用户名: 密码: 验证码:
羊膜生物支架与组织工程化角膜上皮的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于多种原因,发生角膜损伤,角膜缘干细胞遭到不可逆性损害,导致角膜缘干细胞失去代偿能力,出现角膜上皮持续性缺损、角膜基质溶解溃疡、角膜严重的新生血管化和疤痕化以及角膜上皮结膜化等症状的眼表异常,其治疗问题非常棘手。羊膜移植是近年来临床治疗眼表异常的一种新方法。据报道羊膜移植对复发性翼状胬肉,急性或亚急性期眼热化学烧伤,伴有严重疤痕增殖的重度烧伤眼以及其它一些慢性炎症性眼病均有一定的疗效。但是,单纯羊膜不易操作,利用硝酸纤维素膜负载又不便于观察,报道的羊膜处理和保存方法比较复杂。另外,如果以羊膜为支架,构建组织工程化角膜上皮时,去掉上皮细胞保留基底膜的羊膜用于培养细胞载体时,细胞很难贴附。基于以上存在的问题,本研究制作出一种更便于操作的羊膜支架,得到一种处理和保存羊膜的简便方法,并且该羊膜利于细胞粘附,以此成功构建用于移植的羊膜角膜上皮植片。羊膜自体角膜上皮细胞植片移植可重建受损角膜。但自体角膜上皮细胞移植无法对Stevens-Johnson综合症和眼表瘢痕类天疱疮引起的眼角膜损伤进行修复。本研究首次用羊膜培养表皮干细胞构建羊膜植片,并成功地治疗了角膜干细胞缺损。
    本研究,将人羊膜的上皮细胞和海绵层去除(同时去除基底膜结构),用纯甘油简化冻存法,-80℃保存5个月后,与新鲜羊膜相比较结构无明显差别,仍能使细胞生长良好。将此羊膜与自制的硝酸纤维素膜框架制成羊膜支架。该支架便于操作,羊膜在硝酸纤维素膜框架上贴合牢固,不会皱缩,不会漂浮,便于细胞的悬浮培养。在纤维素膜框架负载羊膜制成的羊膜支架上进行细胞培养,制成羊膜细胞植片。(申请专利,申请号:200410026031.0)
    动物模型的制作过程:全身麻醉,保定,剪毛,清洁眼表,眼周消毒,眼球后部麻醉。对于家兔和山羊是通过碱烧伤的方法去除角膜缘组织,山羊则是在眼科手术显微镜下操作。对家兔模型分A、B、C和D 4组进行对照试验,4周后,A组所有试验家兔角膜表面血管化、结膜化,未发生睑球粘连、溃疡性穿孔,细胞印迹学检查为结膜表型,可作为实验性角膜缘干细胞移植的病理模型;B组5只模型中只有2只模型制作成功(2/5);C组角膜表面透明,未见结膜和新生血管长入,细胞印迹学检查为角膜表型。不能用作模型;D组虽然4只为完全角膜缘干细胞缺失,但由于角膜溃疡穿孔,睑球粘连严重,不能用于移植实验。而另1只角膜表面透明,未见结膜和新生血管长入,细胞印迹学检查为角膜表型。山羊模型处理4周后,角膜表面血管化、结膜化,未发生睑球
    
    
    粘连和溃疡性穿孔,并根据角膜混浊度和表面新生血管化、结膜化(细胞印迹学检查出现杯细胞)等指标,来判定属角膜缘干细胞完全缺失病理模型,可作为移植的实验动物模型。
    模型建立后,将上述制备好的不同的羊膜-细胞植片分别移植给家兔和山羊。利用组织学检查及光镜、电镜进行观察。结果表明,所有实验兔,移植后10个月时,7例中,有2例视力恢复,效果明显,4例部分有效,1例无效;仅移植羊膜的4只家兔有3例无效,1例部分有效;未移植的3只家兔全部未见好转。本实验4只羊进行异体移植,除一只因手术不慎,损伤晶状体导致移植失败外,其余三只羊均实现角膜缘重建,眼表透明度增高。本实验共有9只羊进行了自体移植,其中5只至今六个月,有3只部分有效,眼表上皮化,实现角膜缘重建,2只未见好转;另外4只至今两个月,4只均部分有效,眼表上皮化,实现角膜缘重建。对照组共有6只羊,眼表均结膜化。(申请专利,申请号:200410026031.0) (申请专利,申请号:200410026154.4)
    本研究说明,所制作的羊膜支架便于实验研究和临床操作;用冷冻保存方法可使羊膜长期保存,并且冷冻过的羊膜仍能使细胞在其上良好生长;羊膜去除基底膜后,细胞很容易贴附,并且能够生长良好,在其表面所培养的上皮细胞可以重构基底膜结构;该方法处理的羊膜可进行眼表重建,此种羊膜还可以联合皮肤表皮干细胞进行眼表重建。
Ocular surface disorders, due to irreversibly destroy of corneal limbal stem cells (CLSC) maintaining corneal epithelial renewal, result from malcompensation of limbal stem cells, which was characteriqed by persistent epithelial defects, corneal stromal melting, corneal neovascularization with scarring and conjunctival epithelial ingrowth. The treatment for ocular surface disorders was arduous. Recently, human amniotic membrane (HAM) transplantation was a new operation performed for ocular surface disorders. According to documents, it had partial curative effects on some ocular surface disorders including recurrent pterygium, acute thermal/chemical-burned eye, severe burned eye with proliferating scarring and some chronic inflammation. The pure HAM tissue can not be operated easily. Cells on HAM can not be observed conveniently if Nitrocellulose(NC) membrane which wasn’t been delt with is used to load HAM. The reported methods of disposing and conserving HAM are complex. And cells are difficult to adhere to HAM surface if it still contains basement membrane. For all these reasons, we try to make a new kind of HAM that can be easily and conveniently operated, prepared and preserved and is good for cells adhering. If the corneal epithelial cells successfully grow and form graft well in vitro on HAM carrier, the graft can be used into HAM-cornea. Autograft of corneal limbal epithelial cells carried by HAM can reconstruct injured cornea, but they can’t repair the cornea injured by Stevens-Johnson syndrome (SJS) and Ocular Cicatricial Pemphigoid (OCP). In this research we first used HAM to culture corneal limbal epithelial cells to make HAM grafts, and succeed in curing the lack of corneal limbal epithelial cells.
