用户名: 密码: 验证码:
未知环境中移动机器人视觉环境建模与定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文来源于国家自然科学基金重点项目“未知环境中移动机器人导航控制的理论与方法研究”(60234030),属于其子任务“环境建模与定位”的研究方向。本文着重研究了移动机器人在未知环境中基于摄像机视觉的拓扑建模、定位及导航等问题,目的在于探索针对未知环境的视觉建模与定位方法,提高所建立拓扑模型的准确性,降低模型的存储需求,从而提高机器人在未知环境中的自定位精度和长时间生存能力。
     有效分析视觉传感器信息以获取环境特征是视觉环境建模与定位的至关重要的基础,本文首先基于视觉显著性研究了针对未知环境的自底向上的自然路标检测、表示与识别方法。提出了一种带反馈机制的显著性检测模型(feedback saliency detection model,FSDM),并定义了能够更好地体现对比含义且充分考虑全局信息影响的级间对比度算子。在多尺度空间上计算颜色、纹理特征的对比度,经综合处理得到描述路标候选位置的显著性指示图。通过引入反馈通道,控制各类特征在不同场景图像处理中发挥的作用。基本性能测试、稳定性测试及抗干扰性测试等一系列实验表明,该方法具有非常优越的显著位置重复检测性能。此后,应用LOG算子进行自动区域尺寸选择,形成显著区域作为自然路标原型,选择梯度方向、二阶不变矩、归一化的色调作为自然路标的表示方案。目标识别实验表明,基于局部显著区域的自然路标稳定性好,能够容忍远近尺度、视角等变化引起的图像差异,识别准确率较高。
     在前述获得的自然路标的基础上,基于隐马尔科夫模型(hidden Markov model,HMM)提出了一种增量式视觉拓扑建模与定位方法。该方法首先通过单CCD摄像头扫视机器人当前所在环境来获得全方位图像序列,然后利用HMM建模所获得局部显著路标间的关系,以构造拓扑节点,于是定位问题可以转化为HMM的估值问题。设计了基于联合概率分布的初始定位方法,并且设计了基于最大后验概率(maximum a postefiori,MAP)的学习策略来处理定位的不确定性。该方法具有以下鲜明特点:采用局部图像特征而不是整幅图像特征参与环境识别,并利用HMM建模这些路标间的空间关系,因此在定位时能够对环境变化具有更高的容许程度,识别更加可靠;HMM的状态空间恒定,不会随着探索环境规模的扩大而增长,从而降低了概率定位的计算需求;支持在线增量式建立拓扑地图,同时进行定位,而目前大多数视觉拓扑建模系统都需要离线分析建模和在线定位两个阶段。实验表明,上述方法能够有效地提高场景识别的准确率,实现在线增量式拓扑建模与定位。
     为提高视觉拓扑建模与定位方法在包含各种动态因素的真实环境中应用的能力,本文侧重研究了存在运动物体(或称为运动目标)的动态未知环境拓扑建模,尽量消除其对建模的影响,以提高拓扑环境模型的准确性。首先提出了带运动补偿的运动目标检测方法,并从检测与跟踪任务的完整性考虑,以Kalman滤波器为基本单元构造了一个驱动摄像头的反馈控制系统。为快速提取完整目标,对模糊C均值聚类(fuzzy C-Means clustering,FCM)方法进行了改进。在此基础上,重新修改了自然路标提取策略:将所有检测出的路标划分为静态路标和动态路标两类,然后抛弃那些动态路标以滤除运动目标影响。实验结果表明,该方法能够有效地滤除噪声路标,提高了拓扑建模和定位的精度。
     在前述自然路标提取、增量式建模及动态目标检测研究的基础上,提出并实现了一个视觉拓扑建模及导航系统VOTMNS(Vision based Online Topological Mapping and Navigation System),并在移动机器人平台MORCS-1上进行了实践。该系统主要包括自然路标提取、建模与定位、地图及路标库管理、规划等四个部分。根据可用性评价,提出了基于竞争学习的路标库管理方法,与更新全部路标存在状态的方法相比管理更加有效(提高了路标的使用率),计算代价较小。设计了基于初始定位的导航不确定性管理方法,使机器人能够在导航过程中定位到非路径节点时重新进行规划。实验结果表明该系统能够在比较平坦的室内外未知环境实现稳定的环境建模及安全导航,路标库管理及系统的时间性能都表明该系统具备实时工作能力。
The thesis was supported by NSFC key project "Research on theoriesand methods for navigation control of mobile robots under unknownenvironments"(60234030). Related works was subject to the part "mappingand localization" of the project. The thesis focuses on the problems ofvision(camera) based topological mapping、localization and navigation ofmobile robot in unknown environments. The objectives are exploring newapproaches of vision based mapping and localization in unknownenvironments, improving the accuracy of created topological map,decreasing the storage requirement of map, advancing the precision ofself-localization and ability of long-time surviving of mobile robot inunknown environments.
