用户名: 密码: 验证码:
采用D-InSAR技术获取山区DEM的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字高程模型(DEM)是重要的空间基础地理信息,在资源调查与开发、防灾减灾、基础设施规划与施工等相关的科研及国民经济领域的作用越来越大。然而在我国的西部,地形复杂、海拔高、空气稀薄,部分区域甚至常年受到云雾天气影响,致使常规的DEM数据采集手段很难适用。合成孔径雷达干涉测量(InSAR)技术为实现西部山区DEM的大面积、快速及高精度获取提供了一种全新的方式。它是利用同一区域内的两景或多景SAR影像进行干涉,从而提取研究区高程精度达米级的高程信息。本文主要就利用InSAR技术在大范围、高精度的山区地形测绘方面存在的问题进行研究和探讨,为其在地形测绘领域的推广应用奠定基础。
     论文围绕利用InSAR技术获取高精度山区DEM的算法理论和技术流程开展研究。针对SAR干涉DEM数据处理中的基线估计和相位解缠两大关键步骤,分别提出了一种适合于山区SAR数据处理的基线估计算法和差分提取DEM算法,以获取高精度的山区DEM。论文的主要研究工作如下:
     1、分析了影响SAR干涉测高精度的误差源
     从SAR干涉DEM的几何模型和数学模型着手,寻找影响SAR干涉提取DEM高程精度的误差源,并从理论上分析主要误差源对SAR干涉提取DEM高程精度的影响。
     2、提出了一种不受地形条件限制的InSAR基线估计算法
     对已有的InSAR基线估计方法的特性和适用条件进行分析总结;在此基础上,基于SAR干涉测量几何模型,构建一种不受地形条件限制的InSAR基线估计算法——基于配准偏移量的InSAR基线估计算法,并以ENVISAT卫星获取的西藏地区的真实数据进行验证分析。
     3、提出了一种基于“相位补偿”的SAR差分提取DEM算法流程
     针对长基线干涉对获取山区DEM存在“解缠困难”的问题,简要分析了现有的两种差分干涉提取DEM算法的特性和不足之处,在此基础上提出了一种基于“相位补偿”的SAR差分提取DEM算法。以昆仑山地区的ERS-Tandem模式数据进行差分干涉提取DEM实验,从理论和实验两方面验证了该算法的可行性和有效性。
     4、探讨了SAR干涉提取DEM的高程精度与地形条件、相干性之间的关系
     以本文所提出的差分提取DEM算法结果为例,采用统计学方法详细分析了差分干涉DEM高程精度与研究区地形条件、干涉对相干性之间的关系。实验结果表明,本文算法所得DEM高程精度与坡度、相干性之间是正相关的,且远离雷达视线方向的高程精度优于迎向雷达视线方向。因此,当研究区地形坡度不大(坡度小于45°)时,选择入射角大的SAR影像有利于高精度DEM获取。
Digital elevation model (DEM) is very vital spatial geographic information, which plays an important role in related research and national economy fields, such as resource exploration, disaster prevention and mitigation, infrastructure planning and construction and so on. However, in Western China, due to complicated topography, high altitude, thin air and some area are even affected by mist wheather throughout the year, conventional methods of elevation data acquisition are difficult to apply. Interferometric Synthetic Aperture Radar thechnology can help obtain large extent, fast and high precision elevation data. It makes use of two or more correlated SLCs in the test area to extract its height information with an accuracy high to meters. In this thesis, the problems existing in the DEM reconstruction based on InSAR technique are discussed, which put forward the application and development in terrain mapping field.
     The study is around the theory and technical flow of the DEM construction algorithm based on InSAR technique. Aiming at the key processes of SAR data processing, i.e., baseline estimation and phase unwrapping, a new baseline estimation method and an elevation information extraction algorithm by D-InSAR technique applicable in mountainous area are broughtforward to attain more accurate elevation data in relief area. The main research work in the thesis are as follows:
     Firstly, analyse the error sources of the height acquired by InSAR technique
     Based on the geometric and mathematical model of elevation extraction by InSAR, we explore the error sources that affect the height accuracy, and theoretically analyse the sensitivities of the main error sources to height estimation.
     Secondly, present a baseline estimation method immune to topography condition.
