用户名: 密码: 验证码:
基于率失真模型的H.264码率控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着视频编码与网络技术的发展,视频通信在人们日常生活与工作中发挥着越来越重要的作用。H.264作为目前主流的视频编码标准,采用了许多新的技术获得了比以往标准更高的压缩效率与网络适应性,适合各种类型的视频通信。由于视频信源与传输信道的多样性,码率控制成为任何实际视频编码与传输系统不可缺少的关键步骤,用于在目标码率及缓冲区等约束条件下通过调整编码参数(主要是量化参数)来规范输出码流,使之适合信道传输的特性并最优化视频的感知质量。许多新的编码技术尤其是率失真优化技术的采用使得H.264的码率控制更加困难,针对不同环境下H.264率失真优化和码率控制技术的研究具有重大的理论意义和实际应用价值。
     本文根据H.264视频编码技术的特点,针对目前H.264码率控制技术的若干关键问题展开研究。主要内容包括以下几个方面:
     (1)针对H.264帧内编码码率控制效果不佳的问题,提出了一种新颖的图像复杂度自适应Ⅰ帧码率控制算法。本文首先用Sobel算子检测Ⅰ帧亮度像素的梯度,建立4×4块的边缘方向直方图,得到每个4×4块最可能的帧内预测模式和相应重构块,最终获得与实际编码相近的残差图像。用残差的平均绝对值表达Ⅰ帧编码复杂度,之后提出了一种经验型Ⅰ帧码率-量化模型,同时考虑缓冲区状态和当前序列的编码特性为Ⅰ帧分配合适的目标比特,最后为每一个图像组得到了合适的Ⅰ帧量化参数。
     (2)针对H.264经典的RC提案JVT-G012的不足,根据编码单元之间的空时相关性提出了一种低复杂度的P帧宏块层码率控制改进机制。首先为了减少宏块层平均绝对值(MAD)预测的计算复杂度和不准确性,根据运动相似性来估计当前宏块的运动矢量,并直接使用当前宏块与估计运动矢量所指向参考块之间的残差来计算MAD值;由于H.264中宏块头码率的预测对于率失真模型和量化参数计算影响重大,本文根据宏块间的空时相关性来更准确地预测宏块头码率;最后根据宏块的编码复杂度来分配目标码率,而且宏块层二次率失真模型参数更新时使用的历史数据点也是根据空时相关性进行选择,而不是简单地使用最近已编码的历史数据点。
     (3)针对H.264低码率应用中常发生被动跳帧而导致解码端质量波动的问题,提出了一种结合自适应跳帧的码率控制策略以保留带有重要信息的帧而主动跳过不太重要的帧。为了得到更加符合人眼视觉特性的编码序列,跳帧准则是根据原始帧与通过运动矢量拷贝帧内插机制得到的重建帧之间的主观质量属性(结构相似性测量)并结合当前缓冲区状态来判断。在编码端由跳过帧节省下来的码率分配给要编码的关键帧以增强编码帧的空间质量,在解码端根据改进的运动矢量拷贝帧内插机制从相邻编码帧来恢复跳过帧以维持常帧率来获得平滑的视频质量。
     (4)针对传统码率控制算法大多以客观失真作为失真度量,无法得到最优的主观质量的问题。将基于结构相似(Structural Similarity, SSⅠM)的主观失真用于H.264视频编码的率失真优化和码率控制,提出了一种基于SSⅠM的P帧宏块层码率控制算法。首先根据大量实验和理论分析提出了一种经验型的SSⅠM线性失真模型,并结合改进的二次码率-量化模型用Lagrange乘子法得到了基于SSⅠM的P帧宏块层最优量化步长的闭式解。最后给出了完整的基于SSⅠM的P帧宏块层码率控制算法。
     (5)将基于SSⅠM的主观失真用于指导H.264视频编码中基于率失真优化的帧内与帧间模式选择。研究内容分为两个部分,第一部分根据提出的Ⅰ帧码率量化模型和Ⅰ帧SSⅠM线性失真模型将SSⅠM失真用于指导Ⅰ帧编码的帧内宏块模式选择,进一步提出了一种帧层内容自适应的Lagrange乘子来更好地平衡码率和SSⅠM失真。第二部分在P帧基于SSⅠM的宏块层码率控制的基础上将SSⅠM失真用于指导H.264的P帧编码中基于率失真优化的帧间宏块模式选择,进一步提出了宏块层自适应的分析型Lagrange乘子来更好地平衡码率和SSⅠM失真。实验表明,与基于客观质量的码率控制算法相比,基于SSⅠM的码率控制和率失真优化模式选择算法更好地编码了图像结构信息,使得图像主观质量显著提高,更加符合人的主观感受;且计算复杂度较小,可用于实际编码环境。
With the development of video coding and network technology, video communication plays more and more important role in people’s daily life and work. As the most popular video coding standard, H.264 adopts many new techniques and acquires higher compression efficiency and network adaptability compared with prior coding standards, and adapts to any kinds of video communication. Due to the diversity of video source and transmission channel, rate control (RC) becomes key step and is indispensable for any actual video coding and transmission system. Rate control is used to regulate output bitstream to meet the characteristics of channel transmission and to optimize the perceptual video quality by adjusting coding parameters under constrained conditions such as target bit rate and buffer fullness. The adoption of many new coding techniques especially rate distortion optimization scheme makes the rate control for H.264 more difficult. Research on rate distortion optimization techniques and rate control schemes for H.264 under various applications has significant theoretical meanings and actual application values. Based on the technique features of H.264 video coding, this work focuses on the rate control techniques for H.264. The main research work are as follows:
     (1) To address the bad effect of intra coding RC of H.264, a novel image complexity adaptive I frame RC algorithm is proposed. This work first detects the gradient of luma pixel in I frame by Sobel operator and establishes edge direction histogram for each 4×4 block, hereby gets the most probable intra prediction mode and corresponding reconstructed block, finally obtains the residual picture which is close to the actual coding residual. The mean absolute value (MAD) of residual is used to represent I frame coding complexity, then an empirical rate quantization model is proposed, and the optimal QP of I frame is determined accurately for each GOP according to allocated target bits by simultaneously considering buffer status and sequence characteristic.
     (2) Aiming at the shortage of H.264 classic RC proposal JVT-G012, an improved MB layer RC scheme is proposed based on the spatial-temporal correlation among basic units. First, to reduce computation cost and inaccuracy of linear MAD prediction at MB layer, MAD is computed directly according to the difference between current MB and the reference blocks pointed by estimated MV using intensive motion similarity. Then, MB header bits are predicted based on spatial-temporal correlation because MB header bit prediction has great effect on rate distortion model and QP computation. Finally, MB target bit rate is allocated according to its complexity and the parameters of quadratic R-D model are updated using coded MBs with high spatial-temporal correlation not the last coded data points.
     (3) To address the problem of passive frame skip occurs frequently and decoder side quality fluctuates in H.264 low bit rate applications, a RC scheme combined with adaptive frame skip is proposed to encode important frames and skip trivial frames. To get subjective friendly video sequences, the frame skip rule is based on subjective metric (structural similarity) between original frame and reconstructed frame and buffer status. The saved bits from skipped frames are allocated to key frames to enhance their coding quality, and the skipped frames are recovered from key frames to get constant frame rate and smoothed video quality at decoder side.
     (4) Conventional RC schemes take mostly objective metric as distortion measure, which can not acquire optimal subjective quality. This work applies structural similarity (SSIM) based subjective distortion to rate distortion optimization and RC in H.264 video coding, and proposes a SSIM optimal MB layer RC algorithm. First, an empirical SSIM linear distortion model is put forward. Then an improved quadratic rate quantization model is combined to obtain the close-form solution of SSIM optimal MB layer quantization step by Lagrange multiplier.
     (5) Subjective distortion (SSIM) is used to direct RDO based intra and inter MB mode decision in H.264 video coding. The research work includes two parts. The first part uses SSIM distortion to direct I frame intra MB mode decision based on the proposed I frame R-Q model and SSIM linear distortion model, and further proposes a frame layer adaptive Lagrange multiplier (λ) to balance rate and SSIM distortion better. The second part uses SSIM distortion to guide P frame inter MB mode decision on the basis of P frame SSIM optimal MB layer RC, and further proposes MB layer analyticλto trade off rate and SSIM distortion. Experiments show that SSIM optimal RC and RDO mode decision encodes image structural information better and gets higher subjective quality compared with objective quality based RC, and has low complexity and thus can be used in actual video coding applications.
引文
[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14 496-10AVC) Joint Video Team (JVT), 2003.