     In this study, we removed epithelial cells, sponge layer and with basement membrane from HAM. HAM was frozen and stored at -80℃ in pure glycerol for 5 months. As a result, it was indifferent from fresh HAM and can also make cells grow well. The HAM scaffold with self-made NC membrane frame can adhere?to the scaffold closely, without shrivelling and floating and is good for cells` floating culture. Then we cultured cells on the scaffold and made them into HAM-cells grafts.
     Basiclly, the Animal models was made in similar methods of the general anaesthesia, settle, shear the eyelash, the ocular surface cleaning followed by eyeball anaesthesia. Rabbits were
    
    
    used for alkili-burn eye and disinfection model, while goat cornea limbal was ablated micro-operation under ophthalmoscope. In general, it was the successful phothological model of total CLSC deficiency that those corneal surface were haze with neovasculavization and conjunctivalizaion, as well as the corneal stroma were integrate, symblepharon (adhesions of lid conjunctiva to globe conjunctiva) were not observed, which could be used for limbal stem cells transplants. To create the pathological model of CLSC deficiency, 20 nomal rabbits were randomly divided into A,B,C and D groups. In group A, the rabbits corneal limbal epithelium lamella were excised, and the central corneal epithelia were burned with 1N NaOH. In group B, corneal limbal epithelium lamella were all excised, in group C only the upper–half of limbal epithelium as removed, the central corneal epithelium of the both groups were erased with a swab soaked in physiological saline. In the group D, the corneal and limbal epitheliums were burned with a cotton swab socked in 1N NaOH. After 4 weeks the results showed that 100 percent of the rabbits in group A could be used. In group B only two fifths of animals could be used. All corneas of rabbits in group C were transparent, with intact corneal epithelium, and so could not be used as model. In group D, 4 rabbits with total CLSC deficiency so could not be used because of serious stroma perforation and symblepharon, another rabbit recovered as group C. That corneal limbal epithelium lamella excised and the center corneal epithelium burned with 1N NaOH is applicable method to create the pathological model of total CLSC deficiency. Aft
引文
曹谊林, 崔磊, 高庆新, 等. 组织工程的研究现状与应用展望[J]. 中国医疗器械信息, 2002, 6(4): 11~13
    翁雨来, 商庆新, 曹谊林. 生命科学的新增长点—组织工程[J]. 牙体牙髓牙周病学杂志, 2002, 39(10): 249~255
    王馨, 屈雷, 窦忠英, 等. 组织工程生物支架材料[J]. 中国生物工程杂志, 2004, 23(10): 15~18
    Antonios G Mikos, Johnna S. Temenoff. Formation of highly porous biodegradable scaffolds for tissue engineering [J]. Electronic Journal of Biotechnology, 2000, 2: 114~119
    王身国, 杨健, 蔡晴, 等. 组织工程用生物材料及细胞支架研究[J]. 中华整形外科杂志, 2000, 11(6): 328~330
    Nam Y S, Yoon J J, Park T G. A novelfabrication method of macroporous biodegradable polymerscaffolds using gas foaming salt as a porogen additive[J]. Journal of Biomedical Materials Research (Applied Biomaterials), 2000, 53: 1~7
    Solchaga L A, Dennis, J E, Goldberg V M, et al. Hyaluronic acid-based polymers as cellcarriers for tissue-engineered repair of bone and cartilage[J]. Journal of Orthopaedic Research, 1999, 17: 205~213
    Temenoff J S, Mikos A G. Tissueengineering for regeneration of articular cartilage[J]. Biomaterials, 2000, 21: 431~440