     After making an analysis of the characteristics and the applied condition of the existing InSAR baseline estimation algorithms, we propose a new baseline estimation algorithm less relying on terrain relief-InSAR baseline estimation algorithm based on coregi strati on offsets. Experiments with the real data acquired in Tibet by Envisate satellite are conducted to validate the algorithm.
     Thirdly, a DEM construction algorithm by differential InSAR technique based on phase compensation is proposed.
     Aiming at the problem of phase unwrapping diffculty in large baseline interferograms, we firstly make a simple analysis of the characteristics and defiency of the conventional DEM construction algorithm by InSAR and D-InSAR. Then, a DEM construction method by D-InSAR technique based on phase compensation is proposed. Experiments with the ERS-Tandem data acquired in Kunlun Mountain verify the feasibility and efficiency of the algorithm.
     Fourthly, discuss the relationship between the elevation accuracy and the topography condition and the coherence
     Taking the DEM obtained by the algorithm proposed in the paper as an example, we use statistical method to analyse the height accuracy under different topography and coherence conditions. The experiment results demonstrate that the accuracy of the obtained DEM is positively correlated to the coherence and the topographic slope, and that of the slopes bending away from the SAR look direction is more accurate than those facing the radar antenna. Therefore, if the slope of test area is less than 45 degrees, SAR images with greater incidence angle will be advantageous for high-precision DEM generation.
引文
ASTER GDEM Validation Team:METI/ERSDAC, NASA/LPDAAC, USGS/EROS. ASTER Global DEM Validation Summary Report,2009
    Burgmann R, Rosen P A, Fielding E J. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences,2000,28:169-209
    Curlander J C, McDonough R N. Synthetic Aperture Radar System and Signal Processing. John Wiley & Sons, New York,1991
    Costantini M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):813-821
    Cheng X, Xu G. The Integration of JERS-1 and ERS SAR in Differential Interferometry for Measurement of Complex Glacier Motion. Journal of Glaciology,2006,52(176):80-88
    Dammert P B G. Accuracy of INSAR Measurements in Forested Areas. Proceedings of Fringe 96'Workshop on ERS SAR Interferometry, Zrich,1996,37-49
    Dai X L, Khoram S. The Effects of Image Misregistration on the Accuracy of Remotely Sensed Change Detection, IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1566-11577
    Ding X L, Liu G X, Li Z W, Li Z L, Chen Y Q. Ground Subsidence Monitoring in Hong Kong with Satellite SAR Interferometry. Photogrammetry Engineering and Remote Sensing,2004,70(10):1151-1156.
    Documentation-User's Guide:Interferometric SAR Proccessor. GAMMA REMOTE SENSING,2007
    Eineder M, Holzner J. Interferometric DEMs in Alpine Terrain-Limits and Options for ERS and SRTM. IEEE Transactions on Geoscience and Remote Sensing, 2000,30:3210-3212
    Ferretti A, Prati C, Rocca F, Guarnieri A M. Multibaseline SAR Interferometry for Automatic DEM Reconstruction. Third ERS Symposium on Space at the service of our Environment, Italy,1997
    Fornaro G, Francheschetti G, Lanari R, Sansosti E, Tesauro M. Global and Local Phase-unwrapping Techniques:A Comparison. Journal of the Optical Society America A,1997,14:2702-2708
    Fielding E J, Blom R G, Goldstein R M. Rapid Subsidence over Oil Fields Measured by SAR Interferometry. Geophysical Research Letters,1998,25(17):3215-3218.
    Ferretti A, Prati C, and Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatters in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212.
