用户名: 密码: 验证码:
融合机器人视/嗅觉信息的气体泄漏源定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学研究表明,很多生物利用气味或/和视觉等信息完成觅食、求偶、御敌和交流等活动。受这些生物行为的启发,自20世纪90年代开始,一些学者开始利用移动机器人结合气体、视觉等传感器进行气体泄漏源定位研究。移动机器人气体泄漏源定位的研究成果有望在不远的将来被用于有毒/有害气体泄漏检测、火源探测、灾后倒塌建筑物搜救和反恐排爆等领域。
     本文针对机器人融合视/嗅觉信息搜寻气体泄漏源问题,重点开展了如下的研究工作:
     一、针对现有机器人泄漏源定位过程中视觉信息处理存在的不足,本文提出了一种新的任务驱动视觉注意机制计算模型(即TDVAM计算模型)用于视觉信息的快速处理。通过学习的方法确定凸显目标物的重要特征和最佳尺度,将有限的计算和存储资源优先分配给场景中少数的显著区域,快速地凸显特定的搜寻目标,满足机器人视觉信息处理的实时性需求。针对待搜寻目标的精确识别问题,提出了形状分析与TDVAM计算模型相结合的目标识别方法,通过提取候选显著区域的多个形状特征(如面积、周长、紧密度等)判断该区域是否是疑似泄漏源区域,并与传统的模板匹配方法进行了比较,验证了本文所提方法的可靠性。
     二、针对风速/风向比较稳定的流场环境中气体泄漏源定位问题,提出了基于最小二乘估计的机器人融合视/嗅觉信息的泄漏源定位方法。此类环境中气体浓度近似高斯分布。首先通过视觉确定出场景中存在的可疑区域,然后针对每一个可疑区域采用湍流扩散模型计算出机器人在采样点处的理论浓度值,最后采用最小二乘方法对机器人获取的实际浓度值和理论浓度值进行最小偏差估算,快速确认泄漏源的位置。真实机器人实验验证了本文所提方法的有效性。
     三、针对风速/风向变化比较大的环境中气体泄漏源定位问题,提出了基于包容体系结构的机器人融合视/嗅觉信息泄漏源定位方法。在此类环境中由于受湍流的影响气体浓度的分布很难用一个精确的数学模型来描述。本文针对机器人在定位过程中获取传感器信息的不同建立具有不同优先级的行为策略,高优先级的行为能够对低一级的行为进行包含和抑制,使得机器人能够实时地产生一个优化策略,面对动态、复杂、非结构化环境做出快速反应并完成任务。真实机器人实验验证了本文所提方法的可靠性与鲁棒性。
Research results show that many animals use olfaction or/and vision cues to search for food, find same species, evade predators, exchange information and so on. Inspired by those biological activities, in the early 1990s researchers started to build mobile robots with onboard gas sensors or/and visual sensor to accomplish the gas-source-localization task. It is expected that such research results will play more and more roles in the application areas like judging toxic/harmful gas leakage location, checking contraband, searching for survivors in collapsed buildings, and fighting against terrorist attacks.
     This dissertation focuses on the mobile robot based gas source localization by fusing vision and olfaction information. The achievements can be concluded as follows.
     Firstly, in view of the drawbacks of the existing visual information processing methods for the robot based gas source localization, a novel top-down visual attention mechanism (TDVAM) computation model is proposed. The important features and the optimal scales of the salient objects are determined via learning. Since the limited computing and memory resources of the microprocessor are mainly used for processing the salient objects, it can meet the real-time requirement of the mobile robot. Meanwhile, shape analysis method is combined with the TDVAM computation model in order to recognize the object more accurately. Several shape features, including area, perimeter and compactness, are extracted to identify whether the candidate salient regions are the plausible areas or not. The shape analysis method is also compared with the template matching method. Experimental results validate the accuracy and reliability of the proposed method.
     Secondly, for the gas source localization in relatively stable airflow environments in which both the wind speed and direction have no large-scale fluctuation, a novel vision/olfaction fusion method based on least square estimation is put forward. In such environments, the gas concentration approximates to Gaussian distribution. The plausible areas are determined using vision information, and the theoretical gas concentration of all the sampled locations in every plausible area can be calculated using the turbulent–diffusion model. The minimum deviation between the theoretical gas concentration and the real one is estimated using least square method to declare which plausible area is the real source. Real-robot experimental results demonstrate the efficiency of the proposed method.
     Thirdly, the subsumption architecture based vision/olfaction fusion method is presented to accomplish the gas source localization task in the airflow environments where both the wind speed and direction have relatively large-scale fluctuation. In such environments, it is difficult to describe the distribution of the gas concentration using a mathematic model due to the influence of turbulence. In order to make full use of the multi-sensor information, the different behavior strategies with different priorities are set up. The behavior with higher priority can subsume or inhibit the behavior with lower priority, which makes the robot generate an optimization strategy to deal with the dynamic, complex and unstructured environments. With the subsumption architecture and the gas source localization task could be accomplished efficiently. The reliability and robustness of the proposed method are validated with the real robot experiments.
