用户名: 密码: 验证码:
基于双源激光的田间作业机械导航定位系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确定位技术是精细农业的一个重要研究内容,是实现智能农机的关键技术之一。由于我国南方水田面积小、使得成本较高的高精度DGPS难以大面积推广,为开发适于南方农业机械的低成本、高精度定位系统,本文提出了一种基于双源激光的定位技术,运用已知的两个激光发射器的距离和实时获得的激光发射器动态发射角度,实时解算出田间作业机械的坐标信息与运动姿态,为田间作业机械导航定位和田间数据定点采集提供技术支撑。本文的研究内容是湖南省自然科学基金“水田作业机器人无标识环境的导航定位技术研究(09JJ6091)”和国家科技支撑项目“轻简化水田作业关键装备研究与示范(2011BAD20B08)”的部分内容。研究以高速插秧机为对象搭建试验平台,对系统的无线交换方式、激光光斑识别算法、激光发射角初始化方法,激光接收靶跟踪算法、转向控制算法进行了详细研究,主要内容如下:
     1.分析田间作业机械定位与自动驾驶的特点,结合现有定位系统的技术特点和成本因素,提出了基于双源激光的田间作业机械导航定位方法。
     2.为保证数据交换的实时性,系统采用2.4G无线通信模块进行数据交换,针对三方数据通信(两激光发射器与接收靶)存在数据交换碰撞问题,提出采用环形链路数据交换的无线通信方法,配合相应的通信协议,确保数据的可靠传输。
     3.为获得精确的激光发射器初始角度和基线长度,系统采用超声波对射方式进行距离测量,同时辅以无线通信实现超声波基准时间的启动,并根据投影原理解决探头之间的高度落差问题,通过温度补偿、系统误差补偿等措施,实现了两个激光发射器与激光接收靶三者间的初始距离精确测量,进而完成激光发射器旋转角度和基线长度的初始化。
     4.为解决普通激光发射器的光晕、漫反射等问题,提出了基于算术均值滤波与中值滤波融合的激光光斑初始化处理算法。通过理论推导与实验,验证了算法的可行性。
     5.为解决目标运动过程中接收靶本身运动及车体振动导致光斑中心检测偏差问题,提出运用可变增益的递推α-p滤波算法对经过初始滤波的激光光斑中心进行二次滤波,实现对光斑中心的动态预估,从而获得了准确的光斑中心,并验证了算法的可行性和必要性。
     6.为保持对运动的激光接收靶的持续锁定,从而实现实时定位解算,在深入研究PID算法和卡尔曼滤波理论的基础上,提出了基于增量式PID快速修正的卡尔曼滤波算法,实现了双激光源对运动中的接收器的持续跟踪锁定,进而完成系统高精度定位。
     7.以方向盘的转向控制为研究目标,建立了插秧机的转向控制数学模型,深入地研究了插秧机的导航控制方法,提出了模糊免疫PID的转向控制算法。通过Matlab仿真,在模糊免疫PID的Kp,Ki,Kd,K,η分别取6,2,2,0.5,0.5时,系统可获得很好的控制效果,并通过实验验证了导航跟踪精度完全能满足田间作业设备的需要。
Precision location technology is an important research content in precision agriculture, which is also a key technology to realize the intelligent agricultural machinery. The areas in southern paddy field is so small that the expensive and high-precision DGPS could not been applied in more areas. In order to develop a low-price and high-precision location system applied in small-sized agricultural machinery in the south, a kind of the location technology based on the double laser-transmitter was proposed in this thesis. The distance from the laser-transmitter to the laser-receiver can be measured directly at first. Then the transmitting angle can be figured out in real-time. Therefore, the location coordinate of the moving machine and its moving state can be calculated, which provided technology supporting for navigation&location of the agricultural machinery and the fixed-point data acquisition in the field. The content of this thesis belongs to a part of "Research on navigation&location technology of robots working in the paddy field without any mark (09JJ6091)" in Hunan science fund as well as "Research on the key and simple&flexible machinery working in the paddy field "in national science&technology support project.
