用户名: 密码: 验证码:
轮式餐厅服务机器人移动定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪末期以来,国内外众多学者便致力于室内环境下服务机器人的系统研究,并在理论和实际应用中取得了丰硕的研究成果。由于移动定位技术是机器人路径规划和导航的关键,因此引起了国内外学者的广泛关注,逐渐成为服务机器人领域的一个研究热点。为了提高餐厅服务机器人系统的可靠性,本文对服务机器人在餐厅环境下的移动定位技术进行了深入研究,提高了机器人的定位精度,确保餐厅服务机器人能够为顾客提供自主取菜、送菜等餐饮服务。论文从建立餐厅服务机器人系统入手,进行餐厅环境下服务机器人移动定位技术研究,主要研究工作包括如下方面:
     1、基于轮式移动机构建立了轮式餐厅服务机器人系统,分析设计了机器人的机械系统和传感器系统。建立了餐厅服务机器人的运动学模型、里程计模型和机械臂的正运动学模型,通过对机械臂的正运动学模型进行仿真分析,明确了餐厅服务机器人在少自由度下完成自主取菜任务的重点、难点。针对餐厅服务机器人的传感器系统特点,建立了双目视觉路标观测模型和全局视觉传感器观测模型,为服务机器人的环境感知和移动定位技术研究奠定必要的基础。
     2、为了提高餐厅服务机器人的全局定位精度,提出了一种改进的迭代扩展卡尔曼粒子滤波算法。该算法采用Levenberg-Marquardt优化方法,对迭代扩展卡尔曼滤波进行优化、修正,解决了迭代卡尔曼滤波有时收敛速度慢的问题,并减少了初始状态对滤波性能的影响;以改进迭代卡尔曼滤波的最大后验概率估计来产生粒子滤波的重要性概率密度函数,充分利用了改进算法对非线性问题的处理能力,产生更好的参考分布。采用典型非线性系统模型对粒子滤波算法进行仿真分析,验证了改进粒子算法的状态估计精度要优于其它粒子滤波算法。提出了一种基于改进迭代卡尔曼粒子滤波的机器人全局视觉定位方法,实现了机器人的全局定位,并应用到餐厅服务机器人中进行实验验证,满足了餐厅服务机器人移动导航时对定位精度和实时性要求。
     3、为了提高餐厅服务机器人全局定位的准确性和可靠性,基于对多信息融合理论的深入研究和探讨,提出了集中式、分布式和联合式等三种迭代扩展卡尔曼多信息融合算法,解决了非线性环境下的多传感器信息融合问题,采用典型的非线性系统模型,对提出的多信息融合算法进行仿真分析。提出了一种基于联合迭代卡尔曼多信息融合的餐厅服务机器人定位算法,融合里程计、视觉路标和全局视觉数据,有效地提高了机器人全局定位的精度和可靠性,并进行了实际应用验证。
     4、基于Mean-Shift颜色分割与SIFT特征匹配技术,提出了一种基于图像分割的区域稠密匹配算法,通过Mean-Shift分割方法对参考图像进行图像分割,由SIFT算子提取并匹配立体图像对中的SIFT特征点,根据图像分割块中SIFT特征点对的分布情况,对各个图像分割块单独进行区域匹配,获得立体图像对的较准确、稠密的区域匹配。采用标准的立体图像对,进行仿真分析,并与文献中匹配算法的视差图及标准视差图进行比较,论证了文中立体匹配算法的准确性、可靠性和稳定性。提出了一种基于双目视觉的服务机器人目标位姿精定位算法,实现服务机器人趋近目标物及机器人相对目标特征点的精定位,并应用到餐厅服务机器人中进行实验验证,餐厅服务机器人能够成功完成自主取菜任务。
     本论文构建了轮式餐厅服务机器人平台,研究了机器人的运动学模型和传感器观测模型,通过对粒子滤波定位、多信息融合定位和立体图像匹配等方面的研究,为室内环境下机器人移动定位研究提供了有利参考。本文提出的服务机器人移动定位算法成功应用到餐厅服务机器人中,大量实验证明该定位算法能够有效地提高餐厅服务机器人的定位精度和可靠性,对室内环境下机器人移动定位具有参考价值。
Since the late20th century, many scholars have begun to study the servicerobots in indoor environment, and made great achievements in the theory andpractice. As the mobile positioning technology is the key of the navigation andpath planning, localization has become a hot topic and drawn greater attention.To enhance the reliability of the restaurant service robot system, the mobilepositioning technology of service robot has been profoundly studied in thispaper. And the localization accuracy has been improved to ensure that therestaurant service robot could serve and deliver dishes for the customers inrestaurant environment. Then begin with the establishment of restaurant servicerobot systems, based on it indoor mobile localization is done, those as follows.