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry. IEEE Trans Geoscience and Remote Sensing,2001,39(1):8-20
    Fruneau B, Deffontaines B, Rudant J P, LeParmentier A M. Monitoring Vertical Deformation Due to Water Pumping in the City of Paris (France) with Differential Interferometry. Computes Rendus Geoscience,2005,337:1173-1183
    Ferretti A, Guarmieri A M, Prati C. InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications, Netherlands, 2007
    Graham L C. Synthetic Interferometer Radar for Topographic Mapping. Proceedings of the IEEE,1974,62(6):763-768
    Goldstein R M, Zebker H A, Werner C L, Satellite Radar Interferometry:Two Dimensional Phase Unwrapping. Radio Science,1988,23(4):713-720
    Gabriel A K, Goldstein R M, Crossed Orbit Interferometry:Theory and Experimental Results from SIR-B. International Journal of Remote Sensing,1988,9(8):857-872
    Ghiglia D, Romero L. Robust Two-dimentional Weighted and Unweighted Phase Unwrapping That Uses Fast Transforms and Iterative Methods. Journal of the optical Society of America A,1994,11(1):107-117
    Guarnieri A M, Prati C. SAR Interferometry:A "Quick and Dirty" Coherence Estimattior for Data Browsing, IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):660-669
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters,1998,25(21):4035-4038.
    Hu J, Li Z W, Ding X L, Zhu J J. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching. Sensors,2008,8:6484-6495
    Kimura H. A Method to Estimate and Platform Altitude for SAR Interferometry. IEEE Transactions Geoscience and Remote Sensing Symposium, Italy,1995
    Kimura H, Todo M. Baseline Estimation Using Ground Points for Interferometric SAR. IEEE Transactions Geoscience and Remote Sensing Symposium, Singapore,1997
    Knedlik S, Loffeld O, Hein A, Arndt C. A Novel Approach to Accurate Baseline Estimation. IEEE Transactions on Geoscience and Remote Sensing,1999, 1:254-256
    Li F K, Goldstein R M. Studies of Multibaseline SpacebomeInterferometric Synthetic Aperture Radars. IEEE Transactions on Geoscience and Remote Sensing,1990, 28(1):88-97
    Lanari R, Fornaro G, Riccio D, Migliaccio M, Papathanassiou K P, Moreira J R, Schwabisch M, Dutra L, Puglisi G, Franceschetti G, Colterlli M. Generation of Digital Elevation Models by Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry:The Etna Case Study. IEEE Transactions on Geoscience and Remote Sensing,1996,34(5):1097-1114
    Lee J S, Papathanassiou K P, Ainsworth T L, Grunes M R, Reigber A. A new techniques for noise filtering of SAR interferogram phase images. IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1456-1465.
    Lu Z, Mann D, Freymueller J T, Meyer D J. Synthetic aperture radar interferometry of Okmok volcano, Alaska:Radar observations. Journal of Geophysical Research, 2000,105(B5):10791-10806.
    Li Z L, Zou W B, Ding X L. A Quantitative Measure for the Quality of INSAR Interferograms Based on Phase Differences. SPRS Journal of Photogrammetry & Remote Sensing,2004,70(10):1131-1137
    Liao M S, Wang T, Lu L J, Zhou W J, Li D R. Reconstruction of DEMs From ERS-1/2 Tandem Data in Mountainous Area Faciliated by SRTM Data. IEEE Transactions on Geoscience and Remote Sensing,2007,45(7):2325-2335
    Li Z W, Ding X L, Huang C, Zhu J J, Chen Y L. Improved Filtering Parameter Determination for the Goldstein Radar Interferogram Filter. ISPRS Journal of Photogrammetry & Remote Sensing,2008,63:621-634
    Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature,1993,364(8):138-142
    Massonnet D, Feigl K L. Radar Interferometry and Its Application to Changes in the Earth's Surface. Reviews of Geophysics 1998,36,4:441-500
    Perissin D, Rocca F. High-Accuracy Urban DEM Using Permanent Scatterers. IEEE Trans Geoscience and Remote Sensing,2006,44(11):3338-33347
    Prati C, Rocco F, Guarnieri A M, Pasquali P. Report on ERS-1 SAR Interferometric Techniques and Applications. Dipartimento di Eletronica Politecnico di Milano, 1994
    Rosen P A, Hensley S, Joughin I R, Li F K, Madsen S N, Rodriguez E, Goldstein R M. Synthetic Aperture Radar Interferometry. IEEE Transactions on Geoscience and Remote Sensing,2000,88(3):333-382
    Rodriguez E, Morris C S, Belz J E, Chapin E C Martin J M, Daffer W, Hensley S. An Assessment of the SRTM Topographic Products. Technical Report JPL D-31639, 2005
    Rogers A E, Ingalls R R. Venus:Mapping the Surface Reflectivity by Radar Interferometry. Science,1969,165(3895):797-799.