     It is absolutely necessary for vision based mapping and localizationthat images are analyzed to obtain features of environments. The thesisfirstly researches the approaches of natural landmark detection andrepresentation in unknown environments from bottom to up based on visualsaliency. A saliency detection model with feedback mechanism is presented.An opponency operator among scales is defined, which consideres theinfluence of global information. So the opponencies of color and textureamong multi-scales are computed and combined to obtain the saliency mappointing out candidate natural landmark's position. By the feedback, thecontribution of each feature to image analysis on different scenes arecontrolled. Experiments such as basic performance test and stability testand anti-jamming test show that the approach has excellent repeatability ofsalient position detection. Then LOG operator is applied to selectappropriate size automatically to create salient region as natural landmarkprototype. The features involving gradient orientation and moment andcanonical hue are used to represent natural landmarks. Experiments ofobject recognition show that the natural landmark based on local salientregion has high stability and tolerance of image diversity caused by scaleand viewpoint etc changed. The accuracy of recognition is higher.
     After the natural landmarks are extracted, an incremental vision topological mapping and localization approach is presented based onhidden Markov model (HMM). Firstly a single CCD camera is drivenscanning current environment to obtain omni image sequence. While thesalient landmarks are detected from these images, HMM is used to modelthe space relationship among these landmarks and create a topological node.So localization problem can be transformed to be the evaluation problem ofHMM. A initial localization method based on joint probability distributionis designed. A leaming strategy based on maximum a posteriori (MAP) isalso designed to deal with uncertainty of localization. The approach hassome characteristics as follows. Local salient image features replace wholeimage features to contribute for environment recognition. And HMM isused to capture the space relationship among them. So localization (placerecognition) has more tolerance of environment change and more trustiness.The state space of HMM is invariable with the scale of exploringenvironments increasing, which decreases the computation requirement ofprobabilistic localization. The approach supports online incrementaltopologically mapping and locating simultaneously. While most visionbased topological mapping and localization systems have two distinctivestages of training for mapping offline and locating online. Experimentsshow that the approaches can improve effectively the accuracy of scenerecognition and realize online incremental topological mapping andlocalization.
     To improve the applicability of vision based mapping and localizationapproach in dynamic natural environments, the thesis studies the problemof topological mapping in dynamic unknown environments existingmoving objects. The objective is to eliminate the influence of movingobjects on mapping and improve the accuracy of topological map. Firstly amoving objects detection method with movement compensation ispresented. Considering the integrality of detection and tracking task, afeedback control system for driving the camera is built based on Kalmanfilter. To extract integral object fast, a modified fuzzy C-Means clusteringmethod is presented. Based on these the strategy of extracting naturallandmarks is modified as: classifying all detected landmarks as static landmarks and dynamic landmarks, then abandoning those dynamiclandmarks to avoid the influence of moving objects. Experiments show thatthe approach can filter noisy landmarks and improve the precision oftopological mapping and localization.
