]. Oil Shale,1997,14(3):419-432.
    [114] H. Luik, V. Palu, M. Bityukov, et al. Liquefaction of Estonian kukersite oil shalekerogen with selected superheated solvents in static conditions [J]. Oil Shale,2005,22(1):25-36.
    [115] Ryoichi Yoshidaa, Makoto Miyazawa, Tadashi Yoshidaa. Chemical structurechanges in Condor shale oil and catalytic activities during catalytichydrotreatment [J]. Fuel,1996,75(1):99-102.
    [116] Laine Tiikma, Ille Johannes, Hans Luik. Thermal dissolution of Estonian oilshale [J]. J. Anal. Appl. Pyrolysis,2009,85(1-2):502-507.
    [117] Charles H. Prien. Pyrolysis of coal and shale [J]. Ind. Eng. Chem.,1952,44(9):2064-2072.
    [118] Ryan E T, Xiang T, Johnston K P, et al. Absorption and fluorescence studies ofacridine in subcritical and supercritical Water [J]. J. Phys. Chem. A,1997,101(10):1827-1835.
    [119] Jan A.M. Withag, Jules R. Smeets, Eddy A. Bramer, et al. System model forgasification of biomass model compounds in supercritical water-Athermodynamic analysis Original Research Article [J]. The Journal ofSupercritical Fluids,2012,61:157-166.
    [120]靳洪允.亚临界水的应用研究及进展[J].湿法冶金,2005,24(2):66-68
    [121] Patrick H R, Griffith K, Liotta C L, et al. Near-critical water: A benign mediumfor catalytic reactions [J]. Ind. Eng. Chem. Res,2001,40(26):6063-6067.
    [122]董秀芹,靳文竹,张敏华.对硝基苯酚废水近临界水氧化工艺[J].化学反应工程与工艺,2012,1:44-49.
    [123]苏根利,谢鸿森,丁东业,等.超临界水的物理化学性质及意义[J].地质地球化学,1998,26(2):83-89.
    [124] Salvador F, Sanchez J C. A new method for regeneration activated carbon bythermal desorption with water under subcritical conditions [J]. Carbon,1996,34(4):511-516.
    [125] Savage,P E. Organic chemical reactions in supercritical water [J]. Chem. Rev,1999,99(2):603-621.
    [126] C A Eekert, K Chandler. Tuning fluid solvents for chemical reactions [J].J.Supercrical Fluids,1998,13:187-195.
    [127] Siskin M. Katritzky A.R. Reactivity of organic compounds in hot water:geochemical and technological implications [J]. Science,1995,254,231-237.
    [128] Haar L, Gallagher, J S, Kell G S.NBS/NRC Steam Tables [R], Hemisphere, N.Y,1984.
    [129] Akerlof G.C, Oshry H.I. The dielectric constant of water at high temperaturesand in equilibrium with its vapor [J]. J. Am. Chem.Soc,1950,72:2844-2847.
    [130] Connolly, J F. Solubility of hydrocarbons in water near the critical solutiontemperatures [J]. J. Chem. Eng. Data,1966,11(l):13-16.
    [131] Franck E U. Physicochemical Properties of Supercritical Solvents[J]. BerBunsen-Ges Phys Chem,1984,88(9):820-845.
    [132]马静,董秀芹,张敏华.超(近)临界水溶剂特性的分子动力学模拟计算机与应用化学[J].2007,24(7),872-874.
    [133]杨馗,徐明仙,林春绵.超临界水的物理化学性质[J].浙江工业大学学报,2001,29(4):386-391.
    [134]张建飞,刘体锋,吕秀阳.近临界水中聚醋酸乙烯酯无催化水解动力学[J].浙江大学学报:工学版,2011,45(5):914-918.
    [135] G. Brunner. Near and supercritical water. Part I. Hydrolytic and hydrothermalprocesses [J]. The Journal of Supercritical Fluids,2009,47(3):373-381.
    [136]G. Brunner. Near critical and supercritical water. Part II: Oxidative processes [J].The Journal of Supercritical Fluids,2009,47(3):382-390.