     Taking the high-speed rice transplanter2ZG630A as the test platform, the following main contents have been studied in detail such as the system's wireless switch way, laser spot recognition algorithm, the initialization way of the laser transmitting angle, the algorithm for tracking laser receiver and steering control algorithm, etc.
     1. After the characteristics of location and auto-driving of the machine working in the paddy field have been analyzed, combined characteristics the and cost of the present location system, the navigation and location method for the working machinery in paddy field based on the double laser transmitter was proposed.
     2. The system used2.4G wireless communication mode to realize the data exchange in real time. Because three-channel data communication (the two laser transmitters and the laser receiver target)may lead to the data communication collision, ring data exchange to realize wireless communication with the proper communication agreement was proposed to make sure the data transmission reliable.
     3. In order to get the accurate laser transmitter angle and the baseline length, the system used ultrasonic wave at point-to-point to measure the distance. Meanwhile, wireless communication mode helped to realize the start of the reference time. According to the projection principle, the problem about height drop between probes could be solved. By the temperature compensation and system error compensation, the initial distance measurement accurately among two laser emitters and laser receiver can be realized and the initialization of the rotation angle of the laser emitter and the length of baseline also can also be performed.
     4. In order to deal with the halo and diffuse reflection of the common laser transmitter, the algorithm about laser spot initialization combined the arithmetic average filtering and middle filtering algorithms were raised in this paper. After the theoretical deduction and test, the algorithm's availability and necessity had been proved.
     5. Because receiving target self-moving and vehicle vibrating lead to the deviation of laser spot center caused between checked and actual during the movement of object, the recursive α-β filtering algorithm with variable gain was taken for the laser spot center's second filtering after initial filtering to realize its dynamic pre-estimate. The accurate center of the laser spot also be gotten, which proved the algorithm's availability and necessity.
     6. In order to lock the moving laser receiver for a while and realize location calculation in real time, incremental PID quick erection Karlman filtering algorithm was raised after PID algorithm and Karlman filtering theory were studied deeply. It can realize that the double laser source can track and lock the moving receiver all the time and finish the system's high-precision location.
     7. Taking steering wheel controlling as a study target, the mathematic model of the steering control system was established, the way of the navigation control was studied deeply and fuzzy immune PID steering controlling algorithm was proposed. When Kp,Kt,Kd,K,η of the fuzzy immune PID take the6,2,2,0.5,0.5, the system can be controlled greatly. And the test also proved that the precision of the navigation and tracking could satisfy the requirement of agricultural machinery.
引文
[1]安吉.农业在发展中国家经济发展中的作用[D].浙江大学.2007.
    [2]李鹏.在联合国社会发展问题世界首脑会议上的讲话[EB/OL].http://www.people.com.cn/electric/hh50/4/4_1_15.html,1995,03,11.
    [3]崔健,马友华,赵艳萍,等.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340.
    [4]张夫道.化肥污染的趋势与对策[J].环境科学,1985,6(6):54-59.
    [5]孙强,王海.国外节约型农业发展模式的启示[J].黑龙江金融,2009(6):33-34.
    [6]杨海君,汤楚宙.我国现代精准农业的发展方向[J].CROP RESEARCH,2002, 16(1):4-6.
    [7]徐晓红,杨双,张妤,等.精确农业的应用及其与资源.环境的协调发展[J].吉林农业科学,2005,30(4):62-63.
    [8]中华人民共和国国家统计局,中国统计年鉴2005[M].北京:中国统计出版社,2005.
    [9]信乃诠.农业水资源严重短缺及对策[J].科技进步与对策,1990,4:37-38.
    [10]胡和平,雷志栋,杨诗秀.农业水资源的高校利用与可持续发展[J].中国农村水利水电,1999,1:13-17.
    [11]李元.中国土地资源[M].北京:中国大地出版社,2000.
    [12]李效顺,曲福田,谭荣,等.中国耕地资源变化与保护研究[J].自然资源学报,2009,24(3):387-401.
    [13]杨国旭.我国农业机械发展现状及对策分析[J].吉林农业,2010,11:154.