    [2] T. Berger, Rate distortion theory: A mathematical basis for data compression: Prentice-Hall Englewood Cliffs, NJ, 1971.
    [3] A. Ortega, K. Ramchandran, and M. Vetterli,“Optimal trellis-based buffered compression and fast approximations,”IEEE Transactions on Image Processing, vol. 3, no. 1, pp. 26-40, 1994.
    [4] K. Ramchandran, A. Ortega, and M. Vetterli,“Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders,”Image Processing, IEEE Transactions on, vol. 3, no. 5, pp. 533-545, 1994.
    [5] G. Forney Jr,“The viterbi algorithm,”Proceedings of the IEEE, vol. 61, no. 3, pp. 268-278, 1973.
    [6] H. Yin, X. Fang, L. Chen et al.,“A practical consistent-quality two-pass VBR video coding algorithm for digital storage application,”IEEE Transactions on Consumer Electronics, vol. 50, no. 4, pp. 1142-1150, 2004.
    [7] J. Cai, Z. He, and C. W. Chen,“A novel frame-level bit allocation based on two-pass video encoding for low bit rate video streaming applications,”Journal of Visual Communication and Image Representation, vol. 17, no. 4, pp. 783-798, 2006.
    [8] D. D. Zhang, K. N. Ngan, and Z. Z. Chen,“A two-pass rate control algorithm for H.264/AVC high definition video coding,”Signal Processing-Image Communication, vol. 24, no. 5, pp. 357-367, May, 2009.
    [9] M. Q. Jiang, and N. Ling,“Low-delay rate control for real-time H.264/AVC video coding,”IEEE Transactions on Multimedia, vol. 8, no. 3, pp. 467-477, Jun, 2006.
    [10] Y. Liu, Z. G. G. Li, and Y. C. Soh,“A novel rate control scheme for low delay video communication of H.264/AVC standard,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 1, pp. 68-78, Jan, 2007.
    [11] CCITT SGXV, Description of Reference Model 8(RM8), 1989.
    [12] MPEG-2 Video Test Model 5,ISO/IEC/JTC1/SC29/WG11,MPEG93/257, 1993.
    [13] Video Codec.Test Model Near-Term,TMN8.ITU-T/SG16/VCEG/Q15 A59, Portland, USA, 1997.
    [14] Video Group, Test of ISO/IEC 14496-2 MPEG-4 Video VM-Version 8.0[A]. ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio MPEG97/W1796, Stochholm, Sweden, 1997.
    [15] R. Reininger, and J. Gibson,“Distributions of the Two-Dimensional DCT Coefficients for Images,”IEEE Transactions on Communications, vol. 31, no. 6, pp. 835-839, 1983.
    [16] S. Smoot, and L. A. Rowe,“Study of DCT coefficient distributions,”in Proc SPIE, 1996, pp. 403-411.
    [17] E. Lam, and J. Goodman,“A mathematical analysis of the DCT coefficient distributions forimages,”IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1661-1666, 2000.
    [18] Y. Altunbasak, and N. Kamaci,“An analysis of the DCT coefficient distribution with the H. 264 video coder,”in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), 2004, pp. 177-180.
    [19] N. Kamaci, Y. Altunbasak, and R. M. Mersereau,“Frame bit allocation for the H.264/AVC video coder via Cauchy-density-based rate and distortion models,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 8, pp. 994-1006, Aug, 2005.
    [20]霍炎,李生红,荆涛.基于广义拉普拉斯分布的低时延速率控制算法,电子学报, 2010, 38(5): 1078-1083.
    [21]霍炎,荆涛,李生红.基于双参数Weibull分布的视频编码率失真模型的研究,物理学报, 2010, 59(2): 859-866.
    [22] H. M. Hang, and J. J. Chen,“Source model for transform video coder and its application. I. Fundamental theory,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 2, pp. 287-298, 1997.
    [23] T. Chiang, and Y. Zhang,“A new rate control scheme using quadratic rate distortion model,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 246-250, 1997.
    [24] W. Ding, and B. Liu,“Rate control of MPEG video coding and recording by rate-quantization modeling,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 1, pp. 12-20, 1996.
    [25] H. Lee, T. Chiang, and Y. Zhang,“Scalable rate control for MPEG-4 video,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 6, pp. 878-894, 2000.