     1. A type of wheeled restaurant service robot system is established based onthe wheeled robot principle and analyze the mechanical system and sensorsystems. Establish the kinematic model and odometer model of the restaurantservice robot and the kinematic model of the manipulator. According to thesimulation of the manipulator kinematic model, define the emphasis and difficulty of the serving dishes task of the robot in less degrees of freedom.According to the characteristics of the sensor systems, establish the observationmodels of binocular and global visual sensors, and lay the necessary foundationfor environment perception and positioning techniques.
     2. To enhance the positioning accuracy of the restaurant service robot, animproved iterative extended Kalman particle filter algorithm (PF-UIEKF) isproposed. The algorithm optimizes the iterative extended Kalman filter (IEKF)using the Levenberg-Marquardt method, to amend the problem that IEKF issometimes slow to convergence and resolve the impact of the initial state on thefilter effect. The algorithm uses the maximum posteriori estimates of theoptimized IEKF to generate the importance probability density function, andtakes full advantage of its handling capacity of the nonlinear problem to producethe better reference distribution. Simulate the various particle filter algorithmswith the typical nonlinear model, comparing with the simulation results of theseparticle filters, verify that the state estimation accuracy of the proposedalgorithm is much better than the other particle filters. A global visuallocalization algorithm based on PF-UIEKF is proposed to position the mobilerobot, and the algorithm is applied to restaurant service robot and experimentsverify that it meets the positioning accuracy and real-time requirements ofservice robot mobile navigation.
     3. To improve the positioning accuracy and reliability of the restaurantservice robot, based on the study and discussion of multi-information fusiontheory, centralized, distributed and federal IEKF multi-information fusionalgorithms are proposed to fuse the multi-sensor information in nonlinearenvironment. Respectively simulate the proposed multi-information fusionalgorithms using the typical nonlinear model to verify their state estimationperformance. A localization method based on federal IEKF multi-informationfusion is proposed to fuse the information of odometer, visual landmark andglobal vision, and the practical application verifies that the algorithm couldeffectively improve the positioning accuracy and reliability.
     4. Based on the mean-shift color segmentation and the SIFT featurematching technology, a regional dense matching algorithm is proposed. Thealgorithm does image segmentation with mean-shift method, extracts andmatches the feature points using the SIFT operator. According to whethersegmentation region contains the SIFT feature points, separately match eachimage region using the different methods to obtain the more accurate disparitymap. Simulate and analyze the proposed matching algorithm using theprofessional stereo image pairs to verify the accuracy, reliability and stability ofthe matching algorithm. A fine positioning algorithm of robot target pose basedon binocular vision is proposed to realize mobile robot moving towards the target and the precise positioning of the service robot relative to the targetfeature. The method is applied to restaurant service robot for experimentalverification and the service robot can successfully complete the self-servingdelicious task.
     In this thesis, a restaurant service robot platform is developed, and thekinematic model of the robot and sensor observation model are also studied. Theaccuracy and reliability of the mobile positioning have been obviously enhancedby researching the particle filter, the multi-information fusion and the imagematching technology. And the proposed algorithms provide a favorablereference for indoor service robot localization. The proposed algorithms havebeen successfully applied in the restaurant service robot. Many practicalapplications verify that the proposed algorithms can effectively enhance thepositioning accuracy and stability of the service robot and possess a practicalreference value.