    姜会庆, 陈一飞. 纳米材料在医学中的应用[J]. 中国修复重建外科杂志, 2002, 16(6): 435~437
    成国祥, 蔡志江. 纳米结构组织工程支架材料[J]. 中国医学科学院学报, 2002, 24(2): 207~210
    Larry L Hench Julia M Polak. Third-Generation Biomedical Materials[J]. Science, 2002, 295: 1016~1017
    Jui-Che L, Yui-Fang C, Chuh-Yung C. Surface characterization and platelet adhesion studies of plasma polymerized phosphite and its copolymers with dimethylsulfate [J]. Biomaterials, 1999, 20(15): 1439~1447
    郇春艳, 胡平. 组织工程用生物材料的表面修饰技术[J]. 化工进展, 2003, 22(1): 13~17
    Huaigiu shi, Wei-Bor Tsai, Michael D Garrison, et al. Template-imprinted nanostructured surfaces for protein recognition[J]. Nature, 1999, 398(15): 593~597
    Varma H K, Yokogawa Y, Espinosa F F, et al. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method [J]. Biomaterials, 1999, 20(9): 879~884
    Hu Y, Winn S R, Krajbich I, et al. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro [J]. Biomed Mater Res, 2003, 64A(3): 583~590
    Shen F, Cui Y L, Yang L F, et al. Astudy on the fabrcation of potous chitosan/gelatin network scaffold for tissue engineering[J]. Polym Intern, 2000, 49: 1~4
    Linda G Griffith,Gail Naughtom. Tissue Engineering Current Challenges and Expanding[J]. Opportunities. Science, 2002, 295: 1009~1016
    
    Malomi W, Matarrese P, Rivabene R, et al. Antioxidengt Nacetul-cuteine increasing cell adhesion capability processes[J]. Biomaterials, 1996, 17: 921~928
    Lo H, Ponticiello M S Leong K W. Fabrication of controlled release biodegradable foams byphase separation[J]. Tissue Engineering, 1995, 1: 15~28
    Nam Y S, Park T G. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method[J]. Biomaterials, 1999a, 20: 1783~1790
    Zieske J D, Mason V S, Wasson M E, et al. Parenteau Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction[J]. Exp Cell Res, 1994, 214(2): 621~633
    Germain L, Auger F A, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering[J]. Pathobiology, 1999, 67(3): 140~147
    May Griffith, Rosemarie Osborne, Rejean Munger, et al. Mitchell A. Watsky Functional Human Corneal Equivalents Constructed from Cell Lines [J]. Science, 1999, 286: 2169~2172
    Trelford J D, relford-Sauder M T. The amnion in surgery, past and present[J]. Am J Obstet Gynecol, 1979,134(7): 833~845
    Koizumi N, Inatomi T, Quantock A J, et al. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits[J]. Cornea, 2000, 19(1): 65~71
    刘斌等. 人体胚胎学, 人民卫生出版社, 1996, 1: 107
    Kim J C, Tseng S C G. Transplantation of preserved human amniotic membrane for surface reconstruction in sererly damaged rabbit corneas[J]. Cotnea, 1995, 14(5): 473~484
    Lee S H, Tseng S C G. Amniotic membrane transplantation for persistent epithelial defects with ulceration[J]. Am J Ophthalmol, 1997, 123(3): 303~312
    Tseng S C G, Prabhasawat P, Lee S H, et al. Amniotic membrane transplantation for conjunctival surface reconstruction[J]. AM J Ophthalmol, 1997, 124: 765~774
    Tseng S C G, Li D Q, Ma X. Downregulation of TGF-β1, β2, β3, and TGF-βreceptor Ⅱexpression in human corneal fibroblasts by amniotic membrane[J]. Invest Ophthalmol Vis Sci, 1998, 39(4): 90
    Shimazaki J, Yang H Y, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns[J]. Ophthalmology, 1997, 104(12): 2068~2076
    Shimazaki J, Shinozaki N, Tsubota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon[J]. Br. J. Ophthalmol. 1998, 82: 235 ~240