     Founded by the research of natural landmark extraction andincremental mapping and dynamic object detection, a vision based onlinetopological mapping and navigation system (VOTMNS) is presented andimplemented on mobile robot MORCS-1. The system includes 4 part ofnatural landmark extraction, mapping and localization, management of mapand landmark library, planning. In terms of evaluation of usability, amanagement method of landmark library based on competitive learning ispresented. Compared with the method updating all landmark's existingstate, this method has more efficiency and fewer computation cost. Amanagement method of uncertainty in navigation is designed based oninitial localization, which make robot plan again when locates to a node notbelonging to the planning path during navigation. Experiments show thatthe system has the ability of mapping stably and navigating safely in flatunknown environments. Landmark library management and the timeperformance of the system indicate that the system has the ability ofreal-time work.
引文
[1] 蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2002,17(4):385-390
    [2] Thrun S. Robotic mapping: A survey. Technical Report: CMU-CS-02-111. 2002.
    [3] 王卫华,陈卫华,席裕庚.基于不确定信息的移动机器人地图创建研究进展.机器人,2001,23(6):563-568
    [4] Guilherme N D, Avinash C K. Vision for mobile robot navigation: a survey. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24(2): 1-31
    [5] Honeybee and Robots. http://www.convict.lu/Jeunes/Navigation.htm
    [6] Martin Landauer. Communication among social bees. Cambridge, Mass., 1971.
    [7] http://www.kyb.tuebingen.mpg.de/bu/projects/recognition.html
    [8] Thrun S, Beetz M etc. Probabilistic algorithm and the interactive museum tour-guide robot Minerva. International Journal of Robotics Research, 2000, 19(11): 972-999
    [9] Thrun S. Probabilistic algorithm in robotics. Technical Report: CMU-CS-00-126. 2000
    [10] Matthies L, Gat E, Harrison R etc. Mars microrover navigation: performance evaluation and enhancement. 1995
    [11] 罗荣华,洪炳熔.基于信息融合的同时定位与地图创建研究.哈尔滨工业大学学报,2004,36(5):566-569
    [12] 李磊,朱铭琳,杨国胜,候增广,谭民.基于门牌号识别的移动机器人全局自定位方法研究.高技术通讯,2003,8:71-76
    [13] 朱志刚,徐光佑,林学言,石定机.多尺度全覆盖视觉导航方法.机器人,1998,20(4):266-272
    [14] 刘伟军,董再励等.基于立体视觉的移动机器人自主导航定位系统.高技术通讯,2001,10:91-94
    [15] 王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究.机器人,2005,27(1):41-45
    [16] Zhou Chao, Wei Yucheng, Tan Tieniu. Mobile robot self-localization based on global visual appearance features. In: Proceedings of the IEEE International Conference on Robotics and Automation. Taipei: Septemper, 2003.
    [17] Moravec H P. The Stanford Cart and the CMU Rover. In Proc. of IEEE. 1983, 71 (7): 872-884
    [18] Moravec H P, Elfes A. High resolution maps from wide-angle sonar. Proc. of the 1985 IEEE Int. Conf. on Robotics and Automation(ICRA'85). St. Louis, USA, 1985. 116-121
    [19] Murray D, Jennings C. Stero vision based mapping and navigation for mobile robots. In Proceedings of IEEE International Conf. On Robotics and Automation. New Mexico: 1997. 1694-1699
    [20] Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features. 2001.
    [21] Thrun S, Bucken A. Integrating grid-based and topological maps for mobile robot navigation. In: Proceedings of the 13th National Conference on Artificial Intelligence AAAI. Portland, Oregon, 1996.
    [22] Se S, Lowe D, Little J. Local and global localization for mobile robots using visual landmarks. Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hawaii, USA, 2001. 414-420
    [23] Ulrich I and Nourbakhsh I. Appearance-based place recognition for topological localization. IEEE Int. Conf. on Robotics and Automation. San Francisco: April 2000. 1023-1029
    [24] Francesco Savelli, Benjamin Kuipers. Loop-closing and planarity in topological map-building. 2004.
    [25] Thrun S, Gutmann J S, Fox D, et al. Integrating topological and metric maps for mobile robot navigation: a statistical approach. Proc. of the 1998 National Conf. on Artificial Intelligence (AAAI'98). Madison, USA, 1998. 989-995
    [26] Yeap W K, Jefferies M E. Computing a representation of the local environment. Artificial Intelligence, 1999, 107(2): 265-301
    [27] Andrew J. Davison, Nobuyuki Kita. 3D simultaneous localisation and map-building using active vision for a robot moving on nndulating terrain. IEEE. 2001.