引文
[1]陈家强.危险化学品泄漏事故及其处置.消防科学与技术, 2004, 23(5): 409~412
    [2]刘卫宏,李永文,徐旭忠.重庆发生氯气泄漏爆炸事故15万群众疏散[EB/OL]. http:// health.sohu.com/2004/04/17/53/article219865392.shtml
    [3]匡兴红,邵惠鹤.无线传感器网络在气体源预估定位中的应用.华东理工大学学报(自然科学版), 2006, 32(7): 780~783
    [4] Michaelides M P, Panayiotou C G. Plume source position estimation using sensor networks. Proceedings of the 13th Mediterranean Conference on Control and Automation. USA: IEEE, 2005, 731~736
    [5] Vijayakumaran S, Levinbook Y, Wong T F. Maximum likelihood localization of a diffusive point source using binary observations. IEEE Transactions On Signal Processing, 2007, 55(2): 665~676
    [6] Langer K. A guide to sensor design for land mine detection. Proceedings of the EUREL International Conference on the Detection of Abandoned Landmines: A Humanitarian Imperative Seeking a Technical Solution. USA: IEE, 1996, 30~32
    [7] Sheybani A, Nusnbaum M, Caprio J, et al. Responses of the sea catfish Ariopsis felis to chemical defenses from the sea hare Aplysia californica. Journal of Experimental Marine Biology and Ecology, 2009, 368: 153~160
    [8] Giaquinto P C, Hoffmann A. Role of olfaction and vision cues in feeding behavior and alarm reaction in the catfish pmtado, Pseudoplatystoma corruscans. Japan Ethological Society and Springer, 2009
    [9] Balkenius A, Rosen W, Kelber A. The relative importance of olfaction and vision in a diurnal and nocturnal hawkmoth. J Comp Physiol A, 2006, 192: 431~437
    [10] Aquiloni L, Massolo A, Gherardi F. Sex identification in female crayfish is bimodal. Naturwissenschaften, 2009, 96: 103~110
    [11] Scheffer SJ, Uetz G W, Stratton G E. Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders. Behav Ecol Sociobiol,1996, 38: 17~23
    [12] Snyder M J, Ameyaw-Akumfi C, Chang E S. Sex recognition and the role of urinary cues in the lobsters. Mar Behav Physiol, 1993, 24: 101~116
    [13] Simon J L, Moore P A. Male-female communication in the crayfish: the use of urinary signals in reproductive and non-reproductive pairings. Ethology, 2007, 113: 740~754
    [14] Sneddon L U, Huntingford F A, Taylor A C. Female sex pheromone-mediated effects on behavior and consequences of male competition in the shore crab. J ChemEcol, 2003, 29: 55~70
    [15] Adler J. Chemotaxis in bacteria. Journal of Supramolecular Structure, 1976, 4(3): 305 ~ 317
    [16]裴元慧,孔锋,韩国华等.昆虫取食行为研究进展.山东林业科技, 2007, 6: 97~101
    [17]钦俊德.诠释植食性昆虫是怎样选择食料植物的.生物学通报, 2003, 38(6): 1~3
    [18]魏建荣,杨忠岐,杜家纬.天敌昆虫利用信息化学物质寻找寄主或猎物的研究进展.生态学报, 2007, 27(6): 2563~2573
    [19] Guo J Z, Guo A K. Crossmodal interactions between olfactory and visual learning in Drosophila. Science, 2005, 309: 307~310
    [20] Guo A K, Gotz K G. Association of visual objects and olfactory cues in Drosophila. LEARNING MEMORY, 1997, 4: 192~204
    [21]孟庆浩,李飞.主动嗅觉研究现状.机器人, 2006 , 28(1): 89-96.
    [22] Larcombe M, Halsall J. Robotics in nuclear engineering: computer-assisted teleoperation in hazardous environments with particular reference to radiation fields. London: Graham & Trotman, 1984.