    李学东, 孙秉基, 徐锦堂, 等. 羊膜移植术治疗兔重度角结膜碱烧伤后遗血管性角膜白斑[J]. 眼科研究, 1998, (16): 2115~2117
    Maclachlan T B. A method for the investigation of the strength of the fetal membranes[J]. Am J Obstet Gynecol, 1965, 91: 309~313
    Polishuk W Z, Kohane S. Fetal weight and membrane tensile strength[J]. Am J Obstet Gynecol, 1964, 88: 247~250
    Akle C A, Adinolfi M, Welsh K I, et al. Immunogenicitu of human amniotic epithelial cells afeter
    
    
    transplantation into volunteers[J]. Lancet 1981, 11: 1003~1005
    Adinof1i M, Akle C A, Mccoll I, et al. Expression of HLA antigens, β2-microglobulin and enzymes by human amniotic membrane[J]. Nature, 1982, 295: 325~327
    Houlihan J M, Biro P A, Harper H M, et al. The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G [J]. Immunol, 1995, 154: 5665~5674
    Madhavan H N, Priya K, Malathi J, et al. Preparation of amniotic membrane for ocular surface reconstruction[J]. Indian J Ophthalmol, 2002, 50(3): 227~231
    Tsubota K, Toda I, Saito H, et al. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorder[J]. Ophthalmology, 1995, 102: 1486~1496
    Shimazaki J, Shinazaki N, Tsubota K. Transplantation of amnioticmembrane and limbal autograft for patients with recurrent pterygieum associated with symhlepharom[J]. Br J Ophthalmol, 1998, 82(3): 235~240
    Azuara-Blanco A, pillai C T, Dua H S. Amniotic membrane transplantation for ocular surface reconstruction[J]. Br J Ophthalmol. 1999, 83: 399~402
    Dua H S, Azuata-Blanco A. Amniotic membrane transplantation[J]. Br J Opthalmol, 1999, 83: 748~752
    石英, 殷汝桂, 汪英姿, 等. 新鲜羊膜与保存羊膜移植重建眼表的初步报告[J]. 中国实用眼科杂志, 2001, 19(8): 607~609
    卢蓉, 黄丹平, 刘金陵, 等. “去上皮”羊膜对体外培养结膜上皮细胞的作用[J]. 中国实用眼科杂志, 2002, 20(10): 775~778
    Sato H, Shimazaki N, Shinozalki N, et al. Role of growth factors for ocular surface reconstruction after amniotic membrane transplantation[J]. Invest Ophthalmol Vis Sci, 1998, 39: S428
    陈家祺, 周世有, 黄挺, 等. 新鲜羊膜移植治疗严重的急性炎症期及瘢痕期眼表疾病的临床研究[J]. 中华眼科杂志, 2000, 36(1): 13~17
    刘绍辉, 王传富, 赵桂秋, 等. 羊膜保存方法及其对羊膜活性影响的研究[J]. 中国实用眼科杂志 2002, 20(11): 812~817
    胡辅华. 羊膜移植在眼科的临床应用[J]. 中国交通医学杂志, 2004, 18(1): 82~84
    Prahasawat P, Barton K, Burkett G, et al. Comparison of conjunctioval autografts, amniotic membrane grafts and primary closure for pterygium excision[J]. Ophthalmology, 1997, 104: 85
    李谊, 孙秉基, 贺焱, 等. 羊膜移植治疗复发性翼状胬肉55例临床体会[J]. 眼科, 1997, 6:217
    毛羽翔, 吴中耀. 应用羊膜移植手术治疗复发性翼状胬肉[J].中国实用眼科杂志 2001, 19(11): 876~877
    李颖, 倪伟. 三种治疗翼状胬肉方法的临床观察[J]. 中国实用眼科杂志, 2002, 20(6): 465~466
    李线, 黄菊天, 陈剑, 等. 新鲜羊膜联合自体角膜缘移植复发性翼状胬肉[J]. 中国实用眼科杂志, 2002, 20(7): 552~553
    侯光辉, 徐锦堂, 孙秉基, 等. 羊膜移植或联合自体角膜缘移植术治疗复发性翼状胬肉[J]. 中国实用眼科杂志, 2001, 19(1): 71~74
    冀建平, 张秀兰, 叶天才, 等. 非穿透性滤过手术联合羊膜移植的实验研究[J]. 中国实用眼科杂志, 2002, 20(3): 203~205
    高伟, 崔巍, 刘森玉, 等. 人羊膜与丝裂霉素C用于青光眼小梁切除术的临床对比研究[J]. 中国实用跟科杂志. 2002, 20(8): 623~625
    
    Kruse F E, Rohrschneiderk, Volcker H E. Multilayer Amniotic membrane transplantation for reconstruction of deep corneal ulcers[J]. Opthalmology, 1999, 106: 1504~1511
    吴护平, 洪荣照, 刘昭升, 等. 羊膜移植治疗角膜溃疡的初步报告[J]. 中国实用眼科杂志, 2002, 20(2): 114~115
    陈家棋, 周世有, 黄挺, 等. 新鲜羊膜移植治疗严重的急性炎症期及癖痕期眼表疾病的临床研究[J]. 中华眼科杂志. 2000, 36(1): 13~17
    谢立信. 第四届国际眼表和泪液大会概述. 中华眼科杂志, 2000, 36:77~78
    Na B K, Hwang J H, Shin E J, et al. Analysis of human amniotic membrane components as proteinast inhibitors for development of therapetic agent of recalcitrant keratitis[J]. Invest Ophthalmol Vis Sci, 1998, 39: 90