    [26] D. K. Kwon, M. Y. Shen, and C. C. J. Kuo,“Rate control for H.264 video with enhanced rate and distortion models,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 5, pp. 517-529, May, 2007.
    [27] Z. H. He, Y. K. Kim, and S. K. Mitra,“Low-delay rate control for DCT video coding via rho-domain source modeling,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 8, pp. 928-940, Aug, 2001.
    [28] Z. H. He, and S. K. Mitra,“A unified rate-distortion analysis framework for transform coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 12, pp. 1221-1236, Dec, 2001.
    [29] Z. He, and S. K. Mitra,“Optimum bit allocation and accurate rate control for video coding viaρ-domain source modeling,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 10, pp. 840-849, 2002.
    [30] S. Milani, L. Celetto, and G. Mian,“An accurate low-complexity rate control algorithm based on (ρ,Eq)-domain,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 2, pp. 257-262, 2008.
    [31] S. W. Ma, W. Gao, Y. Lu et al.,“Proposed draft description of rate control on JVT standard,”in JVT-F086, 6th meeting, Awaji, Japan, 2002.
    [32] Z. G. Li, F. Pan, K. P. Lim et al.,“Adaptive Basic Unit Layer Rate Control for JVT,”in Proc. of Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG. JVT-G012, 7th Meeting, Pattaya II, Thailand, 2003.
    [33] S. W. Ma, and W. Gao,“Proposed Draft of Adaptive Rate Control,”in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 8th meeting, JVT-H017, Geneva, 2003.
    [34] W. Yuan, S. Lin, and Y. Zhang,“Optimum bit allocation and rate control for H.264/AVC,”in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 15th Meeting, JVT-O016, Busan, KR, 2005.
    [35] G. M. Schuster, G. Melnikov, and A. K. Katsaggelos,“A Review of the Minimum Maximum Criterion for Optimal Bit Allocation Among Dependent Quantizers,”IEEE Transactions on Multimedia, vol. 1, no. 1, pp. 3-17, Mar, 1999.
    [36] Z. Z. Chen, and K. N. Ngan,“Distortion variation minimization in real-time video coding,”Signal Processing-Image Communication, vol. 21, no. 4, pp. 273-279, Apr, 2006.
    [37] N. Cherniavsky, G. Shavit, M. F. Ringenburg et al.,“MultiStage: A MINMAX bit allocation algorithm for video coders,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 1, pp. 59-67, Jan, 2007.
    [38] M. Tagliasacchi, G. Valenzise, and S. Tubaro,“Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams,”IEEE Transactions on Image Processing, vol. 17, no. 7, pp. 1129-1143, Jul, 2008.
    [39] Z. Wang, A. C. Bovik, H. R. Sheikh et al.,“Image quality assessment: From error visibility to structural similarity,”IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr, 2004.
    [40] S. S. Channappayya, A. C. Bovik, and R. W. Heath Jr,“Rate bounds on SSIM index of quantized images,”IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1624-1639, 2008.
    [41] X. K. Yang, W. S. Lin, Z. K. Lu et al.,“Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 6, pp. 742-752, Jun, 2005.
    [42] Z. Y. Wei, and K. N. Ngan,“Spatio-Temporal Just Noticeable Distortion Profile for Grey Scale Image/Video in DCT Domain,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 337-346, Mar, 2009.
    [43] C. W. Tang, C. H. Chen, Y. H. Yu et al.,“Visual sensitivity guided bit allocation for video coding,”IEEE Transactions on Multimedia, vol. 8, no. 1, pp. 11-18, Feb, 2006.
    [44] C. W. Tang,“Spatiotemporal visual considerations for video coding,”IEEE Transactions on Multimedia, vol. 9, no. 2, pp. 231-238, Feb, 2007.
    [45] Y. Sun, I. Ahmad, D. D. Li et al.,“Region-based rate control and bit allocation for wireless video transmission,”IEEE Transactions on Multimedia, vol. 8, no. 1, pp. 1-10, Feb, 2006.
    [46] P. H. Wu, and H. H. Chen,“Frame-layer constant-quality rate control of regions of interest for multiple encoders with single video source,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 7, pp. 857-867, Jul, 2007.
    [47] Y. Liu, Z. G. Li, and Y. C. Soh,“Region-of-interest based resource allocation for conversational video communication of H.264/AVC,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 1, pp. 134-139, Jan, 2008.