引文
[1]姜山.服务机器人.机器人技术与应用.2004,2:10-11.
    [2]赵立军.室内服务机器人移动定位技术研究[博士论文].哈尔滨:哈尔滨工业大学.2009.
    [3]张炜.环境智能化与机器人技术的发展.机器人技术与应用.2008,3:13-16.
    [4] J. Pineau, M. Montemerlo, M. Pollack, et al.. Towards robotic assistants in nursing homes:Challenges and results. Robotics and Autonomous Systems.2003,42(3):271-281.
    [5] C. Pradalier, J. Hermosillo, C. Koike, et al. The CyCab: a carlike robot navigatingautonomously and safely among pedestrians.Robotics and Autonomous Systems.2005,50(1):51-67.
    [6] M. Somajyoti, S. Steve. Multisensor data fusion for underwater navigation. Robotics andAutonomous Systems.2001,35(1):97-108.
    [7] P. S. Schenker, T. L. Huntsberger, P. Pirjanian. Planetary Rover Developments SupportingMars Exploration, Sample Return and Future Human-Robotic Colonization.AutonomousRobots.2003,14:103-126.
    [8] N. J. Nilsson. Shakey the robot. AI Center, SRI International,1984.
    [9] O. Khatib. Mobile Manipulation: The Robotic Assistant. Journal of Robotics andAutonomous Systems.1999,26:175-183.
    [10]S. P. Levine, D. A. Bell, et al. The NavChair assistive wheelchair navigation system.IEEE Transaction on Rehabilitation Engineering.1999,7:443-451.
    [11]C.P. Connette, A. Pott, et al. Control of An Pseudo-omnidirectional, Non-holonomic,Mobile Robot based on an ICM Representation in Spherical Coordinates. Proceedings ofthe IEEE Conference on Decision and Control Cancun.2008:4976-4983.
    [12]C. Parlitz, W. Baum, et al. Intuitive Human-Machine-Interaction and Implementation on aHousehold Robot Companion.Human Interface and the Management of Information.Methods, Techniques and Tools in Information Design.2007,4557:922-929.
    [13]M. Heerink, H.van, et al. Enjoyment intention to use and actual use of a conversationalrobot by elderly people. ACM/IEEE International Conference on Human-RobotInteraction.2008:113-120.
    [14]G. Lakemeyer, D. Schulz, et al. Experiences with an interactive museum tour-guide robot.Artificial intelligence.1999,114(1):38-55.
    [15]S. Thrun, M. Bennewitz, et al. Minerva: a second-generation museum tour-guide robot.Proceedings of Internatoinal Conference on Robotics and Automation.1999,3:1999-2005.
    [16]T. Willeke, C. Kunz, I. Nourbakhsh. The history of the Mobot museum robot series: Anevolutionary study. Proceedings of the Florida Artificial Intelligence Research Society.2001:514-518.
    [17]Y. Sakagami, R. Watanabe, C. Aoyama, et al. The intelligent ASMIO: system overviewand integration. IEEE/RSJ International Conference on Intelligent Robots and Systems.2002,3:2478-2483.
    [18]王晓娟.基于多传感器信息的移动机器人定位研究[硕士论文].杭州:浙江大学.2010.
    [19]L.Y. Zhao, R.F. Li, T.Y. Zang, et al. A Method of Landmark Visual Tracking for MobileRobot. The2008International Conference on Intelligent Robotics and Applications.2008:901-910.
    [20]王丽军,王景川,陈卫东,“动态环境下智能轮椅的规划与导航,”上海交通大学学报,2010,44(11):1524-1528.
    [21]R. G. Goaine, W. S. Harwin, R. D. Jackson. Robots in educational and vocationalapplications for the severely physically disabled [C]. High-Tech help for the handicapped,IEEE colloquium.北京:中国科学技术期刊编辑学会青年工作委员会,1990:71-73.