    [137] Akiya N and Savage P E. Roles of water for chemical reactions inhigh-temperature water[J]. Chem. Rev.,2002,102(8):2725-2750.
    [138] Kuhlmann B, Arnett EM, Siskin M. H-D Exchange in pinacolone by Deuteriumoxide at high temperature and pressure [J]. J. Org. Chem.,1994,59(18):5377-5380.
    [139] Lesutis H P, Glaser R, Liotta C L, et al. Acid/base-catalyzed ester hydrolysis innear-critical water [J]. Chem. Commun,1999,2063-2064.
    [140] Chandler K, Liotta C L, Eckert C A.. Tuning alkylation reactions withtemperature in near-critical water [J]. AIChE J,1998,44(9):2080-2087.
    [141] H R Holgate, J C Meyer, J W Tester. Glucose hydrolysis and oxidation insupercritical water [J]. AIChE J,1995,41(3):637-648.
    [142] Hawthorne Steven B, Yang Yu, Miller David J. Extraction of organic pollutantsfrom environmental solids analytical chemistty [J]. Anal. Chem.,1994,66(18):2912-2920.
    [143]吴仁铭.亚临界水萃取在分析化学中的应用[J].化学进展,2002,14(2):31-36.
    [144]郭梅,黄卫红,陆晓华,等.亚临界水萃取-固相萃取联用技术对沉积物中有机氯农药的萃取研究[J].分析科学学报,2004,20(3):257-259.
    [145] Gao Yin-Yu, Zhao Qiang, Zhang Bin. Sub-critical Water Extraction andApplication on Extraction of Essential Oils [J]. Food Scince,2008,29(1):379-382.
    [146]战伟伟,于磊娟,彭玉娇.亚临界水提取白兰叶挥发油工艺优化研究[J].饮料工业,2012,9:6-9.
    [147]吕秀阳,Sakoda Akiyoshi,Suzuki Motoyuki.氧浓度对近临界水中纤维素分解的影响[J].太阳能学23(14):467-471.
    [148] Malaluan R M. A study on cellulose decomposition in subcritical andsupereritical water [D]. Tohoku University, Sendai Japan,1995.
    [149]应丽亚,苏平.亚临界水萃取技术在植物精油提取中的应用潜力[J].食品与发酵工业,2011,5:142-145.
    [150] T Adschiri. S. Hirose, R. Malanan and K. Arai. Noncatalytic conversion ofcellulose in supercritical and subcritical water [J]. J. Chem. Engng Jpn,1993,26(6):676-680.
    [151]陈赟,田景奎,程翼宇.中草药挥发油提取新技术--亚临界水萃取[J].化学工程,2006,34(8):59-62.
    [152] Eng Shi Ong, Shea Mei Len. Pressurized hot water extraction of berberine,baicalein and glycyrrhizin in medicinal plants [J]. Analytica Chimica Acta,2003,482(1):81-89.
    [153]吕阳成,骆广生,戴猷元.中药提取工艺研究进展[J].中国医药工业杂志,2001,32(5):232-235.
    [154]李超,王卫东,虞海燕,等.超声强化亚临界水提取脱脂葡萄籽中原花青素的工艺及其抗氧化研究[J].中国中药杂志,2010,35(8):967-972.
    [155]陈赟,李建明,章丽娟,等.亚临界水萃取技术及其在天然产物分析中的应用[J].2009,32(4):636-641.
    [156]樊丽华,马沛生,梁英华.聚苯乙烯废塑料的化学回收[J].石油化工,2004,33(12):1198-1203.
    [157]邱挺,马沛生.超临界水中废塑料的化学回收[J].高分子材料科学与工程,2001,17(6):10-14.
    [158]徐建华.以超临界水所进行的废塑料的再生[J].制品与工艺,2002,1:39-43.
    [159]刘丽,戴娟娟,黄园园.聚对苯二甲酸丁二醇酯在亚临界水中的催化解聚[J].高校化学工程学报,2012,26(3):524-530.