    [14]Ktlrata K. Debelopment of a gyafting robot for the fruit_vegetables[J]. Plant cell teamol.1994.29:240-244.
    [15]Houghton AM, Knight BEA. Precisioxl farming, farmers and commercial opportunities across Europe[J]. Proceedings of British Crop Protection Council,1996.3;1121-1126.
    [16]汪懋华.“精细农作”的主要支持技术(三)[J].农业机械,1999(6):20-21
    [17]唐延林,王人潮.遥感技术在精准农业中的应用[J].现代化农业,2002,27(2):33-35.
    [18]张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J].农业机械学报,2002,33(6):125-128.
    [19]蒋天弟,欧阳爱国.农业机械智能化与21世纪精细农业[J].农机化研究,2002(4):12-15.
    [20]崔峰.基于GPS/GIS/GSM的移动机器人定位技术研究[D].河北工业大学,2004.
    [21]Puiedlanden M. The effect of grafting on sex expression in cucumber [J].Plant and cell physio.1997.18.1343-1350.
    [22]Barawid Jr O C, Akira Mizushima, Kazunobu Ishii, et al. Development of an automomous navigation system using a two-dimensional laser scanner in an ofchard application[J].Biosystems Engineering.2007.96(2):139-149.
    [23]Yoshisada N, Naonobu U, Yutaka K,et al, Automated rice transplanters using global positioning and gyroscopes[J].Computers and Electronics in Agricultrure,2004,43(3):223-234.
    [24]许伟,沈捷.电磁导航式智能车传感器模块的设计与实现[J].科技信息,2011,11:25-26.
    [25]徐国华,谭明.移动机器人的发展现状及其趋势[J].机器人技术与应用.2001,3:7-14.
    [26]张伟,黄席樾,杨尚罡.汽车导航中的道路检测[J].重庆大学学报,2006,29(8):87-90.
    [27]Arvindk, Shuklavk, Singhbs, et al. Site-specific Nutrient Management for Maximum Economic Yield of the Rice-Wheat Cropping System [J]. Better Crops, 2004,88(4).18-21.
    [28]Toru Torii. Research in autonormous agriculture vehicles in Japan[J]. Computers and Electronics in Agriculture,2000,25(2):133-153.
    [29]朱磊磊,陈军,白晓鸽,等.基于曲柄滑块机构原理导航的农业机器人设计[J].农业机械学报,2009,40:34-36.
    [30]Keicher R, Seufert H. Automatic guidance for agricultural vehicles in Europe[J].Cpmputers and Electronics in Agriculture,2000,25(2):169-194.
    [31]FENG Guo-hu, WU Wen-qi, CAO Ju-liang. Algorithm for monocular visual Odometry/SINS integrated navigation[J] Journal of Chinese Inertial Technology.2011.19(6):302-306.
    [32]Baumker M, Heimes F J. New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of an hybrid inertial navigation system[M]. Frankfurt am Main:Bundesamt fur Kartographie und Geodasie,2002:197-212.
    [33]Powell M W, Crockett T M, Fox J M, et al. Deliver images for mars rover science planning[C]//Proceedings of the 2008 IEEE Aerospace Conference. Big Sky, Montana, USA,2008.
    [34]Nourani-Vatani N, Robets J, Srinivasan M U. Practical visual odometry for car-like vehicles[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan,2009.
    [35]MIYATA Hideki, NOGUCHI Takuya, SAKITANI Akihide, et al. Shigeru Consideration on High Accurate Positioning with Simplified DGPS [J]. ITEJ Technical Report 20(3),1996,26(1):71-76.
    [36]Kawadia V. Protocols and architecture for wireless ad hoc networks [Ph.D. Thesis]. University of Illinois at Urbana-Champaign,2004.
    [37]Noguchi N, erao H. Path planning of an agricultural mobile robot by neural net work and genetic algorithm.Computer and Electronics in Agriculture,1997, 18:187-204.
    [38]曹正文,代朝阳,侯爱琴,等.多传感器组合导航中的数据融合[J].西北大学学报,2008,38(5):719-721.