    Sharpnack D A, Akin G. An Algorithm for Computing Slope and Aspect from Elevations. Photogrammetric Survey,1969,35:247-248
    Small D, Werner C L, Nuesch D. Baseline Modelling for ERS-1 SAR Interferometry. IEEE Transactions International Geoscience and Remote Sensing Symposium, Tokyo,1993
    Spagnolini U.2-D Phase Unwrapping and Instantaneous Frequency Estimation. IEEE Transactions on Geoscience and Remote Sensing,1995,33:579-589
    Seymour M, Cumming I. Maximum Likelihood Estimation and Cramer-Rao Bounds for SAR Interferometry. Technical Report MS-95-03, University of British Columbia,1995
    Singh K, Stussi N, Keong K L. Baseline Estimation in Interferometric SAR. International 3rd ERS Symposium. Florence,1997
    Syemour M, Cumming I. Improving DEMs Using SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing,1998,31:2662-2664
    Scharroo R, Visser P. Precise Orbit Determination and Gravity Field Improvement for the ERS Satellites. Journal of Geophysical Research,1998,103 (C4):8113-8127
    Small D. Generation of Digital Elevation Models through Spaceborne SAR Interferometry:[Dissertation of Ph.D]. Zurich:Geography University of Zurich, 1998
    Tesauro M, Berardino P, Lanari R, Sansosti E, Fornaro G, Franceschetti G. Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry, Geophysical Research Letters,2000,27(13):1961-1964
    Wilkinson A J. Development of An Interferometric SAR Processing Facility Phase Implementation of An Image Registration Algorithm. UTC Radar Remote Sensing Group,1996
    Werner C L, Wegmuller U, Strozzi T, Wiesman A. Gamma SAR and Interferometric Processing Software. Proc. ERS-ENVISAT Symposium, Sweden,2000
    Werner C L, Wegmuller U, Strozzi T, Wiesman A. Differential Interferometry and Geocoding Software-DIFF&GEO. Sweden,2008
    Xu W, Cumming I. A Region-growing Algorithm for InSAR Phase Unwrapping. IEEE Transactions on Geoscience and Remote Sensing,1999,35(1):124-134
    Xia Y, Kaufmann H, Guo X F. Differential SAR Interferometry Using Corner Reflectors. IEEE Transactions on Geoscience and Remote Sensing,2002, 1243-1246
    Xia Y, Kaufmann H, Guo X F. Landslide Monitoring in the Three Gorges Area using D-InSAR and Corner reflectors. Photogrammetric Engineering and Remote Sensing,2004,70(10):1167-1172
    Zisk S H. Lunar Topography:First Radar-InterferometerMeasurements of the Alphonsus-ptolemaeus-Arzaehel Region. Scienee,1972,178(4064):977-950
    Zebker H A, Goldstein R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research,1986,91(B5): 4993-4999
    Zebker H A, Villasenor J. Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):950-959