    [23] Rozas R, Morales J, Vega D. Artificial smell detection for robotic navigation. Proceedings of the 5th International Conference on Advanced Robotics.USA: IEEE, 1991, 1730 ~ 1733
    [24] Buscemi L, Prati M, Sandini G. Cellular robotics: behaviour in polluted environments. Proceedings of the 2nd International Symposium on Distributed Autonomous Robotic Systems. 1994
    [25] Genovese V, Dario P, Magni R, et al. Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. USA: IEEE, 1992, 1575~1582
    [26] Sandini G, Lucarini G, Varoli M. Gradient-Driven Self-Organizing Systems. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. USA: IEEE, 1993, 429~432
    [27] Moriizumi T, Ishida H. Robotic systems to track chemical plumes. Proceedings of the 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. USA: IEEE, 2002, 537~540
    [28] Grasso F W, Basil J A, Atema J. Robot and lobster perspectives of tracking odors to their source in the turbulent marine environment. Proceedings of the IEEE International Symposium on Intelligent Control. USA: IEEE, 1998, 259~264
    [29] Russell R A. Locating underground chemical sources by tracking chemical gradients in 3 dimensions. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. USA: IEEE, 2004, 325~330
    [30] Russell R A. Tracking chemical plumes in 3-dimensions. Proceedings of the IEEE International Conference on Robotics and Biomimetics. USA: IEEE, 2006, 31~36
    [31] Hayes A T, Martinoli A, Goodman R M. Distributed odor source localization. IEEE Sensors Journal, 2002, 2(3): 260~271
    [32] Li W, Farrell J A, Pang S, et al. Moth-Inspired Chemical Plume Tracing on an Autonomous Underwater Vehicle. IEEE Transactions on Robotics, 2006, 22(2): 292~307
    [33] Murlis J. Mechanisms in Insect Olfaction. Oxford: Oxford University Press, 1986. 27~38
    [34] Ishida H, Nakamoto T, Moriizumi T. Gas/Odor Plume Tracing Robot, Sensors Update, 6. Weinheim, Germany: Wiley, 2000
    [35] Balkovsky E, Shraiman B I. Olfactory search at high Reynolds number. Proceedings of the National Academy of Sciences of United States of America, 2002, 99(20): 12589~12593
    [36] Farrell J A, Li W. Chemical plume tracing experimental results with a REMUS AUV. Proceedings of Oceans Conference Record. 2003, 2: 962~968
    [37] Hayes A T, Martinoli A, Goodman R M. Swarm robotic odor localization. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems. USA: IEEE, 2001, 1073~1078
    [38] Russell R A, Bab-Hadiashar A, Shepherd R L, et al. A comparison of reactive chemotaxis algorithms. Robotics and Autonomous Systems. 2003, 45(2): 83~97
    [39] Kanzaki R, Sugi N, Shibuya T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zoological Science, 1992, 9(3): 515~527
    [40] Holland O, Melhuish C. Some adaptive movements of animats with single symmetrical sensors, in: from animals to animats. Proceedings of the 4th International Conferenmce on Simulation of Adaptive Behaviour. 1996, 4: 55~64
    [41] Marques L, De Almeida A. Electronic nosebased odour source localization. Proceedings of the 6th International Workshop on Advanced Motion Control. USA: IEEE, 2000, 36~40
    [42] Marques L, Nunes U, de Almeida A. Olfaction-based mobile robot navigation. Thin Solid Films, 2002, 418(1): 51~58
    [43] Lytridis C, Virk G, Rebour Y, et al. Odor-based navigational strategies for mobile agents. Adaptive Behavior, 2001, 9(3–4): 171~187
    [44] Purnamadjaja A H, Russell R A. Congregation behaviour in a robot swarm using pheromone communication. Proceedings of the Australasian Conference on Robotics and Automation. 2005
    [45] Purnamadjaja A, Russell R. Pheromone communication: implementation of necrophoric bee behaviour in a robot swarm. Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics. USA: IEEE, 2004, 2: 638~643
    [46] Braitenberg V. Vehicles: Experiments in Synthetic Psychology. Boston, MA: The MIT Press. 1984
    [47] Kuwana Y, Nagasawa S, Shimoyama I, et al. Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosensors and Bioelectronics, 1999, 14(2): 195~202
    [48] Kuwana Y, Shimoyama I, Miura H. Steering control of a mobile robot using insect antennae. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. USA: IEEE, 1995, 2: 530~535
    [49] Kazadi S, Goodman R, Tsikata D, et al. An autonomous water vapor plume tracking robot using passive resistive polymer sensors. Autonomous Robots, 2000, 9(2): 175~188
    [50] Farah A M, Duckett T. Reactive localisation of an odour source by a learning mobile robot. Proceedings of the 2nd Swedish Workshop on Autonomous Robotics. 2002, 29~38