    [39]陈艳,张漫,马文强,等.基于GPS和机器视觉的组合导航定位方法[J].农业工程学报,2011,27(3):126-130.
    [40]申川,蒋焕煜,包应时.机器视觉技术和GPS在农业车辆自动导航中的应用[J].农机化研究,2006,7:185-188.
    [41]陈树人,李鹏,张漫,等.GPS技术在联合收获机测产系统中的应用[J].农业机械学报.2003,36(5):87-89.
    [42]Yang C, Everitt J H, Murden D, et al. Spatial variability in yield and profits within ten grain sorghum fields in south texas. Transaction of the ASAE, 2002,45(4):897-906.
    [43]Selcuk A, Thomas S C. Grain yield mapping:yield sensing, yield reconstruction, and errors. Precision Agriculture,2002,3:135-154.
    [44]张智刚.农业机械的DGPS导航控制与系统辨识[D].华南农业大学,2010.
    [45]John F Reid, Stephen W Searcy. Automatic Tractor guidance with Computer Vision, SAE Trans.1987,673-693.
    [46]Clark F, Larry H, Marcel S, et al. Rover navigation using stereo ego-motion[J]. Robotics and Autonomous Systems,2003,43(4):215-229.
    [47]毛可骏,周平,赵匀,等.基于机器视觉的自主插秧机导航信息的提取研究[J].农机化研究,2009,5:63-66.
    [48]宋怀波,何东健,辛湘俊.基于机器视觉的非结构化道路检测与障碍物识别方法[J].农业工程学报,2011,,27(6):225-229.
    [49]胡明昊,杨文杰,任明武,等.一种基于视觉的道路检测算法[J].计算机工程与设计,2005,26(7):1704-1706.
    [50]Wang Y, Teoh E K, Shen D. Lane detection and trackingusing B-Snakes[J]. Image and Vision Computing,2004,22(4):269-280.
    [51]Kanayama Y, Fahrco F. A new continuous curvature line path tracking method for car like vehicles [J]. Advanced Robotics,2000,13(7):663-689.
    [52]吴佳艺.基于机器视觉的农林环境导航路径生成算法研究[D].浙江工业大学,2009.
    [53]代峰燕.基于机器视觉的农用车辆自动驾驶导航系统研究[D].中国农业大学,2006.
    [54]付梦印,谭国悦,王美玲.一种基于单目视觉的移动机器人室内导航方法[J].光学技术.2006.32(4):591-593.
    [55]Subramanian V, Burks T V, Dixon W E, et al. Sensor fusion using fuzzy logic enhanced kalman filter for autonomous vehicle guidance in citrus groves [J]. Transa-ctions of American Society of Agricultural and Biological Engineers, 2009,52(5):1411-1422.
    [56]Hague T, Marchant J A, Tillett N D. Ground based sensing systems for autonomous agricultural vehicles [J]. Computers and Electronics in Agriculture, 2000,25:11-28.
    [57]杨为民,李天石,贾鸿社.农业机械机器视觉导航研究[J].农业工程学报,2004,20(1):160-165.
    [58]王荣本,纪寿文,初秀民,等.基于机器视觉的玉米施肥智能机器系统设计概述[J].农业工程学报.2001,17(2):151-153.
    [59]沈明霞.自主行走农业机器人视觉导航信息处理技术研究[D].南京农业大学,2001.
    [60]Iida M, Burks T F. Ultrasonic sensor development for automatic steering control of orchard tractor[A].Proceeding of 2002 conference (Chicago,Illinois,USA)[C]. ASAE publication number 701P0502,2002.
    [61]孙元义,张绍磊,李伟.棉田喷药农业机器人的导航路径识别[J].清华大学学报(自然科学版),2007,47(2):206-209.
    [62]BENSON E R, RE ID J F, ZHANG Q. Machine vision based guidance system for an agricultural small grain harvester[J].Transactions o f the American Society of Agricultura 1 Eng-ineers,2003,46(4):1255-1264.
    [63]Pohl William C. Laser control of Ethermoving Equipment. Automotive Engineering.1984,4:36-39.