    [22]Y. Nakauchi, T. Fukuda, et al. Intelligent kitchen: cooking support by LCD and mobilerobot with IC-labeled objects[C]. IEEE Intelligent International Conference on Robotsand Systems (IROS2005). Edmonton, Canada,2005:1911-1916.
    [23]F. Gravot, A. Haneda, K. Ikada, et al. Cooking for humanoid robot, a task that needssymbolic and geometric reasonings[C]. IEEE ICRA2006. Orlando United States:Institute of electrical and electronics engineers Inc,2006:462-467.
    [24]S. Combon, F. Gravot, R. Alami. A robot task planner that merges symbolic andgeometric reasoning[C]. ECAI2004. Valencia Spain: IOS Press,2004:895-899.
    [25]F. Gravot, S. Combon, R. Alami. aSyMov: A planner that deals with intricate symbolicand geometric problems[C]. ISRR2003. Siena Italy:11th international symposium ofrobotics research,2003:100-110.
    [26]闫维新.多功能中式菜肴自动烹饪机器人研究[博士论文].上海:上海交通大学.2010.
    [27]W.X. Yan, Z. Fu, Y.H. Liu, et al. A novel automatic cooking robot for Chinese dishes.Robotica,2007,25(4):445-450.
    [28]G. A. Borges, M. J. Aldon. Optimal Mobile Robot Pose Estimation Using GeometricalMaps. Proceedings of the IEEE Transaction on Robotics and Automation,2002,1:87-93.
    [29]S. Y. Kim, S. H. Park. Estimation of Absolute Positioning of Mobile Robot Using U-STA.Lecture Notes in Computer Science,2008,4672:143-150.
    [30]L. Moreno, et al. A Genetic Algorithm for Mobile Robot Localization Using UltrasonicSensors. Journal of Intelligence and Robotics Systems,2002,34:135-154.
    [31]赵翎捷,陈卫东.基于地图的移动机器人定位技术新进展[M],上海交通大学学报,2002,36(10):1435-1438.
    [32]G. N. Desouza, A.C. Kak. Vision for mobile robot navigation: a survey [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2002,24(2):237-267.
    [33]罗荣华,洪炳铬.移动机器人同时定位与地图创建研究进展[J].机器人,2004,26(2):183-186.
    [34]S. Thrun, D. Fox, et al. Robust Monte Carlo localization for mobile robots. ArtificialIntelligence,2002,128:99-141.
    [35]S. Thrun. Finding Landmarks for Mobile Robot Navigation[A]. IEEE InternationalConference on Robotics and Automation,1998,2:958-963.
    [36]C. Gonzalez-Buesa, J. Campos. Solving the Mobile Robot Localization Problem UsingString Matching Algorithms. Proceedings of IEEE/RSJ International Conference onIntelligent Robots and Systems,2004,3(28):2475-2480.
    [37]F. He, Y. C. Fang, et al. Practical Feature-based Simultaneous Localization and MappingUsing Sonar Data. Procedings of the27thChinese Control Conference, Kunming, China,2008:421-425.
    [38]B. L. Liu, B. He, et al. Triangulation&Hough Transform based Fusion of Sonar Data forMobile Robotics. The2th IEEE Conference on Industrial Electronics and Applications.2007:1165-1170.
    [39]J. Borenstein, H. R. Everett, et al. Mobile Robot Positioning Sensors and Techniques.Robotic Systems.1997,14(4):231-249.
    [40]B. Barshan, H. F. Durrant-White. Orientation estimate for mobile robots using gyroscopicInformation. In1994International Conference on Intelligent Robots and Systems.München, Germany.1994:1867-1874.
    [41]于金霞.移动机器人定位的不确定性研究.长沙:中南大学[博士论文].2007.
    [42]M. Jenkin, E. Milios, et al. Global navigation for ARK. Proceedings of the IEEE/RSJInternational Conference on Intelligent Robotics and Systems. Yokohama, Japan.1993.2165-2171.
    [43]G. Jang, S. Kim, et al. Robust Self-localization of Mobile Robots Using Artificial andNatural Landmarks. Proceedings of IEEE International Symposium on ComputationalIntelligence in Robotics and Automation,2003,1:412-417.