    [160]苏晓丽,赵玉龙,张荣,等.超临界水中聚乙烯油化的研究[J].燃料化学学报,2004,32(6):750-757.
    [161]张海峰,苏晓丽,孙东凯,等.聚乙烯塑料在连续超临界水反应器中的油化研究[J].燃料化学学报,200,35(4):487-491.
    [162] Hu H; Zhang J, Guo S, Chen G. Extraction of Huadian oil shale with water insub-and supercritical states [J]. Fuel.1999,78(6):645-651.
    [163] O M Ogunsola, N Berkowitz. Extraction of oil shales with sub-and near-criticalwater [J]. Fuel Process Technol,1995,45(2):95-107.
    [164] Abourriche A, Adil A, Ouman M, et al. New pitches with very significantmaturation degree obtained by supercritical extraction of Moroccan oil shales[J]. The Journal of Supercritical Fluids,2008,47(2):195-199.
    [165] N Olukcu, J Yanik, M Saglam, et al. Solvent effect on the extraction ofBeypazari oil shale [J]. Energ Fuel,1999,13(4):895-902.
    [166] KE Harfi, C Bennouna, A Mokhlisse, et al. Supercritical fluid extraction ofMoroccan (Timahdit) oil shale with water [J]. J Anal Appl Pyrol.1999,50(2):163-174.
    [167] T. Funazukuri, S. Yokoi, N. Wakao. Supercritical fluid extraction of ChineseMaoming oil shale with water and toluene [J]. Fuel,1988,67(1):10-14.
    [168] J Yanik, M Yüksel, M Saglam, et al. Characterization of the oil fractions ofshale oil obtained by pyrolysis and supercritical water extraction [J]. Fuel,1995,74(1):46-50.
    [169] A Sinag. Sub-and supercritical water extraction of goynük oil shale [J]. EnergySources,2004,26:885-890.
    [170] Jelena Hruljova, Natalja Savest, Vahur Oja, et al. Kukersite oil shale kerogensolvent swelling in binary mixtures [J]. Fuel,2013,105:77-82.
    [171] Riri Kramer, Moshe Levy. Extraction of oil shales under supercritical conditions[J]. Fuel,1989,68(6):702-709.
    [172] Takafumi Sato, Shota Mori, Masaru Watanabe, et al. Upgrading of bitumen withformic acid in supercritical water [J]. The Journal of Supercritical Fluids,2010,55(1):232-240.
    [173] Yi Fei, Marc Marshall, W Roy Jackson, et al. Evaluation of several methods ofextraction of oil from a Jordanian oil shale [J]. Fuel,2012,92(1):281-287.
    [174] Binyam L Alemu, Per Aagaard, Ingrid Anne Munz, et al. Caprock interactionwith CO2: A laboratory study of reactivity of shale with supercritical CO2andbrine [J]. Applied Geochemistry,2011,26(12):1975-1989.
    [175] Murat Sert, Mithat Yüksel, et al. Effect of solvent swelling on pyrolysis ofkerogen (type-I) isolated from G ynük oil shale (Turkey)[J]. Journal ofAnalytical and Applied Pyrolysis,2009,84(1):31-38.
    [176] Levent Ballice, John W Larsen. Changes in the cross-link density of Goynuk oilshale (Turkey) on pyrolysis [J]. Fuel,2003,82(11):1305-1310.
    [177] Kristel Kilk, Natalja Savest, Aleksei Yanchilin, et al. Solvent swelling ofDictyonema oil shale: Low temperature heat-treatment caused changes inswelling extent [J]. Journal of Analytical and Applied Pyrolysis,2010,89(2):261-264.
    [178] S.R. Palmer, A.F. Gaines, A.W.P. Jarvie. Analysis of the organic matter in fiveoil shales [J]. Fuel,1989,68(10):1234-1242.
    [179] Eugenia Bondar, Mihkel Koel, Milana Liiv. A comparative study of thecomposition of biomarkers in SFE and solvent extracts of oil shales [J], Fuel,1998,77(3):215-218.