    [48] X. Jing, and L. P. Chau,“A novel intra-rate estimation method for H.264 rate control,”in 2006 IEEE International Symposium on Circuits and Systems, 2006, pp. 5019-5022.
    [49] X. Jing, L. P. Chau, and W. C. Siu,“Frame complexity-based rate-quantization model for H.264/AVC intraframe rate control,”IEEE Signal Processing Letters, vol. 15, pp. 373-376, 2008.
    [50] J. Lee, I. Shin, and H. Park,“Adaptive intra-frame assignment and bit-rate estimation for variable GOP length in H.264,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 10, pp. 1271-1279, Oct, 2006.
    [51] H. L. Wang, and S. Kwong,“Rate-distortion optimization of rate control for H.264 with adaptive initial quantization parameter determination,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 1, pp. 140-144, Jan, 2008.
    [52] G. G. Lee, H. Y. Lin, and M. J. Wang,“Rate control algorithm based on intra-picture complexity for H.264/AVC,”Iet Image Processing, vol. 3, no. 1, pp. 26-39, Feb, 2009.
    [53] Z. Xie, Z. Bao, C. Xu et al.,“Optimal bit allocation and efficient rate control for H.264/AVC based on general rate-distortion model and enhanced coding complexity measure,”IET Image Processing, vol. 4, no. 3, pp. 172-183, 2010.
    [54] X. Q. Yi, and N. Ling,“Improved H.264 rate control by enhanced MAD-based frame complexity prediction,”Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp.407-424, Apr, 2006.
    [55] M. Q. Jiang, and N. Ling,“On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation,”IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 281-286, Feb, 2005.
    [56] J. Dong, and N. Ling,“A context-adaptive prediction scheme for parameter estimation in H. 264/AVC macroblock layer rate control,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 8, pp. 1108-1117, 2009.
    [57] E. Reed, and J. Lim,“Optimal multidimensional bit-rate control for video communication,”IEEE Transactions on Image Processing, vol. 11, no. 8, pp. 873-885, 2002.
    [58] F. Pan, Z. Lin, X. Lin et al.,“Adaptive frame skipping based on spatio-temporal complexity for low bit-rate video coding,”Journal of Visual Communication and Image Representation, vol. 17, no. 3, pp. 554-563, 2006.
    [59] P. Usach, J. Sastre, and J. M. Lopez,“Variable frame rate and gop size H.264 rate control for mobile communications,”in IEEE International Conference on Multimedia and Expo (ICME), 2009, pp. 1772-1775.
    [60] Y. Sun, Y. Zhou, Z. Feng et al.,“Incremental rate control for H.264/AVC video compression,”IET Image Processing, vol. 3, no. 5, pp. 286-298, Oct, 2009.
    [61] X. Li, N. Oertel, A. Hutter et al.,“Laplace Distribution Based Lagrangian Rate Distortion Optimization for Hybrid Video Coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 193-205, Feb, 2009.
    [62] M. H. Wang, and B. Yan,“Lagrangian Multiplier Based Joint Three-Layer Rate Control for H.264/AVC,”IEEE Signal Processing Letters, vol. 16, no. 8, pp. 679-682, Aug, 2009.
    [63] C. J. Tsai, C. W. Tang, C. H. Chen et al.,“Adaptive rate-distortion optimization using perceptual hints,”in 2004 IEEE International Conference on Multimedia and Expo (Icme), 2004, pp. 667-670.
    [64]万帅,常义林,杨付正,罗忠.一种新的视频编码二次率失真模型及其性能分析,电子与信息学报, 2007, 29(5): 1136-1139.
    [65] W. Yuan, S. X. Lin, Y. D. Zhang et al.,“Optimum bit allocation and rate control for H.264/AVC,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 6, pp. 705-715, Jun, 2006.
    [66]袁武,林守勋,牛振东,罗海勇,张勇东. H.264/AVC码率控制优化算法,计算机学报, 2008, 31(2): 329-339.
    [67] Z. Z. Chen, and K. N. Ngan,“Towards rate-distortion tradeoff in real-time color video coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 2, pp. 158-167, Feb, 2007.
    [68]费伟,徐平,朱善安.一种基于Cauchy分布的H.264宏块层码率控制算法,仪器仪表学报, 2007, 28(6): 1065-1069.