    Zebker H A, Wemer C L, Rosen P, Hensley S. Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radars. IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):823-836
    Zandbergen R, Otten M, Righetti P L, Kuijiper D, Dow J M. Routine Operational and High-precision Orbit Determination of Envisat. Advance in Space Research, 2003,31(8):1953-1958
    Zebker H A, Chen K. Accurate Estimation of Correlation in InSAR Observations. IEEE Transactions on Geoscience and Remote Sensing,2005,2(2):124-127
    陈艳丽,李少梅,刘岱岳.基于规则格网DEM的坡度坡向分析研究.测绘与空间地理信息,2009,32(5):36-39
    杜莎莎.合成孔径雷达干涉测量技术基线估计:[硕士学位论文].北京:中国地质大学,2006
    胡庆东,毛士艺.干涉合成孔径雷达基线的估计.航空学报,1998,19(7):19-23
    胡庆东,毛士艺,洪文.干涉合成孔径雷达系统的最优基线.电子学报,1999,27(5):93-95
    靳国旺,徐青,朱彩英,韩晓林.利用平地干涉相位进行INSAR初始基线估计.测绘科学技术学报,2006,23(4):278-283
    靳国旺.InSAR获取高精度DEM关键技术处理研究:[博士学位论文].河南:信息工程大学,2007
    蒋弥,李志伟,丁晓利,朱建军,冯光财,尹宏杰.InSAR可检测的最大最小变形梯度的函数模型研究.地球物理学报,2009,52(7):1715-1724
    廖明生.由INSAR影像高精度自动生成干涉图的关键技术研究:[博士学位论文].武汉:武汉测绘科技大学,2000
    李志林,朱庆.数字高程模型.武汉:武汉大学出版社,2001
    刘国祥,丁晓利,陈永奇,李志林,李志伟.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场.科学通报,2001,46(14):1224-1228
    刘国祥,丁晓利,李志林,陈永奇,李志伟.使用InSAR建立DEM的试验研究.测绘学报,2001,30(4):336-342
    廖明生,林晖.雷达干涉测量学:原理与信号处理基础.北京:测绘出版社,2002
    廖静娟,郭华东,邵芸,Veneziani N.干涉条纹图估测基线的方法研究.高技术通讯,2002,12(8):5-8
    李新武,郭华东,廖静娟,王长林,范点.基于快速傅里叶变换的干涉SAR基线估计.测绘学报,2003,1(32):70-72
    李振洪,刘经南,许才军.InSAR数据处理中的误差分析.武大学报·信息科学版,2004,29(1):72-76
    刘国祥.利用雷达干涉技术监测区域地表形变北京:测绘出版社,2006:68-102
    刘颖,廖桂生,马仑.基于子空间投影的干涉合成孔径雷达基线误差估计.西安电子科技大学学报·自然科学版,2006,33(5):678-681
    刘国林,郝晓光,薛怀平.影响InSAR测高精度的相关性分析.武大学报·信息科学版,2007,32(1):55-58
    裴怀宁,马德宝,郑芳.基于平地干涉相位周期的基线估计方法.现代雷达,2005,27(11):48-50
    史世平.使用ERS-1/2干涉测量SAR数据生成DEM.测绘学报,2000,29(4):317-323
    舒宁.雷达影像干涉测量原理.武汉:武汉大学出版社,2003
    索志勇,李真芳,吴建新,保铮.利用局部先验知识的InSAR基线估计方法.西安电子科技大学学报·自然科学版,2008,35(5):774-777
    孙倩,朱建军,李志伟,尹宏杰,胡波,蒋弥.基于信噪比的InSAR干涉图自适应滤波.测绘学报,2009,38(5):437-442
    汤晓涛.INSAR数据处理的基线估计和影像自动概略配准.解放军测绘学院学报,1999,16(4):260-262
    唐晓青,向茂生,吴一戎.一种改进的基于干涉相位的基线估计方法.电子与信息学报,2008,30(12):2795-2799
    王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002:8184
    王腾.外部DEM辅助下的星载InSAR DEM生成技术研究:[硕士学位论文].武汉:武汉大学,2006
    邢保玉,杨福芹,郭增长.基于牛顿迭代法的干涉SAR基线估计.测绘工程,2007,16(6):9-12
    肖金群,汪长城,李志伟,杨亚夫.基于配准偏移量的InSAR基线估计.武大学报·信息科学版,2010,35(10):1236-1239
    尹宏杰,李志伟,丁晓利,蒋弥,孙倩,王平,基于最优化融合的InSAR干涉图自适应方向平滑滤波.遥感学报,2009,13(6):1099-1113
    尹宏杰.基于InSAR技术矿区地表形变监测研究:[硕士学位论文].长沙:中南大学,2009
    张晓玲,王建国,黄顺吉.干涉SAR成像中地形高度估计及基线估计方法的研究.信号处理,1999,15(4):319-321
    张晓玲,曾斌,黄顺吉.分布式卫星系统中干涉SAR测高精度分析.信号处理,2003,19(1):36-39
    郑芳,邬钧霆,马德宝.基于轨道误差的基线估计及其对高程精度的影响.信息工程大学学报,2005,6(1):77-79
    张军,向家彬,彭石宝.一种新的InSAR基线估计方法.空军雷达学院学报,2008,22(1):36-39
    曾琪明.InSAR处理原理、方法和应用.北京大学“定量遥感”暑期精品课程培训班,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700