    [180] AM Abed, K Arouri, BS Amiereh. Characterization and genesis of somejordanian oil shales [J]. Pure Sciences,2009,36(1):7-17.
    [181] E.Sultan Vay soglu, O.Bülent Harput, Barry R. Johnson, et al. Characterizationof oil shales by extraction with N-methylpyrrolidone [J], Fuel,1997,76(4):353-356
    [182]周国江.油页岩溶剂萃取技术[J].黑龙江科技学院学报,2010,20(3):189-193.
    [183]周国江,朱玉高.油页岩CS2-NMP萃取物GC/M S分析[J].黑龙江科技学院学报,2006,16(6):390-392.
    [184]于海龙,姜秀民.桦甸油页岩热解特性的研究[J].燃料化学学报,2001,29(5):450-453.
    [185] Zhenyong Miao, Guoguang Wu, Ping Li, et al. Combustion characteristics ofDaqing oil shale and oil shale semi-cokes [J]. Mining Science and Technology(China),2009,19(3):380-384.
    [186] Wang Qing, Bai Jingru, Sun Baizhong, et al. Comprehensive utilization strategyof Huandian oil shale [J]. Oil Shale,2005,22(3):305-316.
    [187] A Aboulkas, K El Harfi. Study of the kinetics and mechanisms of thermaldecomposition of Moroccan Tarfaya oil shale and its kerogen [J]. Oil Shale.2008,25(4):323-330.
    [188]柏静儒,王擎,胡爱娟等.茂名油页岩的热解特性[J].东北电力大学学报,2006,26(2):73-78.
    [189] Wang Qing, Sun Baizhong, Hu Aijuan, et al. Pyrolysis characteristics ofHuadian oil shales [J]. Oil Shale.2007,24(2):147-157.
    [190] Paul T Williams, Nasir Ahmad. Investigation of oil shale pyrolysis processingconditions using thermogravimetric analysis [J]. Applied Energy,2000,66(2):113-133.
    [191] Warne S St J, Dubrawski J V. Applications of DTA and DSC to coal and oilshale evaluation [J]. Journal of thermal analysis,1989,35(1):219-242.
    [192]薛向欣,李勇,冯宗.抚顺油页岩及其残渣的热解性能[J].东北大学学报(自然科学版),2008,29(10):1447-1449,1454.
    [193] Krishnan Rajeshwar. The kinetics of the thermal decomposition of green riveroil shale kerogen by non-isothermal thermogravimetry [J]. Thermochimica Acta,1981,45(3):253-263.
    [194] Warne S St J, French D H. The application of simultaneous DTA and TG tosome aspects of oil shale mineralogy [J]. Thermochimica Acta,1984,76(1-2):179-200.
    [195] Levent Ballice, Mithat Yuksel. A Kinetic Approach to the TemperatureProgrammed Pyrolysis of Turkish Oil Shales in a Fixed Bed Reactor:Determination of Kinetic Parameters for n-Paraffins and1-Olefins Evolution [J].Energy&Fuels,2002,16(1):96-101.
    [196] P Blanchart, P Faure, M De Craen, et al. Experimental investigation on the roleof kerogen and clay minerals in the formation of bitumen during the oxidationof Boom Clay [J]. Fuel,2012,97:344-351.
    [197] Oluwadayo O Sonibare, O A Ehinola, R Egashira. Thermal and geochemicalcharacterization of Lokpanta oil shales, Nigeria [J]. Energy Conversion andManagement,2005,46(15-16):2335-2344.
    [198]马跃,李术元,王娟,水介质条件下油页岩热解机理研究[J].燃料化学学报,2011,39(12):881-886.
    [199] Changchun Pan, Ansong Geng, Ningning Zhong, et al. Kerogen pyrolysis in thepresence and absence of water and minerals: Amounts and compositions ofbitumen and liquid hydrocarbons [J]. Fuel,2009,88(5):909-919.