    陈 炜, 刘祖国. 羊膜移植治疗大泡性角膜病变[J]. 中国实用眼科杂志. 2002, 20(4): 297~298
    齐履来, 冯金玲, 张金华, 等. 羊膜移植治疗严重眼表疾病的临床观察[J]. 中国实用眼科杂志, 2002, 20( 4): 295~296
    陈剑,丁琦, 徐锦堂, 等. 新鲜羊膜移植术治疗早期碱烧伤对角膜新生血管和上皮愈合的影响[J]. 中国实用眼科杂志, 2002, 20(3): 206~208
    Modesti A, Scarpa S, D'Orazi G, et al. Localization of type IV and V collagens in the stroma of hwnan amniotic[J]. Prog Clin Biol Res, 1989, 296: 459~463
    Terranova V P, Lyall R M. Chenotaxis of human gingival epithelial cells to laminin[J]. A mechanism for epithelial cell apical migration. J Periodomol, 1986, 57: 311~317
    Khodadoust A A, Silverstein A M, Kenyon K R, et al. Adhesion of regenerating corneal epithelium. The role of basement membrane[J]. Am J Ophthalmol 1968, 65: 338~348
    Krupakus M A, Stock E L, Jones J C R. The role of the basement membrane in differential expression of keratin proteins in epithelial cells[J]. Dev Biol, 1992, 150: 243~245
    Guo M, Grinnell F. Basement membrane and huaman epidermal differentiation in vitro[J]. J Invest Dermatol, 1989, 93: 372~378
     Boudreau N, Sympson C J, Werb Z, et al.Supkkpression of ICE and apoptosis in mammary epithelial cells by extracellular matrix[J]. Science, 1995, 267: 891~893
    Harminder S D, Augusto A B. Amniotic membrane transplantation[J]. Br J Ophthalmol, 1999, 83: 748~752
    Imanishi J, Kamiyama K, Iguchi I, et al. Growth factors:importance in wound healing and maintenance of transparency of the cornea[J]. Prog Retin Eye Res 2000, 19(1): 113~129
    Rocha G, Schultz G S. Corneal wound healing in laser in situ keratomileusis.International Ophthaimology Clinics- Advances in Refractive and Corneal Surgery, 1996, 36: 9~20
    Li D Q, Tseng S C G. Three patterns of cytokine expression potentially involved in epithelial~ Fibroblast interactions of human ocular surface[J]. J Cell Physiol, 1995, 163: 61~79
    Knorr M, Schuller S, Stcuhl K P, et al. EGF in therapy of corneal diseases: Principles and possible uses[J]. Ophthalmolgy, 1992, 89(2): 119~127
    St-Arnaud R, Chabot J G, Pelletier G, et al. Epidemal growth factor strcture, location, phosthorylation and regulation of its receptor[J]. Biochem, 1984, 66(7~8): 515~530
    Defize L H, de Laat S W. Structural and functional aspects of epidermal growth factor (EGF) and Its receptor[J]. Prog Brain Res, 1986, 69: 169~182
    
    Carpenter G, Cohen S. Epidermal growth factor[J]. J Biol Chem, 1990, 15, 264(14): 7709~7712
    Soderquest A M, Carpenter G. Developments in the machanism of growth factor action: activation of protein kinase by epidenmal growth factor[J]. Fed Proc, 1983, 42(9): 2615~2620
    Das M. Epidermal growath factor: mechanisms of action[J]. Int Rev Cytol, 1982, 78: 233~256
    Wilson S E, Weng J. Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells[J]. Exp Eye Res, 1994, 59(6): 665~678
    Hongo M, Itoi M, Yamaguchi N, et al. Distribution of epidermal growth of factor (EGF) receptors in rabbit corneal epithelial cells, keratocytes and endothelial cells and the changes induced by transforming growth factor-β1[J]. Exp Eye Res, 1992, 54: 9~16
    熊新春, 魏厚仁, 杜蜀华. 表皮生长因子受体在鼠角膜损伤前后的表达[J]. 同济医科大学学报, 1998, 27(5): 389~390
    Zieske J D, Takahashi H, Hutcheon AE. Activation of epidermal growth factor receptor during corneal epithelial migration[J]. Invest Ophthalmol Vis Sci, 2000, 41(6): 1346~1355
    Schultz G, Chegini N, Grant M, et al. Effects of growth factors on corneal wound healing[J]. Acta Ophthamol Suppl, 1992, 202: 60~66
