用户名: 密码: 验证码:
机队航空发动机维修规划及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代制造服务的发展和产品价值链的变化都表明装备维修工程管理正变得越来越重要。航空发动机是飞机的“心脏”。现代航空发动机具有结构复杂、工作环境恶劣、转动速度快、维修费用高等特点。为了提高管理效率和降低维修成本,航空公司一般对同一型号的所有航空发动机进行统一管理。本文的机队指的就是航空公司同一型号的所有航空发动机的总和。从航空公司的角度出发,研究机队航空发动机维修规划,对于提高航空公司的维修工程管理水平和综合竞争力具有重要的意义。本文在分析国内外机队发动机维修规划研究中存在问题的基础上,针对我国航空公司在发动机维修工程管理方面的需求,建立了包括维修数据管理、拆发期限预测、拆发计划制定、维修工作范围决策、维修成本预测、维修进度监控和维修效果评价等活动的机队发动机维修规划体系,并对相关模型的建立及关键技术进行了研究。
     发动机维修数据管理是机队发动机维修规划的基础性工作。根据发动机维修数据具有多维性、可扩展性、演化性的特点,借鉴面向对象的思想,将发动机维修数据分为构型数据、对象相关数据和类相关数据。在发动机维修数据组织方面,建立了基于使用状态的维修数据组织模型,实现了发动机维修数据的统一管理。在发动机构型数据管理方面,建立了基于位置件的发动机维修BOM管理模型和基于物理状态的实例维修BOM管理模型,解决了数据冗余问题;提出了基于主要件的适航指令/服务通告状态控制方法,解决了适航指令/服务通告状态难以控制的问题。
     机队中各台发动机的拆发期限预测是合理安排机队发动机送修时间的前提。为了提高发动机拆发期限预测的准确度,考虑到机队中各台发动机在性能衰退方面的差异性,提出了基于性能衰退模式的发动机拆发期限预测方法。在对送修时间和备发选择的影响因素进行分析的基础上,建立了机队发动机拆发计划多目标组合优化模型,提出了一种基于逐步构解策略的启发式算法进行模型的求解,研究了拆发计划方案集的构造方法和选择方法。最后采用实际数据验证了提出方法的有效性。
     发动机送修时,航空公司都会根据机队整体情况给出送修目标。为了制定合理的发动机维修工作范围,在分析送修目标的基础上,提出了一种送修目标导向的发动机维修工作范围决策方法,从寿命件、部件损伤、软时限、适航指令/服务通告、排气温度裕度五个方面分两步进行发动机维修工作范围的制定。针对决策过程中单元体性能恢复值分配存在的难点,建立了确定条件下和不确定条件下以维修成本最小为目标的单元体性能恢复值分配优化模型,研究了模型求解的动态规划算法和启发式算法。通过求解结果的比较,给出了两种算法的适用环境,提升了发动机维修工作范围决策的科学化水平。
     机队中各台发动机的车间维修成本预测是发动机年度维修成本预算制定的前提。为了准确预测发动机的车间维修成本,对发动机车间维修成本进行了分析,将其分为确定Ⅰ型成本、确定Ⅱ型成本、不确定Ⅰ型成本和不确定Ⅱ型成本,分别研究了有归集数据和无归集数据条件下的车间维修成本预测。当有归集数据时,建立了重要件的报废概率模型和其他器材费和修理费的成本概率模型。当无归集数据时,建立了信息扩散支持向量机预测模型,对模型的拓扑结构、建模步骤、参数选择进行了研究。对两种情况下的车间维修成本预测模型均采用实际数据进行了验证。
     为了保证送修发动机能够按时出厂,给出了发动机维修工作分解结构和网络计划图,采用计划评审技术实现了维修进度的监控。针对传统计划评审技术在求取任务持续时间存在的问题,提出了一种新的多时估计法,然后采用近似方法获得了发动机维修完工时间的分布函数。为了对承修厂的选择提供决策支持,建立了发动机维修效果评价指标体系,采用数据包络分析实现了机队中各台发动机维修效果的评价。对于发动机维修进度监控和维修效果评价,分别给出了应用案例,验证了提出方法的有效性。
     最后,以中国国际航空股份有限公司为案例企业,探讨了机队发动机维修规划及其关键技术在大型航空公司的应用,开发了航空发动机健康管理与维修决策支持系统。对中国国际航空股份有限公司的发动机维修工程管理的需求进行了分析,介绍了系统的体系结构、功能模型和信息模型,并给出了系统运行实例和应用情况,验证了本文模型与技术的正确性和有效性。
The development of modern manufacturing service and change of product value chain show that the equipment maintenance management is becoming increasingly important. An aeroengine is the heart of an aircraft. A modern aeroengine has a complex structure, bad operation environment, fast rotational speed, high maintenance cost and so on. To improve management efficiency and reduce maintenance cost, an airline generally manages all aeroengines with the same model uniformly. In this dissertation, the fleet is defined as all aeroengines with the same model in an airline. From the perspective of an airline, studying aeroengines in a fleet oriented maintenance programming is essential for improving an airline’s maintenance management and competitiveness. Based on the analysis of existing problems in studying aeroengines in a fleet oriented maintenance programming at home and abroad, a system of aeroengines in a fleet oriented maintenance programming, which includes maintenance data management, removal deadline prediction, removal scheduling, maintenance workscope decision-making, maintenance cost prediction, maintenance progress monitoring and maintenance effect evaluation is established and its related models and key technologies are studied, according to domestic airline’s needs in aeroengine maintenance management.