    [64]Stephane Renault, Dominique Meizel. GPS/GIS Localization using a Set Membership Method,12th Signal Processing Education Workshop, September, 2006,pp.168-172.
    [65]Subramanian V, Burks T F, Arroyo A A. Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation[J].Computers and Electronics in Agriculture,2006,53(2):130-143.
    [66]Abel Mendel, Urbano Nunes. Situation-based Multi-target Detection and Tracking with Laser-scanner in Outdoor Semi-structured Environment, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 28-October 2,2004,, Sendai, Japan, pp.88-93.
    [67]刘欣丽,张国雄.激光跟踪系统设计与改进[D].天津大学精密仪器与光电子工程学院.2004.
    [68]陈念年,张佳成,范勇,等.一种高精度单点激光三角测距方法[J].计算机测量与控制.2010.18(5):984-986.
    [69]C-T Schneider, AICON 3D Systems GmbH. Laser Tracer-A new type of selftracking interferometer. The 8th international workshop on accelerator alignment,2004, http://www.slac.stanford.edu/econf/C04100411/papers/054.PDF
    [70]LT (D) 800 datasheet. Leica Geosystems AG.,USA,2005.
    [71]The FARO Laser Tracker Xi. FARO Technologies Inc.2006.
    [72]TRACKER3 LASER TRACKING SYSTEM.Automated Precision Inc.2005.
    [73]轻便型测量系统性能指标-Leica激光跟踪仪,Leica T-Probe/Leica T-Scan. Leica Geosystems AG, USA,2005.
    [74]Leica Industrial Theodolites & Total Stations. Leica Geosystems AG,2005.
    [75]Leica T-Probe/Leica T-Scan完成任何测量任务的坐标测量解决方案Leica Geosystems AG, USA,2005.
    [76]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.
    [77]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [78]储岳中,陶永华.基于MATLAB的自适应模糊PID控制系统计算机仿真[J].安徽工业大学学报.2004,1:49-52.
    [79]Xi-ming Liang, Shan-chun Li, A. B. Hassan. A novel PID controller tuning method based on optimization technique. Journal of Central South University of Technology,2010,17(5):1036-1042.
    [80]王树青.工业过程控制工程[M].北京:化学工业出版社,2004.
    [81]Tine Lefebvre, Herman Bruyninckx and Joris De Schutter. E Partial Observation with the Kalman Filter. Springer Tracts in Advanced Robotics,2005, Volume 19, Nonlinear Kalman Filtering for Force-Controlled Robot Tasks, Pages 227-229.
    [82]A. V. Oleinik and D. F. Simbirkii. Dynamic measurements of radiation energy by means of a Kalman filter. Measurement Techniques,1975,18(12):1746-1749
    [83]David M. Gleason. Avoiding numerical stability problems of long duration DGPS/INS Kalman filters. Journal of Geodesy,1995,70(5):263-275.
    [84]David Choi and Benjamin Van Roy. A Generalized Kalman Filter for Fixed Point Approximation and Efficient Temporal-Difference Learning. Discrete Event Dynamic Systems,2006,16(2):207-239.
    [85]Omit Aydm and Yesim Serinagaoglu. Comparison of Bayesian MAP Estimation and Kalman Filter Methods in the Solution of Spatio-Temporal Inverse ECG Problem. IFMBE Proceedings,1, Volume 25/2, World Congress on Medical Physics and Biomedical Engineering, September 7-12,2009, Munich, Germany, Pages 715-718.
    [86]Geir Evensen. Data Assimilation-The Ensemble Kalman Filter, Kalman Filtering in the Design of Eye-Gaze-Guided Computer Interfaces.2nd edn Springer, Berlin,2009. pp.130-135.
    [87]Ramjattan A N, Gross P A.A. A. Kalman filter model for an integrated land vehicle navigation system [J]. The Journal of Navigation,1995,48(2):293-302
    [88]Zhou HongRen, Kumar KSP. A current statistical model and adaptive algorithm for estimating maneuvering targets. AIAA, Journal of Guidance, Control and Dynamics,1984,7(5):596-602
    [89]陈晓荣,蔡萍,陈淑芬,等.卡尔曼滤波在激光跟踪测量系统中的应用[J].光学技术,2004,30(1):98-100.