    [44]J. F. Figueroa, A. Mahajan. A robust navigation system for autonomous vehicles usingultrasonics. Control Engineering Practice.1994,2(1):49-59.
    [45]孟凯,孙茂相,孙金根.基于主动路标的全方位移动机器人定位系统.沈阳工业大学学报,2000,22(2):148-151.
    [46]O. Wijk, H. I. Christensen. Localization and Navigation of a Mobile Robot Using NaturalPoint Landmarks Extracted from Data. Robotics and Autonomous Systems,2000,3:131-142.
    [47]唐琏,白涛,蔡自兴.移动机器人的一种室内自然路标定位法.计算机工程与应用,2005,4(15):44-47.
    [48]Z.Z. Xu, J.L.Liu, Z.Y. Xiang. Scan Matching Based on CLS Relationships. Proceedingsof IEEE International Conference on Robotics, Intelligent Systems and SignalProcessings, Changsha, China,2003:99-104.
    [49]Z. Y. Xiang, J. L. Liu. Initial localization for indoor mobile robots using a2D laser rangefinder. In Proceeding of SPIE mobile robot XVI, Douglas W. Gage,2002,4573:168-177.
    [50]Z. Z. Xu, R. H. Liang, J. L. Liu. Global localization based on corner point. In IEEEInternational Symposium on Computational Intelligence in Robotics and Automation,2003:843-847.
    [51]张辉,渠瀛,海丹等.基于聚类匹配的移动机器人地图实时创建方法.计算机应用,2009,29(8):2116-2119.
    [52]毕凌燕,余英林.基于XYZ空间的区域生长分割图像.计算机工程与应用.2003,39(17):56-57.
    [53]P. Jensfelt. Approaches to mobile robot localization in indoor environment. SwedenRoyal Institute of Technology [PhD thesis],2001.
    [54]S. C. Tarin, H. Brugger H, et al. Odometry error correction by sensor fusion forautonomous mobile robot navigation. Proceedings of the18th IEEE Instrumentation andMeasurement Technology Conference. Budapest, Hungary.2001:1654-1658.
    [55]Q. Wu, D. A. Bell, et al. Rough computational methods on reducing cost of computationin Markov localization for mobile robots. In Proceedings the4thWorld Congress onIntelligence Control and Automation,2002:1226-1230.
    [56]F. Gustafsson, N. Bergman, et al. Particle filters for positioning, navigation and tracking.IEEE Transactions on Signal Processing.2002,50(2):425-437.
    [57]R. E. Kalman. A new approach to linear filtering and prediction problem. Transactions ofthe ASME–Journal of Basic Engineering,1960,82:35-45.
    [58]K. Fukunaga, L. D. Hostetler. The estimation of the gradient of a density function. IEEETransactions of information theory with applications in pattern recognition.1975,21(1):32-40.
    [59]Y. Sunahara. An approximate method of state estimation for nonlinear dynamical systems.Joint Automatic Control Conf, University of Colorado,1969,1:81-86.
    [60]J. laviola. A comparison of unscented and extended kalman filtering for estimatingquaternion motion[C]. IEEE American Control Conference,2003,6(3):2433-2440.
    [61]M. Owen, W. Stubbend, et al. A neural extended kalman filter multiple model tracker[J].IEEE OCENS,2003,12(4):2111-2119.
    [62]S. G. Mohinder, P. A. Angus. Kalman Filtering: Theory and Practice Using MATLAB(Second Edition). John Wiley&Sons. Inc.,2001:169-182.
    [63]N. Rudy. Robot localization and Kalman Filters on finding your position in a noisy world[D]. The Degree of Master of Science, Utrecht University,2003.
    [64]H. W. Sorenson. Kalman filtering techniques, Kalman Filtering: Theory and Applications,New York, IEEE Press,1985.
    [65]邓自立,王建国.非线性系统的自适应推广的Kalman滤波器.自动化学报,1987,6:375-379.
    [66]周东华等.一种带多重次优消减因子的扩展Kalman滤波器.自动化学报,1991,6:689-695.