    [69] O. Esteban, S. Rodriguez, M. Lopez et al.,“A Cauchy-Density-Based Rate Controller for H.264/AVC in Low-Delay Environments,”in PCS: 2009 Picture Coding Symposium, 2009, pp. 189-192.
    [70] S. Sanz-Rodríguez, O. del-Ama-Esteban, M. de-Frutos-Lopez et al.,“Cauchy-Density-Based Basic Unit Layer Rate Controller for H. 264/AVC,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 1139-1143, 2010.
    [71] Y. G. Lee, and B. C. Song,“An intra-frame rate control algorithm for ultra low delay H.264/AVC coding,”in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 1041-1044.
    [72] Y. G. Lee, and B. C. Song,“An Intra-Frame Rate Control Algorithm for Ultralow Delay H.264/Advanced Video Coding (AVC),”IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 5, pp. 747-752, May, 2009.
    [73] B. Yan, and M. H. Wang,“Adaptive Distortion-Based Intra-Rate Estimation for H.264/AVC Rate Control,”IEEE Signal Processing Letters, vol. 16, no. 3, pp. 145-148, Mar, 2009.
    [74] L. Shen, Z. Liu, Z. Zhang et al.,“Frame-level bit allocation based on incremental PID algorithm and frame complexity estimation,”Journal of Visual Communication and Image Representation, vol. 20, no. 1, pp. 28-34, 2009.
    [75] F. Pan, X. Lin, S. Rahardja et al.,“Proactive frame-skipping decision scheme for variable frame rate video coding,”in 2004 IEEE International Conference on Multimedia and Expo (Icme), 2004, pp. 1903-1906.
    [76] Y. T. Yang, Y. S. Tung, and J. L. Wu,“Quality enhancement of frame rate up-converted video by adaptive frame skip and reliable motion extraction,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 12, pp. 1700-1713, Dec, 2007.
    [77] L. J. Lin, and A. Ortega,“Bit-rate control using piecewise approximated rate-distortion characteristics,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 446-459, Aug, 1998.
    [78] Y. Yang, and S. S. Hemami,“Rate control for VBR video over ATM: Simplification and implementation,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 9, pp. 1045-1058, Sep, 2001.
    [79] Z. Zhu, Y. Wang, Y. Bai et al.,“On Optimizing H.264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics,”Eurasip Journal on Advances in Signal Processing, vol. 2010, 2010.
    [80]王正友,胡国胜,明建华,吴海燕.基于SSIM与ROI的视频质量评价方法,仪器仪表学报, 2009, 30(9): 1906-1911.
    [81]蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展,电子与信息学报, 2010, 32(1): 219-226.
    [82]杨春玲,高文瑞,曹端武.结构信息最优的静止图像压缩算法研究,电子与信息学报, 2010, 32(7): 1574-1579.
    [83] JM Reference Software, Available: http://iphome.hhi.de/suehring/tml/download/, 2008.
    [84] L. Yang, L. Zhang, S. W. Ma et al.,“A ROI quality adjustable rate control scheme for low bitrate video coding,”in Picture Coding Symposium, 2009. PCS 2009, Chicago, IL, 2009, pp. 1-4.
    [85] L. Teixeira, and L. Corte-Real,“Statistical Multiplexing of H.264 Video Streams Using Structural Similarity Information,”Journal of Information Science and Engineering, vol. 25, no. 3, pp. 703-715, May, 2009.
    [86] L. Teixeira, and L. Corte-Real,“H.264 Rate-Distortion Analysis Using Subjective Quality Metric,”Future Multimedia Networking, Proceedings, vol. 5630, pp. 248-253, 2009.
    [87] T. S. Ou, Y. H. Huang, and H. H. Chen,“A perceptual-based approach to bit allocation for H.264 encoder,”in Proc. SPIE Visual Communications and Image Processing 2010, Huangshan, China, 2010, pp. 10.
    [88] T. S. Ou, Y. H. Huang, and H. H. Chen,“SSIM-Based Perceptual Rate Control for Video Coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 682-691, 2011.
    [89] J. Zhang, X. Yi, N. Ling et al.,“Context Adaptive Lagrange Multiplier (CALM) for Rate-Distortion Optimal Motion Estimation in Video Coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 6, pp. 820-828, 2010.
    [90] C. An, and T. Q. Nguyen,“Adaptive Lagrange Multiplier Selection Using Classification-Maximization and Its Application to Chroma QP Offset Decision,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 6, pp. 783-791, 2011.