    [28] Bibier P, Andreasson H, Duckett T, et al. 3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera. Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS '04). Sendai, Japan, September 2004. v4:3123-3130
    [29] 王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展.机器人,2004,26(4):380-384
    [30] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics. In Editors: I. Cox and G. Wilfong, Autonomous Robot Vehicles. London: Springer-Verlag, 1990. 167-193
    [31] Nebot E, Masson F, Guivant J and Durrant-Whyte H. Robust simultaneous localization and mapping for very large outdoor environments. 2003.
    [32] Guivant J, Nebot E. Optimization of simultaneous localization and map building algorithm for real time implementation. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257
    [33] Montemerlo M, Thrun S. Fastslam: A factored solution to the simultaneous localization and mapping problem. Proc. of the Eighteenth National Conf. on Artificial Intelligence (AAAI'02). Edmonton, Canada, 2002. 593-598
    [34] Thrun S, Burgard W, Fox. D. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 1998, 31 (1-3): 29-53
    [35] Dellaert F, Fox D, Burgard W, et al. Monte Carlo localization for mobile robots. Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation (ICRA'99). Detroit, MI: 1999. 1322-1328
    [36] Wolf J and Pinz A. Particle filter for self-localization using panoramic vision. 2003.
    [37] Thompson S, Kagami S. Revising stereo vision maps in particle filter based SLAM using localisation condence and sample history. 2nd International Conference on Autonomous Robots and Agents. Palmerston North, New Zealand: December, 2004. 218-223
    [38] Sridharan M, Kuhlmann G and Stone P. Practical vision-based Monte Carlo localization on a legged robot. ICRA2005.
    [39] 刘松国,朱世强,刘瑜等.移动机器人的蒙特卡罗自主定位算法研究.机电工程,2005,22(4):38-42
    [40] 洪炳熔,罗荣华.一种鲁棒移动机器人自主定位方法.哈尔滨工业大学学报,2003,35(9):1047-1049
    [41] Kantor G, Singh S. Preliminary results in range-only localization and mapping. Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation(ICRA'02). Washington DC, USA, 2002. 1818-1823
    [42] Artac M, Jogan M, Leonardis A. Mobile robot localization using an incremental eigenspace model. IEEE International Conference on Robotics and Automation. May 2002. 1025-1030
    [43] 马建光,贾云得.一种基于全向摄像机的移动机器人定位方法.北京理工大学学报,2003,23(3):317-321
    [44] Freitas R, Santos-Victor J etc. Performance evaluation of incremental eigenspace models for mobile robot localization. Proceedings of 11th International Conference on Advanced Robotics(ICAR). Coimbra, Portugal, 2003.417-422
    [45] Brunskill E and Roy N. SLAM using incremental probabilistic PCA and dimensionality reduction. In: Proceedings of the IEEE/RSJ International Conference of Robotics and Automation. Barcelona, 2005. 342-347
    [46] Heisenberg M, Wolf R. Studies of Brain Function. Berlin: Springer-Verlag, v12: Vision in Drosophila. 1984.
    [47] Mikolajczyk K and Schmid C. Scale & affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(1): 63-86
    [48] Kosecka J and Li Fayin. Vision based topological Markov localization. Proceedings of the IEEE International Conference on Robotics and. Automation. Barcelona: 2004. 1481-1486
    [49] 张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测.软件学报,2004,15(6):891-898
    [50] Lowe D. Object Recognition from local scale-invariant features. Proc. of the 7th Int. Conf. on Computer Vision(ICCV'99). Corfu, Greece, 1999. 1150-1157
    [51] Se S, Lowe D. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research, 2002, 21(8): 735-738
    [52] Sim R and Dudek G. Learning visual landmarks for pose estimation. Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation(ICRA' 1999). Detroit, USA, 1999. 1972-1978
    [53] Sim R and Dudek G. Comparing image-based localization methods. IJCAI2003.