    Mazue G, Bertolero F, Jacob C, et al. Preclinical and clinical studies with recombinant human basic fibroblast growth factor[J]. Ann-N-Y-Acad-Sci, 1991, 68: 329~340
    Koizumi N J, Inatomi T J, Sotozono C J, et al. Growth factor mRNA and protein in preserved human amniotic membrane[J]. Curr Eye Res, 2000, 20(3): 173~177
    Tseng S C G, Li D Q, Ma X. Suppression of transforming growth factor~ beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix[J]. J Cell Physiol, 1999, 179(3): 325~335
    Lee S B, Li D Q, Tan D T, et al. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane[J]. Curr Eye Res, 2000, 20(4): 325~334
    Ma D, Ya Z, Yeh L, et al. Moducation of in vitro Anti-angiogenic activity of human limbo~ corneal Episthelial cells by preserved human Anniotic membrane[J]. Invest ophtEhalmol Vis Sci, 2003, 44: 827
    Solomon A, Meller D, Prabha-Sauat P, et al. Amniotic membrane transplantation for nontraumatic corneal perforations, descemetoceles, and deep ulcers[J]. Ophthalmology, 2002, 109(4): 694~703
    Maharajan S V, Mcintosh R S, Dua H S, et al. and Cytokine Expression by corneal Epithelial cells Grown on Amniotic membrane as compared to falcon (collagen coated) and Nunc (non-coated) plates[J]. Invest ophthamol Vis Sci, 2003, 44: 1384
    谢立信. 角膜移植学[M]. 北京: 人民卫生出版社, 2000, 14~25
    Mann I. Study of epithelial regeneration in living eye [J]. Br J Ophthalmol 1944, 28: 26~40
    Maumenee A, Scholz R. Histopathology of the ocular lesions produced by the sulphur and nitrogen mustards [J]. Johns Hopkins Hospital Bull, 1948, 82: 12~47
    Buschke W. Morphologic changes in cells of corneal epithelium in wound healing [J]. Arch Ophthalmol 1949, 41: 306~316
    Thoft R A. Conjunctival transplantation as an alternative to keratoplasty[J]. Ophthalmology, 1979, 86:
    
    
    1084~1092
    Kruse F E, Chen J J, Tsai R J, et al. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium[J]. Invest Ophthalmol Vis Sci. 1990, 31: 1903~1913
    Dua H S. The conjunctiva in corneal epithelial wound healing[J]. Br J Ophthalmol, 1998, 82: 1407~1411
    Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome[J]. Arch Ophthalmol 2001, 19, 298~300
    Koizumi N, Inatomi T, Quantock A J, et al. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits[J]. Cornea, 2000, 19(1): 65~71
    Elias E, Galindo H, Theiss C. Expression of △Np63 in Response to Phorbol Ester in Human Limbal Epithelial Cells Expanded on Intact Human Amniotic Membrane[J]. Invest Ophthalmol Vis Sci, 2003, 44: 2959~2965
    Grueterich M, Espana E, Tseng S C G. Connexin 43 Expression and Proliferation of Human Limbal Epithelium on Intact and Denuded Amniotic Membrane[J]. Invest Ophthalmol Vis Sci, 2002, 43: 63~71
    Solomon A, Rosenblatt M, Tseng S C G, et al. Suppression of interleukin-1 and interleukin-1 in human limbal epithelial cells cultured on the amniotic membrane stromal matrix[J]. Br J Ophthalmology, 2001, 85: 444~449
    Tsai R J F, Li L M, Chen J K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[J]. N Engl J Med, 2003, 43, 86~93
    Ban Y, Cooper L J, Fullwood N J, et al. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting[J]. Exp Eye Res, 2003, 76(6): 735~743
    Tsai R J. Amniotic membrane is the niche for limbal stem cells expansion[J]. Invest ophthalmol Vis Sci, 2003, 44: 1360
    Meller D, Pires R T F, Tseng S C G. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures[J]. Br. J. Ophthalmology, 2002, 86: 463~471