    [51] Grasso F W, Consi T R, Mountain D C, et al. Biomimetic robot lobster performs chemo- orientation in turbulence using a pair of spatially separated sensors: progress and challenges. Robotics and Autonomous Systems, 2000, 30(1): 115~131
    [52] Grasso F, Dale J, Consi T, et al. Purely chemotactic robot lobster reveals different odor dispersal patterns in the jet region and the patch field of a turbulent plume. Biological Bulletin, 1996, 191(2): 312~313
    [53] Lilienthal A, Duckett T. Experimental analysis of smelling braitenberg vehicles. Proceedings of the IEEE International Conference on Advanced Robotics. USA: IEEE, 2003
    [54] Lilienthal A, Duckett T. Approaches to gas source tracing and declaration by pure chemotropotaxis. Proceedings of the AMS. 2003, 161~171
    [55] Lilienthal A, Zell A, Wandel M, et al. Sensing odour sources in indoor environments without a constant airflow by a mobile robot. Proceedings of the IEEE International Conference on Robotics and Automation. USA: IEEE, 2001, 4: 4005 ~ 4010
    [56] Wandel M, Lilienthal A, Duckett T, et al. Gas distribution in unventilated indoor environments inspected by a mobile robot. Proceedings of the IEEE International Conference on Advanced Robotics. USA: IEEE, 2003, 507~512
    [57] Wandel M, Weimar U, Lilienthal A, et al. Leakage localisation with a mobile robot carrying chemical sensors. Proceedings of the 8th IEEE International Conference on Electronics, Circuits and Systems. USA: IEEE, 2001, 3: 1247~1250
    [58] Ishida H, Zhu M, Johansson K, et al. Three-dimensional gas/odor plume tracking with blimp. Proceedings of the Asia-Pacific Conference of Transducers and Micro-Nano Technology, 2004
    [59] Liang L, Li J P, Jian J, et al. A New Approach to Biomimetic Robots for Odor Source Localization. Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics. USA: IEEE, 2006, 840~845
    [60]梁亮.机器人嗅觉和味源定位的研究.中国科学院电子学研究所硕士学位论文, 2005
    [61] Ishida H. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sensors and Actuators A, 1994, 45(2): 153~157
    [62] Lilienthal A J, Loutfi A, Duckett T. Airborne chemical sensing with mobile robots. Sensors, 2006, 6(11): 1616~1678
    [63] Russell R A, Thiel D, Deveza R, et al. Robotic system to locate hazardous chemical leaks. Proceedings of IEEE International Conference on Robotics and Automation. 1995, 1: 556~561
    [64] Ishida H, Nakayama G, Nakamoto T, et al. Controlling a gas/odor plume-tracking robot based on transient responses of gas sensors. Proceedings of IEEE Sensors, 2002, 2: 1665~1670
    [65] Marques L, Almeida N, de Almeida A. Olfactory sensory system for odour-plume tracking and localization. Proceedings of IEEE Sensors, 2003, 1: 418~423
    [66] Kuwana Y, Shimoyana I. Pheromone-guided mobile robot that behaves like a silkworm moth with living antennae as pheromone sensors. International Journal of Robotics Research, 1998, 17(9): 924~933
    [67] Pyk P, Badia S B, Bernardet U, et al. An artificial moth: chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robot, 2006, 20(3): 197~213
    [68] Lilienthal A, Reimann D, Zell A. Gas source tracing with a mobile robot using an adapted moth strategy. Proceeding of American Mathematical Society. New York: Springer, 2003, 150~160
    [69] Ishida H, Kagawa Y, Nakamoto T, et al. Odor-source localization in clean room by autonomous mobile sensing system. Proceedings of International Conference on Solid-State Sensors and Actuators and Eurosensors IX. USA: IEEE, 1995, 1: 783~786
    [70] Vergassola M, Villermaux E, Shraiman B I.‘Infotaxis’as a strategy for searching without gradients. Nature, 2007, 445(26): 406~409
    [71]孙骏文.基于信息熵算法的多机器人主动嗅觉研究.天津大学硕士学位论文, 2009
    [72] Ishida H, Nakamoto T, Moriizumi T. Remote sensing and localization of gas/odor source and distribution using mobile sensing system. Proceedings of the International Conference on Solid State Sensors and Actuators. USA: IEEE, 1997, 1: 559~562
    [73] Ishida H, Nakamoto T, Moriizumi T. Remote Sensing of Gas/Odor Source Location and Concentration Distribution Using Mobile System. Sensors and Actuators B, 1998, 49(1-2): 52~57
    [74] Farrell J A, Pang S, Li W. Plume mapping via hidden markov methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(6): 850~863
    [75] Kowadlo G, Russell R A. Na?ve physics for effective odour localisation. Proceedings of the Australasian Conference on Robotics and Automation. USA: IEEE, 2003
    [76] Kowadlo G, Russell R A. To na?vely smell as no robot has smelt before. Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics. USA: IEEE, 2004, 898~903