    [90]Simon Doclo, Ann Spriet, Jan Wouters, et al. Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.Signals and Communication Technology,2005, Speech Enhancement, Pages 199-228.
    [91]丁前军,王永良,张永顺.自适应阵列中多级维纳滤波器的有效实现算法[J].电子与信息学报,2006,28(5):936-940
    [92]GOLDSTEIN J S, REED I S, SCHAF L L. A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Trans on Information Theory,1998,44(7):2943-2959.
    [93]RICKS D C, GOLDSTEIN J S. Efficient architectures for implementing adaptive algorithms [A].Proceedings of the 2000 Antenna Applications Symposium,2000:29-41.
    [94]JOHAM M, SUN Y, ZOLTOWSKI M D, et al.A new backward recursion for the multistage nested Wiener filter employing Krylov subspace methods [C]. IEEE Military Communications Conference,2001:1210-1213.
    [95]Kotsakis, M. G. Sideris. A modified Wiener-type filter for geodetic estimation problems with non-stationary noise C. Journal of Geodesy,2001,75(12): 647-660.
    [96]Seung Han, Sangbae Jeong, Heesik Yang, et al. Noise Reduction for VoIP Speech Codecs Using Modified Wiener Filter.2007, Advances and Innovations in Systems, Computing Sciences and Software Engineering, Pages 393-397.
    [97]S. Ionita. A Fuzzy Approach on Guiding Model for Interception Flight. Studies in Fuzziness and Soft Computing,2005, Volume 181, Fuzzy Systems Engineering, Page 913.
    [98]李士勇.模糊控制、神经控制和智能控制理论[M].哈尔滨:哈尔滨工业大学出版,1999,8.
    [99]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998,9.
    [100]M.H. Zahedi, M. Ghazizadeh, M. Naghibzadeh. Fuzzy Round Robin CPU Scheduling (FRRCS) Algorithm.2008, Advances in Computer and Information Sciences and Engineering, Pages 348-353.
    [101]韩帮华.PID控制器参数整定方法及应用研究[D].青岛科技大学,2009.
    [102]Ziegler J G, Nichols N B. Optimum settings for automatic controllers, Transaction of ASME,1942,64:759-768.
    [103]Astrom K J, Hang C C, Persson, et al. Towards Intelligent PID Control. Automation,1992,28(1):1-9.
    [104]Eric Poulin, Andre Pomerleau. Development and Evaluation of an Auto-tuningand Adaptive PID Controller, Automatica,1996,32(1):71-82.
    [105]谢成山,陈家松,徐济仁.基于模糊推理和知识库的通信设备故障智能诊断系统[J].计算机工程,2003,12:23-24.
    [106]Kincaid R L.Advanced Maintenance:An Expert System of Applied Tribology. 1st International Symposium on Tribology,Beijing:International Academic Publishers,1993.
    [107]刘有才,刘增良.模糊专家系统原理与设计[M].北京:北京航空航天大学出版社,1995.
    [108]尹朝庆,尹浩.人工智能专家系统[M].北京:水利水电出版社,2002.
    [109]Guan-zheng Tan, Jian-hua Wu, Bi-shuang Fan, et al. Adaptive template filter method for image processing based on immune genetic algorithm. Journal of Central South University of Technology,2010,17(5):1028-1035
    [110]Y. Massim, F. Yalaoui, E. Chatelet, A. Yalaoui and A. Zeblah. Efficient immune algorithm for optimal allocations in series-parallel continuous manufacturing systems. Journal of Intelligent Manufacturing, Online FirstTM,18 November 2010.
    [111]Pablo A. D. de Castro, Fabricio O. de Franca, Hamilton M. Ferreira, et al. Query expansion using an immune-inspired biclustering algorithm. Natural Computing,2010,9(3):579-602.
    [112]Per Brandtzaeg. Ontogeny of the intestinal immune system in the premature infant.Monatsschrift Kinderheilkunde,2001,149(1)46-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700