    [67]黄浴,袁保宗.一种带阻尼因子的迭代扩展型Kalman滤波器.信号处理,1995,11(2):88-93.
    [68]张洪才等.一种鲁棒性自适应推广Kalman滤波器及其在飞行状态估计中的应用.信息与控制,1992,6:343-348.
    [69]D. Fox, W. Burgard, S. Thrun. Active Markov localization for mobile robots. Roboticsand Autonomous Systems,1998,25:195-207.
    [70]王卫华.移动机器人定位技术研究.武汉:华中科技大学[博士论文].2005.
    [71]J. S. Gutmann. Markov-Kalman localization for mobile robots. Proceedings of the16thInternational Conference on Pattern Recognition.2002:601-604.
    [72]Q. X. Wu, D. A. Bell, et al. Rough computational methods on reducing costs ofcomputation in Markov Localization for mobile robots. Proceedings of the WorldCongress on Intelligent Control and Automation. China,2002:1226-1230.
    [73]R. Ueda, T. Fukase, et al. Uniform Monte Carlo localization-Fast and robustself-localization method for mobile robots. Proceedings of the2002IEEE InternationalConference on Robotics and Automation. Washington DC,2002:1353-1358.
    [74]C. Kwok, D. Fox, M. Meila. Adaptive real-time particle filters for robot localization.Proceedings of the2003IEEE International Conference on Robotics and Automation.Washington DC,2003:2836-2841.
    [75]D. Fox, W. Burgard, et al. Monte Carlo Localization: efficient position estimation formobile robots. In Proceedings of the National Conference on Artificial Intelligence.1999:343-349.
    [76]J. C. John.机器人学导论[M].北京:机械工业出版社,2006.6.
    [77]章毓晋.图像工程(上):图像处理和分析[M].北京:清华大学出版社,2001.
    [78]林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报,2005,10(1):1-10.
    [79]Q. X. Yu, C. Yuan, Z. Fu, et al.. Research of the Localization of Restaurant Service Robot[J]. International Journal of Advanced Robotic Systems,2010,7(3):227-238.
    [80]蔡俊伟.车牌识别方法及其在智能车辆安检系统中的应用研究[D].湖南:湖南大学电气与信息工程学院,2007.
    [81]R. Siegwart, I. Nourbakhsh. Introduction to Autonomous Mobile Robots [M]. Cambridge,London, England: The MIT Press,2004:121-156.
    [82]B.S. Choi, J.J. Lee. Localization of A Mobile Robot Based on An Ultrasonic SensorUsing Dynamic Obstacles [J]. Artificial Life and Robotics,2008,12(1/2):280-283.
    [83]张斌,方新秋,邹永洺等.基于陀螺仪和里程计的无人工作面采煤机自主定位系统[J],矿山机械,2010,09:10-13.
    [84]H.H. Lin, C.C. Tsai. Laser Pose Estimation and Tracking Using Fuzzy ExtendedInformation Filtering for An Autonomous Mobile Robot [J]. Journal of Intelligent andRobotic Systems,2008,53(2):119-143.
    [85]B. Balaguer, S. Carpin, S. Balakirsky. Towards quantitative comparisons of robotalgorithms: experiences with SLAM in simulation and real world systems [C].Proceedings of IROS2007. San Diego, California, USA,2007:1-7.
    [86]R. Munguia, A. Grau. Monocular SLAM for Visual Odometry [C]. IEEE InternationalSymposium on Intelligent Signal Processing, Alcala de Henares,2007:1-6.
    [87]H.Y. Lin, J.H. Lin. A Visual Positioning System for Vehicle or Mobile Robot Navigation[J]. IEICE Transactions on Information and Systems,2006, E89-D (7):2109-2116.
    [88]梁军.粒子滤波算法及其应用研究[博士论文].哈尔滨:哈尔滨工业大学,2009.
    [89]M. S. Arulampalam. et al.. A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking. IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [90]A. Doucet. On Sequential simulation-based methods for Bayesian filtering. University ofCambridge: Technical Report,1998.