    [77] Pang S, Farrell J A. Chemical plume source localization. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2006, 36(5): 1068~1080
    [78]李吉功,孟庆浩,李飞等.时变流场环境中机器人跟踪气味烟羽方法.自动化学报. 2009, 35(10): 1327~1333
    [79] Li J G, Meng Q H, Zeng M et al. An estimation-based plume tracing method in time-variant airflow-field via mobile robot. Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009, 2249~2254
    [80] Li J G, Meng Q H, Li F et al. Mobile Robot based odor path estimation via dynamic widow approach. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008, 1173~1178
    [81] Zarzhitsky D, Spears D F. Swarm approach to chemical source localization. Proceedings of International Conference on Systems, Man and Cybernetics. USA: IEEE, 2005, 2: 1435~1440
    [82] Zarzhitsky D, Spears D, Thayer D, et al. Agent-based chemical plume tracing using fluid dynamics. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science). 2004, 3228: 146 ~ 160
    [83] Marques L, Nunes U, Almeida A T. Particle swarm-based olfactory guided search. Autonomous Robot, 2006, 20(3): 277~287
    [84]黄炘.基于粒子群优化的机器人主动嗅觉研究.天津大学硕士学位论文, 2007
    [85] Jatmiko W, Sekiyama K, Fukuda T. A mobile robots PSO-based for odor source localization in dynamic advection-diffusion environment. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligence Robots and Systems. USA: IEEE, 2006, 4527~4532
    [86] Jatmiko W, Mursanto P, Kusumoputro B. Modified PSO algorithm based on flow of wind for odor source localization problems in dynamic environments. WSEAS Transcations on Systems, 2008, 7(3): 106~113
    [87]李飞,孟庆浩,李吉功等.基于P-PSO算法的室内有障碍通风环境下的多机器人气味源搜索.自动化学报, 2009, 35(12): 1573~1579
    [88] Li F, Meng Q H, Bai S, et al. Probability-PSO algorithm for multi-robot based odor source localization in ventilated indoor environments. Proceedings of intelligent Robotics and Applications - First International Conference. 2008, 5314 LNAI: PART 1, 1206-1215
    [89] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions. On Evolutionary Computation, 1997, 1(1): 53~66
    [90]白双.基于强化学习蚁群算法的主动嗅觉研究.天津大学硕士学位论文, 2009
    [91]孟庆浩,李飞,张明路等.湍流烟羽环境下多机器人主动嗅觉实现方法研究.自动化学报, 2008, 34(10): 1281~1290
    [92] Marques L, Nunes U, de Almeida A T. Cooperative odour field exploration with genetic algorithms. Proceedings 5th Portuguese Conference on Automatic Control. 2002, 138~143
    [93] Marques L, Nunes U, de Almeida A T. Odour searching with autonomous mobile robots: an evolutionary-based approach. Proceedings of IEEE International Conference on Advanced Robotics USA: IEEE, 2003, 494~500
    [94]李俊彩.基于群体智能的主动嗅觉实现方法研究.天津大学硕士学位论文, 2006
    [95]李俊彩,孟庆浩,梁琼.基于进化梯度搜索的机器人主动嗅觉仿真研究.机器人, 2007, 29 (3): 234~238
    [96] Lilienthal A, Ulmer H. Gas source declaration with a mobile robot. Proceeding of the IEEE International Conference on Robotics and Automation. USA: IEEE, 2004, 2004(2): 1430~1435
    [97] Lilienthal A J, Duckett T. Creating gas concentration gridmaps with a mobile robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. USA: IEEE, 2003, 1: 118~123
    [98] Li W. Abstraction of odor source declaration algorithm from moth-inspired plume tracing strategies. Proceedings of IEEE International Conference on Robotics and Biomimetics. USA: IEEE, 2006, 1024~1029
    [99]王凯全,邵辉.事故理论与分析技术.北京:化学工业出版社, 2004
    [100] Martinez D, Perrinet L. Cooperation between vision and olfaction in a koala robot. In Report on the 2002 Workshop on Neuromorphic Engineering, 2002, 51~53
    [101] Kowadlo G, David R, Russell R A, et al. Bi-modal search using complementary sensing (olfaction/vision) for odour source localization. IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, 2006, 2041~2046
    [102] Ishida H, Tanaka H, Taniguchi H, et al. Mobile robot navigation using vision and olfaction to search for a gas/odor source. Autonomous Robots, 2006, 20(3): 231~238
    [103] Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Transactions on robotics, 2006, 22(2): 292~306
    [104] Jiang P, Zeng M, Meng, Q H, et al. A novel object recognition method for mobile robot localizing single odor/gas source in complex environments. IEEE International Conference on Robotics, Automation & Mechatronics, Chengdu, China, 2008, 2194~2198
    [105]罗跃嘉,魏景汉.注意的认知神经科学研究.北京:高等教育出版社, 2004
    [106]汪云九,齐翔林,吴新年等译.惊人的假说.长沙:湖南科技出版社, 1998
    [107] Kadir T, Brady M. Saliency, scale and image description. International Journal of Computer Vision, 2001, 45(2): 83~105
    [108] Stentiford F M. An evolutionary programming approach to the simulation of visual attention. IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001, 851~858