    [200]耿丽文,郭树才.桦甸油页岩热解动力学的热重分析[J],1984,23(4):39-44.
    [201] Tanja Barth, Anne Eva Borgund, Anne Lise Hopland. Generation of organiccompounds by hydrous pyrolysis of Kimmeridge oil shale—Bulk results andactivation energy calculations [J]. Organic Geochemistry,1989,14(1):69-76.
    [202] Norbert Clauer, Sam Chaudhuri, Michael D. Lewan and et al. Effect of thermalmaturation on the K–Ar, Rb–Sr and REE systematics of an organic-rich NewAlbany Shale as determined by hydrous pyrolysis [J]. Chemical Geology,2006,234(1-2):169-177.
    [203] S.J. Rowland, K. Aareskjold, Gou Xuemin, A.G. Douglas. Hydrous pyrolysis ofsediments: Composition and proportions of aromatic hydrocarbons inpyrolysates [J]. Organic Geochemistry,1986,10(4-6):1033-1040.
    [204] B. Huseby, R. Ocampo, C. Bauder and et al. Study of the porphyrins releasedfrom the Messel oil shale kerogen by hydrous pyrolysis experiments [J].Organic Geochemistry,1996,24(6-7):691-703
    [205] Noelia Franco, Wolfgang Kalkreuth, Maria do Carmo Ruaro Peralba.Geochemical characterization of solid residues, bitumen and expelled oil basedon steam pyrolysis experiments from Irati oil shale, Brazil: A preliminary study[J]. Fuel,2010,89(8):1863-1871.
    [206] P.A. Comet, J. McEvoy, W. Giger, et al. Hydrous and anhydrous pyrolysis ofDSDP Leg75kerogens—A comparative study using a biological markerapproach [J]. Organic Geochemistry,1986,9(4):171-182.
    [207] Tanja Barth. Similarities and differences in hydrous pyrolysis of biomass andsource rocks [J]. Organic Geochemistry,1999,30(12):1495-1507.
    [208]衣宝葵,马春元,卢申卿,等.超临界水热分解有机废物资源化技术[J].环境工程,2008,2:50-53.
    [209] R.P. Dutta, W.C. McCaffrey, M.R. Gray, et al. Thermal cracking of Athabascabitumen: influence of steamon reaction chemistry[J]. Energy and Fuels,2000,14(3):671-676.
    [210] A. Kishita, S. Takahashi, H. Kamimura, et al. Upgrading of bitumen byhydrothermal visbreaking in supercritical water with alkali [J], J. JapanPetroleum Institute2003,46(4):21-221.
    [211]吴海燕,潘志彦,金赞芳,等.超临界水中与聚苯乙烯的共液化研究[J].燃料化学学报.2011,39(4):246-251.
    [212] N. Ahmad and P.T. Williams, Influence of particle grain size on the yield andcomposition of products from the pyrolysis of oil shales [J], J. Anal. Appl.Pyrol.,1998,46(1):31-49.
    [213] D.J. Lewis, D.L. Holland, D.J. Grove, R. Huxley. Influence of oil shale onintertidal organisms: Sensory impairment in the blenny, Blennius pholis L. byoil shale extracts [J]. Journal of Experimental Marine Biology and Ecology,1986,95(2):145-154.
    [214] Xiugen Fu, Jian Wang, Yuhong Zeng, et al. Geochemistry and origin of rareearth elements (REEs) in the Shengli River oil shale, northern Tibet, China [J].Chemie der Erde-Geochemistry,2011,71(1):21-30.
    [215] Licheng Wang, Chengshan Wang, Yalin Li, et al. Sedimentary and organicgeochemical investigation of tertiary lacustrine oil shale in the central Tibetanplateau: Palaeolimnological and palaeoclimatic significances [J]. InternationalJournal of Coal Geology,2011,86(2-3):254-265.
    [216] M.D. Lewan, S. Roy. Role of water in hydrocarbon generation from Type-Ikerogen in Mahogany oil shale of the Green River Formation [J]. Org.Geochem.,2011,42(1):31-41.