    [54] 王璐,蔡自兴.未知环境中基于视觉显著性的自然路标检测.模式识别与人工智能,2006,19(1):100-105
    [55] Krotkov E, Hebert M and Simmons R. Stereo perception and dead reckoning for a prototype lunar rover. Autonomous Robots, 1995, 2(4): 313-331
    [56] Volpe R. Rover functional autonomy development for the Mars mobile science laboratory. Proceedings of the 2003 IEEE Aerospace Conference. Big Sky, Montana, March 8-15, 2003.
    [57] Neira J, Tardos J D. Data association in stochastic mapping using the joint compatibility test. IEEE Trans. on Robotics and Automation, Dec 2001,17(6): 890-897
    [58] Baley T, Nebot E M, Rosenblatt J K, Durrant-Whyte H F. Data association for mobile robot navigation: A graph theoretic approach. IEEE Int. Conf. Robotics and Automation. San Francisco: 2000. 2512-2517
    [59] 王润生编著.图像理解.长沙:国防科技大学出版社,1995.
    [60] 吴东晖.智能移动机器人的视觉导航技术:[博士论文].浙江大学,2001.
    [61] Andrew J. Davison. Real-time simultaneous localization and mapping with a single camera. ICCV2003.
    [62] Yamauchi B. PackBot: a versatile platform for military robotics. SPIE.
    [63] Yamauchi B. The Wayfarer modular navigation payload for intelligent robot infrastructure. In Proceedings of SPIE, Unmanned Ground Vehicle Technology Ⅶ, edited by Grant Gerhart etc. Bellingham, WA, 2005. Volume 5804:85-96
    [64] Baumgartner E. Motion planning technologies for planetary rovers and manipulators. International workshop on motion planning in virtual environments. Toulouse, France, 2005.
    [65] Goldberg S, Maimone M, Matthies L. Stereo vision and rover navigation software for planetary exploration. IEEE Aerospace Conf., 2002.
    [66] 王志文,郭戈.移动机器人导航技术现状与展望.机器人,2003,25(5):470-474
    [67] 张洪峰,王硕,谭民,王龙.基于动态分区方法的多机器人协作地图构建.机器人,2003,25(2):156-162
    [68] Yang Xiaolong, Kosecka J. Experiments in location recognition using scale invariant SIFT features. Technical Report GMU-TR-2004-2, George Mason University. 2004.
    [69] 周德龙,高文,赵德斌.基于奇异值分解和判别式KL投影的人脸识别.软件学报,2003,14(4):783-789
    [70] 任海兵,祝远新,徐光佑等.连续动态手势的时空表观建模及识别.计算机学报,2000,23(8):824-828
    [71] Ulrich I and Nourbakhsh I. Appearance-based obstacle detection with monocular color vision. Proceedings of AAAI National Conference on Artificial Intelligence. Austin, TX. 2000.
    [72] 吴庆祥,Bell David.可移动机器人的马尔科夫自定位算法研究.自动化学报,2003,29(1):154-160
    [73] 厉茂海,洪炳熔.移动机器人的概率定位方法研究进展.机器人,2005,27(4):380-384
    [74] Thrun S, Buecken A, Burgard Wet al. Map learning and high-speed navigation in RHINO. In: AI based Mobile Robots: Case Studies of Successful Robot Systems, Kortenkamp D, Bonasso R P, Murphy R (eds.), USA: MIT Press. 1998.21-49
    [75] 司秉玉.基于可视人工路标的自主机器人导航若干问题研究:[博士学位论文].沈阳:东北大学,2003.
    [76] McNaughton M, Zhang H. Color vision for RoboCup with fast lookup tables. Proc. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing. Changsha, China, October 8-13, 2003.