    [109] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254~1259
    [110] Itti L, Koch C. A saliency-based search mechnism for overt and covert shifts of visual attention. Visioon Research, 2000, 40(10-12):1489~1506
    [111]邱亚男.基于人眼视觉特性的图像增强算法研究.天津大学硕士论文, 2008
    [112]罗四维.视觉感知系统信息处理理论.北京:电子工业出版社, 2006
    [113]周秀芝.面向深度提取和形状识别的图像匹配.国防科技大学博士论文, 2006
    [114]丁险峰,吴洪,张宏江等.形状匹配综述.自动化学报, 2001, 27(5): 678~694
    [115]何友,王国宏,彭应宁等.多传感器信息融合及应用.北京:电子工业出版社, 2000
    [116] Steinberg A N, Bowman C L, White F E. Revisions to the JDL data fusion model. In Sensor Fusion: Architectures, Algorithms, and Applications, Proceedings of the SPIE. Orlando: Florida, 1999, 430~441
    [117]韩崇昭,朱洪艳,段战胜等.多源信息融合.北京:清华出版社, 2006
    [118]王志贤.最优状态估计与系统辨识.西安:西北工业大学出版社, 2007
    [119] Hinze J O. Turbulence. McGraw-Hill, New York, 1975
    [120] Brooks R A. A robust layered control system for a mobile robot. IEEE Journal of robotics and automation, 1986, 1(RA-2): 14~23
    [121] Treisman A, Gelade G. A feature integration theory of attention. Cognitive Psychology, 1980, 12(1): 97~136
    [122] Treisman A. Perceptual grouping and attention in visual search for features and for objects. J Exp Psychol Human Percept, 1982, 8: 194~214
    [123] Treisman A. The role of attention in object perception. In: Braddick OJ, Sleigh AC (eds) Physical and biological processing of images. Springer, Berlin Heidelberg, 1983
    [124] Bergen J R, Julesz B. Focal attention in rapid pattern discrimination. Nature, 1983, 303: 696~698
    [125] Julesz B, Bergen J R. Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Tech J, 1983, 62: 1619~1645
    [126] Julesz B. A brief outline of the texton theory of human vision. Trends Neurosci, 1984, 7: 41~48
    [127] Goldberg M E, Wurtz R H. Activity of superrior colliculus in behaveing monkey. II. Effect of attention and neural resposes. J Neurophysiol, 1972, 35: 560~574
    [128] Bushnell C, Goldberg M E, Robinson D L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol, 1981, 4: 755~772
    [129] Mountcastle V B, Andersen R A, Motter B C. The influence of attentive fixation upon the excitability of the light-sensitive neurons on the posterior parietal cortex. J Neurosci, 1981, 1: 1218~1235
    [130] Haenny P, Maunsell J, Schiller P. Cells in prelunate cortex alter respons to visual stimuli of different of different behavioral significance. Perception, 1984, 7: 41~48
    [131]张雅旭,张厚粲.选择性注意机制研究的新进展.心理科学
    [132] Zeng X D. Attention mechanism and its role in invariant pattern recognition. NEUROCOMPUTING, 2001, 38: 1611~1618
    [133]陈彩琦,刘志华,金志成.视觉选择性注意脑机制研究进展.应用心理学, 2000, 8(2): 60~64
    [134]郝芳,傅小兰.视觉标记:一种优先选择机制.心理科学进展, 2006, 14(1): 7~11
    [135]胡荣荣,丁锦红.视觉选择性注意的加工机制.人类工效学, 2007, 13(1): 69~71
    [136] Ungerleider L G, Mishkin M. Two cortical visual systems. In : Ingle D J, Goodale M A, Mansfield R J W, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press, 1982, 549~586
    [137] Ungerleider L G, Mishkin M. The two visual systems—ventral and dorsal. http://vision.psy.mq.edu.au/~darrenb/315refs/TwoVis.pdf
    [138] Hubel D H, Wiesel T N. Receptive fields, binocular interaction, and functional architecture in cat’s visual cortex. Journal of Physiology, 1962, 160: 106~154
    [139]马万禄,蔡浩然,张少吾译.视觉生理与仿生学.北京:科学出版社, 1980
    [140] Rodieck R W, Stone J J. Analysis of receptive fields of cat retina ganglion cells.Journal of Neurophysiology, 1965, 28: 833~849
    [141] Kruizinga P, Petkov N. Nonlinear operator for oriented texture. IEEE Trans On Image Processing, 1999, 8(10): 1395~1407
    [142] Kronauer R E, Zeevi Y Y. Reorganization and diversification of signals in vision. IEEE Trans on Sys Man and Cyber, 1985, 15(1): 91~101
    [143]王爱群,郑南宁.基于小波的具有选择性注意力机制.西安交通大学学报, 1995, 29(1): 46~51
    [144]龙普荟,郑南宁.基于非均匀采样及选择性注意机制的多分辨率边缘检测,电子学报, 1998, 26(5): 97~99
    [145] Rybak I A, Gusakova V I, Golovan A V, et al. A model of attention-guided visual perception and recognition. Vision Research, 1998, 38(16-16): 2387~2400
    [146] Feldman J A. Dynamic connections in neural networks. Biol Cybern. 1982, 46:27~39
    [147] Posner M I, Gohen Y Rafal R D. Neural systems control of spatial orienting. Philos Trans R Soc Lond B Biol Sci, 1984, 298(1089):187~198
    [148] Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 1985, 4:219~227
    [149] Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience, 2001, 2(3):194~203
    [150] Itti L. Models of bottom-up and top-down visual attention. PH.D. Thesis. Los Angeles, California, USA: California Institute of Technology, 2000.