    [217] J. Yanik, M. Yüksel, M. Saglam, et al. Characterization of the oil fractions ofshale oil obtained by pyrolysis and supercritical water extraction [J]. Fuel,1995,74(1):46-50.
    [218] M.D. Lewan, J.C. Winters and J.H. Mcdonald, Generation of oil-likepyrolyzates from organic-rich shales [J]. Science,1979,203(4383):897-899.
    [219] E. Tannenbaum and I.R. Kaplan. Low-Mr hydrocarbons generated duringhydrous and dry pyrolysis of kerogen [J]. Nature,1985,317(24):708-709.
    [220] R.N. Leif and B.R.T. Simoneit. The role of alkenes produced during hydrouspyrolysis of a shale [J]. Org. Geochem.2000,31(11):1189-1208.
    [221]王有孝,程学惠,吴贻华,张谦.原油中类异戊二烯烷烃的地球化学特征[J].石油与天然气地质,1981,2(2):158-168.
    [222]孟庆涛,刘招君,柳蓉,等.桦甸盆地桦甸组与美国犹他盆地绿河组油页岩生物标志化合物特征对比[J].吉林大学学报(地球科学版),2011,41(2):391-399.
    [223]林金辉,伊海生,李勇等.藏北高原双湖地区中侏罗统海相油页岩生物标志化合物分布特征及其意义[J].沉积学报,2001,19(2):287-292.
    [224] J.J. Cummins, W.E. Robinson. Normal and isoprenoid hydrocarbons isolatedfrom oil-shale bitumen [J]. J Chem Eng Data,1964,9(2):304-307.
    [225] M. Ishiwatari, H. Sakashita, T. Tatsumi, et al. Thermal decomposition behaviorof oil shale kerogens observed by stepwise pyrolysis-gas chromatography [J], J.Anal. Appl. Pyrol.1993,24(3):273-290.
    [226] I.M. H ld, N.J. Brussee, S. Schouten, et al. Changes in the molecular structureof a type II-S kerogen (Monterey Formation, U.S.A.) during sequentialchemical degradation [J]. Org. Geochem.1998,29(5-7):1403-1417.
    [227] L.J. Shadle, K.S. Seshadri and Y.H.C. Wang, Characterization of shale oils.2.Analysis of the flash pyrolysis products of oil shale in the Green RiverFormation [J]. Fuel Process. Technol,1994,37(2):121-142.
    [228] K. Goth, J. W. Leeuw, W. Puttmann, et al Origin of Messel Oil Shale kerogen[J]. Nature,1988,336:759-761.
    [229] M. Ishiwatari, H. Sakashita, T. Tatsumi, et al. Organic sulphur compoundsproduced by flash pyrolysis of Timhadit oil shale [J]. J. Anal. Appl. Pyrol,1990,17(3):217-225.
    [230] Jaap S. Sinninghe Damsté, Timothy I. Eglinton, Jan W. De Leeuw, et al.Organic sulphur in macromolecular sedimentary organic matter: I. Structure andorigin of sulphur-containing moieties in kerogen, asphaltenes and coal asrevealed by flash pyrolysis [J]. Geochimica et Cosmochimica Acta,1989,53(4):873-889.
    [231] K. Kawamura, E. Tannenbaum, B.J. Huizinga and I.R. Kaplan, Long-chaincarboxylic acids in pyrolysates of Green River kerogen [J]. Org. Geochem,1986,10(4-6):1059-1065.
    [232] David J Wales, Tiffany R Walsh. Theoretical study of the water pentamer [J].The Journal of Chemical Physics,1996,105(16):6957-6971.
    [233]黄萍萍,丘泰球,杨日福,等.亚临界水萃取机理与传质模型的研究进展[C].第七届全国超临界流体技术学术及应用研讨会论文集,2008,115-124.
    [234] Frank Ramirez, C Z Hadad, Doris Guerra, et al. Structural studies of the waterpentamer [J]. Chemical Physics Letters,2011,507(4-6):229-233.