    [91]A. Doucet, C. Andrieu. On sequential Monte Carlo sampling methods for Bayesianfiltering[J]. Statistics and Computing,2000,10(1):197-208.
    [92]N. Gordon, D. Salmond, A. F. Smith. Novel approach to nonlinear/non-gaussian Bayesianstate estimation, Proc. Inst. Elect. Eng. F,1993,140(2):107-113.
    [93]J. S. Liu, R. Chen. Sequential Monte Carlo methods for dynamical systems[J]. J. AmerStatist Assoc,1998,93:1032-1044.
    [94]G. Sibley, G. Sukhatmeg, L. Matthies. The iterated Sigma point Kalman filter withapplications to long range stereo[C]. Proceedings of Robotics Science and Systems.Philadelphia, USA,2006:263-270.
    [95]J. L. Wang, et al. Integrating GPS and pseudolite signals for position and attitudedetermination. Theoretical analysis and experiment results[R]. ON GPS2000, Salt LakeCity,2000:2252-2262.
    [96]B. M. Bell, F. W. Cathey. The Iterated Kalman Filter Update as a Gauss-Newton Method.IEEE Transactions on Automatic Control,1993,38(2):294-297.
    [97]L. A. Johnston, V. Krishnamuithy. Derivation of a sawtooth iterated extended Kalmansmoother via the AECM algorithm[J]. IEEE Transactions on Signal Processing,2001,49(9):1899-1909.
    [98]J. E. Dennis, R. B. Schnabel. Numerical methods for unconstrained optimization andnonlinear equations. Englewood Cliffs, NJ: Prentice-Hall,1983.
    [99]杨宏,李亚安,李国辉.一种改进扩展卡尔曼滤波新方法.计算机工程与应用,2010,46(19):18-20.
    [100] R. Merwe, A. Douce, et al. The unscented particle filter[R]. Technical Report of theCambridge Univ Engineering Department CUED/FINFENG/TR, England: CambridgeUniversity Press,2000:1-45.
    [101]王耀南,李村涛.多传感器信息融合及其应用综述.控制与决策,2000,16(5):518-522.
    [102] L. A. Klein. Sensor and Data Fusion Concepts and Applications. SPIE OpticalEngineering Press,1993:91-118.
    [103] R. C. Luo, L. S. Kuo. Multilevel multisensor based decision fusion for intelligentanimal robot[R]. Proceedings of IEEE International Conference on Robotics andAutomation,2001,5:3294-3299.
    [104] A. H. Dhaher, D. Mackesy. Multi-sensor data fusion architecture. IEEE InternationalWorkshop on Audio and Visual Environments and Their Applications,2004:159-163.
    [105]倪国强,李勇量,牛丽红.基于神经网络的数据融合技术的新进展[J].北京理工大学学报,2003,23(4):503-508.
    [106] E. A. Wan, R. Van der Merwe. The Unscented Kalman Filter for NonlinearEstimation. Proceeding of IEEE Symposium, Lake Louise, Alberta, Canada,2000.
    [107] R. Van der Merwe, E. A. Wan. The square-root Unscented Kalman Filter for Stateand parameter estimation. IEEE International Conference on Acoustics, Speech andSignal Proceedings,2001,6:3461-3464.
    [108] Julier, J. H. Simon. Navigation and Parameter Estimation of High Speed RoadVehicles. Robotics and Automation Conference,1995:101-105.
    [109] S. Thrun. Probabilistic Algorithm in Robotics[J]. AI Magazine,2000,21(4):93-109
    [110] S. A. Banani, M. A. Masnadi-Shirazi. A new version of unscented Kalman filter.Engineering and Technology,2007,20:192-197.
    [111] R. H. Zhan, J. W. Wan. Iterated unscented Kalman filter for passive target tracking.IEEE Transaction Aerospace and Electronic Systems,2007,43(3):1155-1163.
    [112]肖乾.多传感器组合导航系统信息融合技术研究[博士论文].哈尔滨:哈尔滨工程大学,2005.