    [151] Peters R J, Iyer A, Itti L, et al. Components of bottom-up gaze allocation in natural images. Vision Research, 2005, 45(18):2397~2416
    [152] Itti L. Quantifying the contribution of lowlevel saliency to human eye movements in dynamic scenes. Visual Cognition, 2005, 12(6):1093~1123
    [153] Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19:1395~1407
    [154]张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测.软件学报, 2004, 15(6):891~898
    [155]张鹏,王润生.由底向上视觉注意机制中的层次性数据竞争.计算机辅助设计与图形学学报, 2005, 17(8):1667~1672
    [156]田媚,罗四维,廖灵芝.一种新的自底向上的注意信息提取算法.中国科技论文在线, http://www.paper.edu.cn
    [157] Sun Y R, Fisher R. Object-based visual attention for computer vision. Artificial Intelligence, 2003, 146: 77~123
    [158] Chen H Y, Leou J J. A new visual attention model using texture and object features. 8th IEEE International Conference on Computer and Information Technology Workshops, 2008
    [159]王岳环,张天序.基于视觉注意机制的实时红外小目标预检测.华中科技大学学报, 2001, 29(6):7~9
    [160]叶聪颖,李翠华.基于HSI的视觉注意力模型及其在船只检测中的应用.厦门大学学报, 2005, 44(4):484~488
    [161]蒋李兵,王壮,胡卫东.一种基于ROI的红外舰船目标检测方法.红外技术, 2006, 28(9):535~539
    [162]刘伟,张宏,童勤业.视觉注意计算模型及其在自然图像压缩中的应用.浙江大学学报, 2007, 41(4):650~654
    [163]张国敏,殷建平,祝恩等.遥感图像中基于视觉显著性的分层目标检测.吉林大学学报, 2007, 37(3):625~629
    [164]曾志红,周昌乐,林坤辉等.目标跟踪的视觉注意计算模型.计算机工程, 2008, 34(23):241~243
    [165]曾明,孟庆浩,王湘晖等.视觉注意机制在图像增强中的应用研究.光子学报, 2009, 38(5): 1283~1287
    [166] Bonaiuto J, Itti L. The use of attention and spatial information for rapid facial recognition in viedeo. Image and Vission Computing, 2006, 24:557~563
    [167] Ban S W, Lee M. Selective attention-based novelty scene detection in dynamic environments. NEUROCOMPUTING, 2006, 69: 1723~1727
    [168] Scholl B J. Objects and attention: the state of the art. Cognition, 2001, 80: 1~46
    [169] Egeth H E, Yantis S. Visual attention: control, representation, and time course. Ann. Rev. Psychol., 1997, 48: 269~297
    [170] Treisman A. Feature binding, attention and object perception. Phil. Trans. R. Soc. Lond., 1998, 353: 1395~1406
    [171] Wiskott L, von der Malsburg C. Face recognition by dynamic link maching. Lateral Interactions in the Cortex: Structure and Function. 1996
    [172] Lindeberg T. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2):79~116.
    [173] Mahmood F. Attentional Selection in Object Recogniton [PH.D. Thesis]. Boston, Massachusetts, USA: Massachusetts Institute of Technology, 1993.
    [174] Sun Y R, Fisher R, Wang F, et al. A computer vision model for visual-object-based attention and eye movements. Computer Vision and Image Understanding, 2008, 112(2): 126~142
    [175] Jagerstand M. Saliency maps and attention selection in scale and spatial coordinates. An information theoretic approach. In proceeding of Fifth International Conference on Computer Vision, Boston, MA, USA 1995: 195~202
    [176] Ferraro M, Boccignone G, Caelli T. Entropy-based representation of in age information. Pattern Recogniton Letters, 2002, 23(12): 1391~1398
    [177] Ferraro M, Boccignone G, Caelli T. Generalized spatio-chromatic diffusion. Pattern Recognition Letters, 2002, 24(10): 1298~1309
    [178] Kadir T. Scale, Saliency and Scene Description [PH.D. Thesis]. Oxford, UK: University of Oxford, 2002
    [179] Cave K R, Wolfe J M. Modeling the role of parallel processing in visual search. Cognitive Psychology, 1990, 22:225~271
    [180] Hwang A D, Higgins E C, Pomplun M. A model of top-down attention control during visual search in complex scenes. Journal of Vision, 2009, 9(5):1~18
    [181] Navalpakkam V, Itti L. Modeling the influence of task on attention. Vision Research, 2005,45:205~231
    [182] Navalpakkam V, Itti L. Optmal cue selection strategy. In Advance in Neural Information Processing Systems, 2006, 19: 1~8
    [183] Navalpakkam V, Itti L. Modeling the influence of task on attention. Vision Research, 2005, 45: 205~231
    [184] Shen V, Reingold E M, Pomplun M. Distractor ratio influences patterns of eye movements during visual search. Perception and Psychophysics, 2000, 60:1067~1082
    [185]蒋萍,孟庆浩,曾明等.一种新的移动机器人气体泄漏源视觉搜寻方法.机器人, 2009, 31(5): 397~403
    [186] Burt P J, Andelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532~542