    [235]高自立,孙思修,沈静兰.溶剂萃取化学[M].北京:科学出版社,1991.
    [236] Bert van Bavel, Kari Hartonen, Christoffer Rappe, et al. Pressurised hotwater/steam extraction of polychlorinated dibenzofurans and naphthalenes fromindustrial soil [J]. Analyst,1999,124:1351-1354.
    [237] Steven B Hawthorne, Yu Yang, David J Miller. Extraction of organicpollutants from environmental solids with sub-and supercritical water [J]. Anal.Chem,1994,66(18):2912-2920.
    [238] K S W Sing, D H Everett, R A W Haul, et al. Reporting data for gas/solidsystems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem,1985,57(3):603-619.
    [239] M D Lewan, S Roy, Role of water in hydrocarbon generation from type-Ikerogen in Mahogany oil shale of the Green River Formation [J]. OrganicGeochemistry,2011,42(1):31-41.
    [240] F. Behar, M. Vandenbroucke. Chemical modelling of kerogens. OrganicGeochemistry,1987,11(1):15-24.
    [241] E.G. Witte, H.J. Schenk, P.J. Müller, et al. Structural modifications of kerogenduring natural evolution as derived from13C CP/MAS NMR, IR spectroscopyand Rock-Eval pyrolysis of Toarcian shales [J]. Organic Geochemistry,1988,13(4-6):1039-1044.
    [242] Levent Ballice, Solvent swelling studies of G ynük (Kerogen Type-I) andBeypazar oil shales (Kerogen Type-II)[J]. Fuel,2003,82(11):1317-1321.
    [243] A L Burlingame, P A Haug, H K Schnoes, et al. Fatty acids derived from theGreen River Formation oil shale by extractions and oxidations-a review [J].Advances in Organic Geochemistry,1968,85-129.
    [244] M Siskin, C G Scouten, K D Rose, et al. Detailed structural characterization ofthe organic material in Rundle Ramsay Crossing and Green River oil shales.Composition, Geochemistry and Conversion of Oil Shales [J]. Composition,Geochemistry and Conversion of Oil Shales,1995,455:143-158.
    [245] F Behar, M Vandenbroucke. Chemical modelling of kerogens [J]. OrganicGeochemistry,1987,11(1):15-24.
    [246] Mariko Ishiwatari. Thermal decomposition behavior of oil shale kerogensobserved by stepwise pyrolysis-gas chromatography [J]. Journal of Analyticaland Applied Pyrolysis,1993,24(3):273-290.
    [247] J.S. Seewald. Evidence for metastable equilibrium between hydrocarbons underhydrothermal conditions [J]. Nature,1994,370(6847):285–287.
    [248] J.S. Seewald. Mineral redox buffers and the stability of organic compoundsunder hydrothermal conditions [J]. Marine Research Society SymposiumProceedings,1996,432:317–331.
    [249] J An, L Bagnell, T Cablewski, et al. Applications of high-temperature aqueousmedia for synthetic organic reactions [J]. Journal of Organic Chemistry,1997,62(8):2505–2511.
    [250] M D Lewan. Water as a source of hydrogen and oxygen in petroleum formationby hydrous pyrolysis [J]. Fuel Chemistry,1992,37(4):1643-1649.
    [251] Karen Chandler, Fenghua Deng, Angela K Dillow, er al. Alkylation Reactionsin Near-Critical Water in the Absence of Acid Catalysts [J]. Industrial&Engineering Chemistry Research,1997,36(12):5175-5179.
    [252] Karen Chandler, Charles L. Liotta, Charles A. Eckert, et al. Tuning alkylationreactions with temperature in near-critical water [J]. AIChE Journal,1998,44(9):2080-2087.
    [253]国土资源部油气资源战略研究中心.全国油页岩资源评价[M].北京:中国大地出版社,2010.
    [254] Adler Hans H, Kerr Paul F. Infrared study of aragonite and calcite [J]. Am.Mineral,1962,47(22):700-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700