    [113] N.A.Carlson, M. R. Berarducei. Federated Kalman Filter Simulation Results.Nvaigatino. Fall1994.1994,41(3):297-321.
    [114] T. H. Kerr. Decentralized Filtering and Redundancy Management for MultisensorNavigation. IEEE Transactions on Aerospace and Electronic Systems.1987,23(1):83-119.
    [115] W. J. Feng, S. Z. Yang, F. Zhao. Adaptive filtering algorithm to GPS-INS integratedsystem[C]. Proceedings of Beijing International Conferences on Info-tech and Info-net.2001,1:352-356.
    [116]彭霞,张彦军,崔平远.联邦卡尔曼滤波与集中式卡尔曼滤波的等价性.青岛科技大学学报,2005,26(2):169-172.
    [117]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社,2009:246-325.
    [118] B. Grzyb, E. Chinellato, A. Morales, et al.. A3D Grasping System Based onMultimodal Visual and Tactile Processing [J]. An International Journal: Industrial Robot,2009,36(4):365-369.
    [119] J.V. Miro, W.Z. Zhou. Towards Vision Based Navigation in Large IndoorEnvironments[C].2006IEEE International Conference on Intelligent Robots andSystems, Beijing, China,2006:2096-2102.
    [120]刘振宇,姜楠,张令涛.基于人工路标和立体视觉的移动机器人自定位[J],计算机工程与应用,2010,09:190-192.
    [121]朱代先.基于双目视觉的工件定位与抓取研究[J].计算机测量与控制,2011,1:92-94.
    [122]章毓晋.图象处理和分析.北京:清华大学出版社,2001.
    [123] J. H. Han, J. S. Park. Contour matching using epipolar geometry. IEEE Transactionson Pattern Analysis and Machine Intelligence2000,22(4):358-370.
    [124] M. Gong, Y. H. Yang. Fast stereo matching using reliability-based dynamicprogramming and consistency constraints[C]. Proceedings of the9th IEEE InternationalConference on Computer Vision (ICCV’03),2003.
    [125] Scharstein, Szeliski. A taxonomy and evaluation of dense two-frame stereocorrespondence algorithms, International Journal of Computer Vision,2002,47(1-3):7-42.
    [126]徐奕,周军,周源华.立体视觉匹配技术[J].计算机工程与应用,2003.
    [127] T. Kanade, H. Kano, et al. Development of a video-rate stereo machine[C].Proceedings of the1995IEEE International Robotics and Systems. Pittsburgh, USA,1995:95-100.
    [128] Z. Zhang, R. Deriche, et al. A robust technique for matching two uncalibrated imagesthrough the recovery of the unknown epipolar geometry[J]. International Journal ofArtificial Intelligence,1995,78(1/2):87-119.
    [129]姜露露.基于立体视觉的三维重建技术研究[硕士论文].大连交通大学.2007.
    [130] D. Lowe. Distinctive image features from scale-invariant keypoints[J]. InternationalJournal on Computer Vision,2004,60(2):91-110.
    [131] K. Fukunaga, L. D. Hostetler. The estimation of the gradient of adensity function,IEEE Trans. Information Theory with applications in pattern recognition.1975,21:32-40.
    [132] Y. Cheng. Mean Shift Mode Seeking and Clustering. IEEE Trans. Pattern Anal. Mach.Intell,1995,17(8):790-799.
    [133] D. Comanici, P. Meer. Mean Shift: A Robust Approach Toward Feature SpaceAnalysis. IEEE Trans. Pattern Anal. Mach. Intell,2002,24(5):603-619.
    [134] D. Lowe. Object recognition from local scale-invariant features[C]. Proceedings ofthe International Conference on CV,1999.
    [135] A. P. Witkin. Scale-space filtering[C]. Proceedings of International Joint Conferenceon AI,1983:1019-1022.
    [136] Lindeberg. Scale-space for discrete signals[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,1983,20:7-18.
    [137] L. G.. Brown. A survey of image registration techniques[C]. ACM ComputingSurveys1992,24:326-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700