    Koizumi N, Cooper L J, Fullwood N J, et al. An Evaluation of Cultivated Corneal Limbal Epithelial Cells Using Cell Suspension Culture[J]. Invest Ophthalmol Vis Sci, 2002, 43: 2114~2121
    Wolosin J M, Xiong X, Schutte M, et al. Stem cells and differentiation stages in the limbal corneal epithelium[J]. Prog Retinal Eye Res. 2000, 19: 223~255
    Wang D, Hsueh Y, chen J. Epitheloal outgrowth of limbal explant on amniatic membrane exhibits limbal, but not corneal,phenotypic characteristics[J]. Invest ophthalmlol Vis Sic, 2003, 44: 2033
    Hu D J, Basti S, Wen A, et al. Prospectibe comparison of corneal Reepithelialization over the stromal and Basement membrane surfaces of preserved Human Amuiotic membrane[J]. Invest ophthalmol Vis Sci, 2003, 44: 3151 E- abstract.
    Nakamura T, Endo K I, Cooper L J, et al. The successful culture and Autologous Transplantation of Rabbits oral Mucosal Epithelial cells on Amniotic membrane[J]. Invest Ophthalmol Vis Sci, 2003, 44(1): 106~116
    Yuan C, Sanada Y, Boehlke C S, et al. Growth of Epidermal keratinocytes on Human Amniotic
    
    
    Membrane[J]. Invest Ophthalmol Vis Sci, 2002, 43: 1682
    Minami Y, Sugihara H, Oono S. Reconstruction of cornea in three-dimensional collagen gel matrix culture[J]. Invest Ophthalmol Vis Sci, 1993, 34: 2316~2324
    Wolfgang Friess. Collagen-biomaterial for drug delivery[J]. European Journal of Pharmaceuties and Biopharmaceuties, 1998, 45: 113~136
    Nakao H, Matsuda T, Nakayama Y, et al. Design concept and construction of a hybrid lamellar keratoprosthesis[J]. ASAIO J, 1993, 39(3): 257~260
    Hadlock T, Singh S, Vacanti J P, et al. Ocular cell monolayers cultured on biodegradable substrates[J]. Tissue Eng, 1999, 5(3): 187~196
    胡晓洁, 商庆新, 曹谊林. 角膜基质细-PGA生物支架复合物体外培养研究[J]. 眼科研究, 2001, 19( 4): 308~310
    Griffith M, Osborne R, Munger R. Functional human corneal equivalents constructed from cell lines[J]. Science, 1999, 286: 2169~2172
    Pellegrini G, Traverso C E, Franzi A T, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium[J]. Lancet, 1997, 349(9057): 990~993
    Tsai R J F, Li L M, Chen J K. Reconstruction of Damaged Corneas by Transplantation of Autologous Limbal Epithelial Cells[J]. N. Engl. J. Med., 2000, 343: 86~93
    Schwab I R. Cultured corneal epithelia for ocular surface disease[J]. Trans Am Ophthalmol Soc, 1999, 97: 891~986
    Koizumi N, Inatomi T, et al. Amniotic Membrane as a substrate for cultivating limbal corneal epithelial cells for auotogous transplantation in rabbits[J]. Cornea, 2000, 19(1): 65~71
    Pan Z, Zhang W, Wu Y. An experimental study on treatment of limbal alkali burn by allograft transplantation with cultured stem cells on amniotic membrane[J]. Zhonghua Yan Ke Za Zhi, 2000, 36(1): 32~35
    Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders[J]. Ophthalmology, 2001, 108: 1569~1574
    Schwab I R. Cultured corneal epithelia for ocular surface disease[J]. Trans Am Ophthalmol Soc, 1999, 97: 891~986
    Nakamura T, Endo K I, Cooper L J, et al. The Successful Culture and Autologous Transplantation of Rabbit Oral Mucosal Epithelial Cells on Amniotic Membrane[J]. Invest Ophthalmol Vis Sci, 2003, 44: 106~116
    Yuan C, Sawada Y, Boehlke C S, et al. Growth of Epidermal Keratinocytes on Human Amniotic Membrane[J]. Invest Ophthalmol Vis Sci, 2002, 43: E-Abstract 1682.