    [91]杨春玲,肖冬琴.基于SSE和SSIM的H.264帧内预测模式选择改进算法,电子与信息学报, 2011, 33(2): 289-294.
    [92] M. Zhi-Yi, Y. Chun-Ling, K. Kai-Zhi et al.,“A Novel Motion Estimation Method Based on Structural Similarity for H.264 Inter Prediction,”in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2006, pp. 913-916.
    [93]杨春玲,王华兴,梁荣锟.基于结构相似的H.264帧间预测改进算法,计算机学报, 2009, 32(8): 1603-1610.
    [94] H. H. Chen, H. Yi-Hsin, S. Po-Yen et al.,“Improving video coding quality by perceptual rate-distortion optimization,”in Multimedia and Expo (ICME), 2010 IEEE International Conference on, Suntec City, Singapore, 2010, pp. 1287-1292.
    [95] Y. S. Huang, T. S. Ou, and H. H. Chen,“Perceptual-based coding mode decision,”in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, Paris, France, 2010, pp. 393-396.
    [96] Y. H. Huang, T. S. Ou, P. Y. Su et al.,“Perceptual Rate-Distortion Optimization Using Structural Similarity Index as Quality Metric,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 11, pp. 1614-1624, 2010.
    [97] S.-y. Kwon, S.-h. Lee, and D.-h. Lee,“Improved initial QP prediction method in H.264/AVC,”in Proceedings of the 3rd international conference on Mobile multimedia communications, Nafpaktos, Greece, 2007, pp. 1-4.
    [98] F. Pan, X. Lin, S. Rahardja et al.,“Fast mode decision algorithm for intraprediction in H.264/AVC video coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 813-822, Jul, 2005.
    [99] Y. Liu, Z. G. Li, and Y. C. Soh,“Adaptive mad prediction and refined R-Q model for H.264/AVC rate control,”in 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, pp. 2153-2156.
    [100] J. Chen, and H. Hang,“Source model for transform video coder and its application-Part II: Variable frame rate coding,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 2, pp. 299-311, 1997.
    [101] E. C. Reed, and F. Dufaux,“Constrained bit-rate control for very low bit-rate streaming-video applications,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 7, pp. 882-889, 2001.
    [102] S. Bandyopadhyay, Z. Wu, P. Pandit et al.,“Frame Loss Error Concealment for H.264/AVC,”in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 16th Meeting, JVT-P072, Poznan, PL, 2005.
    [103] A. Thammineni, A. Raman, S. C. Vadapalli et al.,“Dynamic frame-rate selection for live LBR video encoders using trial frames,”in IEEE International Conference on Multimedia and Expo (ICME), 2008, pp. 817-820.
    [104] J. Jun, S. Lee, Z. He et al.,“Adaptive key frame selection for efficient video coding,”in Proc. PSIVT, 2007, LNCS 4872, 2007, pp. 853-866.
    [105] S. Liu, and C. C. J. Kuo,“Joint temporal-spatial bit allocation for video coding with dependency,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 1, pp. 15-26, Jan. 2005, 2005.
    [106] A. Vetro, Y. Wang, and H. F. Sun,“Rate-distortion optimized video coding consideringframeskip,”in Proceedings of International Conference on Image Processing (ICIP), Thessaloniki, 2001, pp. 542-545.
    [107] J. Lee, A. Vetro, Y. Wang et al.,“Bit allocation for MPEG-4 video coding with spatio-temporal tradeoffs,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 6, pp. 488-502, 2003.
    [108] H. Song, and C. C. J. Kuo,“Rate control for low-bit-rate video via variable-encoding frame rates,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 512-521, Apr. 2001, 2001.
    [109] Y. B. Zhang, D. B. Zhao, S. W. Ma et al.,“A Motion-Aligned Auto-Regressive Model for Frame Rate Up Conversion,”IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1248-1258, 2010.
    [110] Z. Gan, L. Qi, and X. Zhu,“Motion compensated frame interpolation based on H.264 decoder,”Electronics Letters, vol. 43, no. 2, pp. 96-98, Jan 18, 2007.
    [111] T. Wiegand, and B. Girod,“Lagrange multiplier selection in hybrid video coder control,”in International Conference on Image Processing, Thessaloniki , Greece, 2001, pp. 542-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700