    [187] Burt P J. Smart sensing within a pyramid vision machine. In Proceedings of the IEEE, 1988, 76(8): 1006~1015
    [188] Engel S. Zhang X, Wandell B. Colour tuning in human visual cortex measured with functional magnetic resonance imageing. Nature, 1997, 388(6637): 68~71
    [189] Bauer B, Jolicoeur P, Cowan W B. Visual search for colour targets that are or are not linearly-separable from distractors. Vision Research, 1996, 36(10): 1439~1466
    [190] Moraglia G, Maloney K P, Fekete E M, et al. Visual search along the colour dimension. Canadian J of Psychology, 1989, 43(1): 1~12
    [191] Wolfe J M, Yu K P, Stewart M I, et al. Limitations on the parallel guidance of visual search: Color X color and Orientation X orientation conjunctions. J. Exp. Psychol: Human Perception and Performance, 1990, 16(4): 879~892
    [192] DeAngelis G C, Ohzawa I, Freeman R D. Receptive-field dynamics in the central visual pathways. Trends in Neuroscience, 1998, 18: 451~458
    [193] Nothdurft H C. Texture segmentation and pop-out from orientation contrast. Vision Research, 1991, 31(6): 1073~1078
    [194] Nothdurft H C. The role of features in preattentive vision: Comparison of orientation, motion and color cues. Vision Research, 1993, 33(14): 1937~1958
    [195] Foster D H, Ward P A. Horizontal-vertical filters in early vision predict anomalous line-orientation frequencies. Proceedings of the Royal Society, 1991, 243: 83~86
    [196] Foster D H, Westland S. Orientation contrast vs orientation in line-target detection. Vision Research, 1995, 35(6): 733~738
    [197] Fukushima K. Neocognitron: a hierarchical neural networks capable of visual pattern recognition. Neural Networks, 1998, 1(2): 119~130
    [198] Poser M I, Cohen Y. Components of visual orienting. In: Bouma H, Bouwhuis D, eds. Attention and Performance: Control of Language Processes. Hillsdate, NJ: Lawrence Erlbaum, 1982, 10: 531~556
    [199] Romeny B. Front-end vision and multiscale image analysis. Kluwer Academic Publisher, 2002
    [200] Lindeberg T. Scale-space theory in computer vision. Kluwer Academic Publisher, 1993
    [201] Lindeberg T. Scale-space for discrete signals. IEEE Trans, Pattern Analysis and Machine Intelligence, 1990, 12(3): 234-~245
    [202] Rocha J, Pavlidis T. A shape analysis model with applications to a character recognition system. IEEE transactions on pattern analysis and machine intelligence, 1994, 16(4): 393~404
    [203] Loncaric S. A survey of shape analysis techniques. Pattern Recognition, 1998, 1~45
    [204] Kindratenko V V. On using functions to describe the shape. Journal of Mathematical Imaging and Vision, 2003, 18: 225~245
    [205] Alvarez L, Blanc A P, Mazorra L, et al. Geometric invariant shape representations using morphological multiscale analysis. Journal of Mathematical Imaging and Vision, 2003, 18: 146~168
    [206] Anderson J D. Computational Fluid Dynamics.New York: McGraw-Hill, 1995
    [207] De Haan P, Rotach M W. A novel approach to atmospheric dispersion modelling: the Puff-Particle Model (PPM). Quarterly Journal of the Royal Meteorological Society, 1998, 124(552): 2771 ~ 2792
    [208]丁信伟,王淑兰.可燃及毒性气体泄露扩散研究综述.化学工业与工程, 1999, 4(2): 118~122
    [209]宣捷.大气扩散的物理模拟.北京:气象出版社, 2000
    [210] Pesquil F. Atmospheric diffusion. New York: Wiley, 1974
    [211] Britter R E, McQuaid J. HSE Contract Research Report.1988:129-134
    [212] Kulesz J,Development of a common data highway for comprehensive incident management,Tech.Rep, 2003
    [213] Ushiku H, Satoh, N, Ishida H. Estimation of Gas-Source Location Using Gas Sensors and Ultrasonic Anemometer, Proceedings of IEEE Sensors, 2006, 420~423
    [214] Jatmiko W, Ikemoto Y, Matsuno T, et al. Distributed odor source localization in dynamic environment. Proceedings of the Fourth IEEE Conference on Sensors 2005, 2005, 254~257
    [215] Itti L, Koch C. A comparison of feature combination strategies for saliency-based visual attention systems. In: Rogowitz B, Pappas T, eds. Proceedings of SPIE Human Vision and Electronic Imaging. CA: San Jose, 1999, 3644: 373~382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700