    Champliud M F, Lunstrum G P, Rousselle P, et al. Human amnion contains anovel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment[J]. J Cell Biol 1996, 132: 1189~1198
    Tsai R J F, Tseng S C G. Human allograft limbal transplantation for crneal surgace reconstruction[J]. Cornea, 1994, 13: 389~400
    Fagerholm P. Presence and distribution of hyaluronan in the human amniotic membrane before and after storage [abstract]. 4" Ocular Surface and Tear Conference, 1999: 14 Bascom. UAS.
    钟一声, 叶纹, 沈玺, 等. 冷冻保存羊膜的超微结构观察[J]. 眼科学报, 2001, 17(4), 202~205
    
    屈雷, 杨学义, 王馨, 等. 家兔角膜缘干细胞缺失病理模型的制作. 西北农林科技大学学报[J], 2004, In press.
    Ti S E, Anderson D F, Touhami A, et al. Factors affecting outcome following successful tromsplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits[J]. Invest ophthalmol Vis Sci, 2002, 43: 2584~2592
    Ti S E, Grueterich, Espana E, et al. Correlation of long term phenotypic and clinical outcomes following limbal epithelial transplantation cultivated on amniotic membrane in rabbits[J]. Br J. ophthalmol, 2004, 000: 1~7
    屈雷, 王馨, 杨学义, 等. 构建组织工程化羊膜角膜上皮植片的研究进展.国际眼科杂志[J], 2004, 6(1): 115~120
    杨增明, 仝允栩. 发生类坏死蝌蚪皮肤在诱导并分化为角膜过程中的超微结构[J]. 实验生物学报, 1998, 21: 443~455
    Yuan C, Sanada Y, Boehlke CS, et al. Growth of Epidermal keratinocytes on Human Amniotic Membrane[J]. Invest Ophthalmol Vis Sci, 2002, 43: E- Abstract 1682
    张红卫主编. 发育生物学. 高等教育出版社. 2001, 8(1): 303
    Ferraris C, Chevalier G, Favier B, et al. Adult corneal epithelium basal cells possess the Capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli[J]. Development. 2000, 127: 5487~5495
    Dua H S, Joseph A, Shanmuganathan V A, et al. Stem cell differentiation and the effects of deficiency[J]. Eye, 2003, 17(8): 877-885
    Pellegrin G. Dellambra E, Golisano O, et al. P63 identifies keratinocyte stem cells[J]. Pro. Natl. Acd. Sci. USA ,2001, 98(6): 3156~3161
    Gambardella L, Barrandon Y. The multifaceted adult epidermal stem cell[J]. Current opinion in cell Biology, 2003, 15: 771~777
    Alison M R, Poulsom R, Otto W R, et al. Plastic adult stem cells: Will they graduate from the School of hard knocks? [J]. J Cell Sci, 2003, 116: 599~603
    Jiang Y H, Jahagirdar B N, Reinhard R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature 2002, 418: 41~49
    Li L S. The cellular Basis for stem cell plasticity[J]. Stem cell and Cellular therapy, 2003, 1(4): 9~10
    Fang B J, Shi M X, Yang S G, et al. Identification of postembryonic pluripotent stem cells from various human fetal tissues and with similar charalteristics[J]. Stem cell and Cellular therapy, 2003, 1(4): 11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700