    [77] 魏芳,董再励等.用于移动机器人的视觉全局定位系统研究.机器人,2001,23(5):400-403
    [78] Kosaka A and Pan J. Purdue experiments in model-based vision for hallway navigation. Proceedings of Workshop on Vision for Robots in IROS95. Pittsburgh, PA, 1995. 87-96
    [79] Colios C, Trahanias P. A framework for visual landmark identification based on projective and point-permutation invariant vectors. Robotics and Autonomous Systems, 2001, 35(1): 37-51
    [80] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(11): 1254-1259
    [81] Todt E, Torras C. Detection of nature landmarks through multiscale opponent features. In: Proc of the International Conference on Pattern Recognition. Barcelona, Spain, 2000. 3988-3991
    [82] Milanese R, Wechster H etc. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. In: IEEE-CVPR94. Seattle, USA, 1994. 781-785
    [83] 桑农,李正龙,张天序.人类视觉注意机制在目标检测中的应用.红外与激光工程,2004,33(1):38-42
    [84] 吴新年,汪云九.视觉注意的认知和神经生物学模型.心理学动态,1995,3(3):16-22
    [85] Milan Sonka等著.图像处理、分析与机器视觉(,艾海舟等译).人民邮电出版社.2003.58
    [86] Schmid C, Mohr R, Bauckhage C. Evaluation of Interest Point Detectors. International Journal of Computer Vision, 2000, 37(2): 151-172
    [87] Itti L, Koch C. A comparison of feature combination strategies for saliency based visual attention systems. 1999.
    [88] 孙即祥,王晓华,钟山.模式识别中的特征提取与计算机不变量.北京:国防工业出版社,2001.
    [89] Kuipers B. Modeling spatial knowledge. Cognitive Science, 1978, 2:129-153
    [90] Gaspar J, Winters N, and Santos-Victor J. Vision based navigation and environmental representations with an omni-directional camera. IEEE Transaction on Robotics and Automation, 2000,16(6): 890-898
    [91] Duda R, Hart P, Stork D. Pattern Classification, 2nd Edition[M]. China: China Machine Press, 2004.
    [92] Vale A, Ribeiro M. A probabilistic approach for the localization of mobile robots in topological maps. Proceedings of the 10th Mediterranean Conference on Control and Automation(MED2002). Lisbon, Portugal, 2002.
    [93] Vassallo R F, Santos-Victor J, Schneebeli H J. Using motor representations for topological mapping and navigation. Proceedings of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Lausanne, Switzeriand, October 2002. 478-483.
    [94] Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 1999, 11: 391-427
    [95] 吴高洪,章毓晋,林行刚.分割双纹理图像的最佳Gabor滤波器设计方法.电子学报,2001,29(1):48-50
    [96] Biswas R, Lirnketkai B, Sanner S, et al. Towards object mapping in nonstationary environments with mobile robots. Proc. of the 2002 IEEE Int. Conf. on Intelligent Robots and Systems (IROS'02). Lausanne, Switzerland, 2002. 1014-1019
    [97] Wang C C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects. Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation(ICRA'02). Washington DC, USA, 2002. 2918-2924
    [98] Wolf D, Sukhatme G S. Towards mapping dynamic environments. Proc. of the Int. Conf. on Advanced Robotics(ICRA'03). Coimbra, Portugal, 2003.594-600
    [99] Wolf D, Sukhatme G S. Online simultaneous localization and mapping in dynamic environments. Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation(ICRA'04). New Orleans, Louisiana, 2004. 1301-1306
    [100] Schulz D, Burgard W, Fox D, et al. Tracking multiple moving targets with a mobile robot using particles filters and statistical data association. Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation(ICRA'01). Seoul, Korea, 2001. 1665-1670.
    [101] Montemerlo M, Whittaker W, Thrun S. Conditional particle filters for simultaneous mobile robot localization and people-tracking. Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation(ICRA'02). Washington DC, USA, 2002. 695-701.
    [102] Andrade-Cetto J, Sanfeliu A. Concurrent map building and localization on indoor dynamic environments. International Journal on Pattern Recognition and Artificial Intelligence, 2002, 16:361-374
    [103] Huang G Q, Rad A B, Wong Y K. A new solution to map dynamic indoor environments. International Joumal of Advanced Robotic Systems, 2006, 3(2): 199-210
    [104] 王亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报,2002,25(3):1-16
    [105] Boyoon J and Gaurav S. Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In the 8th Conference on Intelligent Autonomous Systems. Amsterdam, Netherlands, 2004. 980-987
    [106] Toth D and Aach T. Detection and recognition of moving objects using statistical motion detection and Fourier descriptors. 2003.
    [107] Cucchiara R, Grana C, Piccardi M, Prati A. Statistic and knowledge-based moving object detection in traffic scenes. ITSC(Conference of Intelligent Transportation System). Dearborn, Michigan, 2000.
    [108] Dias J, Paredes C, Fonseca I, Araujo H, Batista J&de Almeida A. Simulating pursuit with machines. In: Proc. IEEE Int. Conf. on Robotics and Automation. Nagoya, Japan, 1995.
    [109] Collins R T, Lipton A J etc. A system for video surveillance and monitoring. Technical report. CMU-RI-TR-00-12. 2000.
    [110] 刘亚,艾海舟,徐光佑.基于主运动分析的野外视觉侦察系统—运动目标检测、跟踪及全景图的生成.机器人,2001,23(3):250-255
    [111] Baldini G, Campadelli P, Cozzi D, Lanzarotti R. A simple and robust method for moving target tracking. SPPRA2002.
    [112] 杨威,张田文.复杂景物环境下运动目标检测的新方法.计算机研究与发展,1998,35(8):724-728
    [113] 高新波,谢维信.模糊聚类理论发展及应用的研究进展.科学通报,1999, 44(21): 2241-2251
    [114] Hu Yingkang and Hathaway R. On efficiency of optimization in fuzzy c-means. Neural, Parallel&Scientific Computations, June 2002, 10(2): 141-156
    [115] 刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法.西安电子科技大学学报,1993,vol.20(1):40-46
    [116] Pal N, Bezdek J. Complexity reduction for "large image" processing. Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2002.
    [117] 叶秀清,顾伟康,肖强.快速模糊分割算法.模式识别与人工智能,1996,Vol.9(1):66-70
    [118] Eschrich S, Ke Jingwei, Hall L and Goldgof D. Fast accurate fuzzy clustering through data reduction. IEEE Transactions on Fuzzy Systems, April 2003, vol. 11 (2): 262-270
    [119] 章毓晋著.图象分割.北京:科学出版社,2001.96-97
    [120] 于剑.论模糊C均值算法的模糊指标.计算机学报,2003,26(8):968-973
    [121] Hoppner F, Klawonn F. A new approach to fuzzy partitioning. Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS Intemational Conference. Vancouver, Canada: 2001.1419-1424
    [122] Kosaka A, Kak A C. Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. Computer Vision, Graphics and Image Processing-Image Understanding, 1992, 56(3): 271-329
    [123] Meng M, Kak A C. NEURO-NAV: a neural network based architecture for vision-guided mobile robot navigation using non-metrical models of the environment. Proc. IEEE Int. Conf. on Robotics and Automation. 1993, vol.2:750-757
    [124] Thorpe C, Herbert M H, Kanade T and Shafer S A. Vision and navigation for the Carnegie-Mellon Navlab. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1988, 10(3): 362-372
    [125] 邓剑文,安向京,贺汉根.基于道路结构特征的自主车视觉导航.吉林大学学报(信息科学版),2004,22(4):415-419
    [126] 欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究.机器人,2000,22(6):519-526
    [127] Alberto V. Mobile robot navigation in outdoor environments: a topological approach: [PhD Thesis]. Instituto superior tecnico, Lisboa. 2005.
    [128] Andrade-Cetto J, Sanfeliu A. Topological map learning for a mobile robot in indoor environments. Proc. 9th Spanish Symposium on Pattern Recognition and Image Analysis. Barcelona: 2001. 221-226
    [129] 郑敏捷,蔡自兴,邹小兵.一种混合结构的移动机器人导航控制策略.机器人,2006,28(2):164-169
    [130] 邹小兵.移动机器人原型的控制系统设计与环境建模研究:[博士论文].中南大学,2005.
    [131] 于金霞,蔡自兴,邹小兵等.基于神经网络辨识的移动机器人航向误差校准方法.中南大学学报,2005,36(5):745-750
    [132] 求是科技.Visual C++数字图像模式识别技术及工程实践.北京:人民邮电出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700