     Aeroengine maintenance data management is the basis for aeroengines in a fleet oriented maintenance programming. According to its multi-dimensional, scalable and evolutionary characteristics, aeroengine maintenance data is divided into configuration data, object-related data and class-related data with the help of object-oriented thinking. In the organization of aeroengine maintenance data, usage state based aeroengine maintenance data organization model are established to achieve a unified management of aeroengine maintenance data. In the management of aeroengine configuration data, position part based aeroengine maintenance BOM management model and physical state based instance maintenance BOM management model are established to solve data redundancy, and major part based Airworthiness Directive (AD) / Service Bulletin (SB) status control method is put forward to solve AD / SB status difficult to control.
     Each aeroengine removal deadline prediction in a fleet is the premise for scheduling aeroengine removal time reasonably. To predict the aeroengine removal deadline more accurately, a prediction method based on aeroengine performance deterioration pattern is put forward considering the differences of each aeroengine’s performance deterioration in a fleet. A multi-objective combinatorial optimization model of aeroengines in a fleet oriented removal scheduling is constructed after analyzing influencing factors of aeroengine removal date and spare aeroengine selection, and then a heuristic algorithm based on the progressive structure is put forward to solve the model. The method of the solution set construction and selection for removal scheduling problem is also studied. Finally, the practical data is adopted to verify the effectiveness of this algorithm.
     When an aeroengine has a shop vist, objectives of shop visit will be always given based on the overall situation of the fleet by the airline. To make a reasonable aeroengine maintenance workscope, an objective-oriented method for aeroengine maintenance workscope decision-making is proposed after analyzing objectives of aeroengine shop visit. Aeroengine maintenance workscope is made through two steps from five aspects of life limited part, component damage, soft time, AD / SB and exhaust gas temperature margin using the method. To solve the problem that module performance restoration value is difficult to distribute in the decision-making process, optimization models based on minimum shop visit cost with certain or uncertain condition are put forward, and dynamic programming and heuristic algorithm are respectively studied to solve optimization models. By comparing their results, the applicable environment of the two algorithms is given. Therefore, aeroengine maintenance workscope decision-making becomes more scientific.
     Each aeroengine shop visit cost prediction in a fleet is the premise for making annual aeroengine maintenance budget. To predict it accurately, aeroengine shop visit cost is analyzed and divided into the determinacy cost of typeⅠ, the determinacy cost of typeⅡ, the indeterminacy cost of typeⅠand the indeterminacy cost of typeⅡ. On this basis, aeroengine shop visit cost prediction is studied with having historical cost breakdown data or not. When having historical cost breakdown data, the scrap probability model of important part and the cost probability model of other material and repair are established. When having no historical cost breakdown data, a prediction model named information diffusion support vector machine is proposed. The topology, modeling process and selection of parameters of the model are also studied. The practical data is adopted to verify the effectiveness of models with having historical cost breakdown data or not.
     To ensure that an aeroengine for shop visit leaves a MRO company on time, aeroengine maintenance work breakdown structure and network planning are presented, and PERT is adopted to monitor aeroengine maintenance progress. To solve existing problems in acquiring the task duration using the traditional PERT, a new multi-point approximation method is presented, and then obtained aeroengine maintenance completion time distribution function using an approximate method. To provide decision-making support for selection of aeroengine MRO company, the aeroengine maintenance effect evaluation system is established, and then data envelopment analysis is adopted to achieve the evaluation of each aeroengine maintenance effect in a fleet. Application cases for aeroengine maintenance progress monitoring and maintenance effect evaluation are presented to verify the effectiveness of methods.
     Finally, the application of aeroengines in a fleet oriented maintenance programming and its key technologies at a large-scale airline is discussed, by developing an aeroengine health management and maintenance decision-making support system for Air China. Based on analyzing aeroengine maintenance management requirements of Air China, the system architecture, the function model and the information model are introduced. Operation examples and application results of the system are also presented, demonstrating that the proposed models and technologies are correct and effective.
引文
1 D. A. Marcontell. Market Outlook 2010-2020. http://www.teamsai.com/ news-events/ news/ market-outlook-for-the-aviation-supplier-sect
    2 D. Buxton, R. Farr, B. Maccarthy. The Aero-engine Value Chain under Future Business Environments: Using Agent-Based Simulation to Understand Dynamic Behaviour. 8th International Conference on The Modern Information Technology in the Innovation Processes of the Industrial Enterprises. Budapest, 2006: 1~6
    3 Boeing. Current Market Outlook 2009-2028. http://www.boeing.com/ commercial/ cmo/ new_airplanes.html
    4 FlightSafe Consultants Limited. Airlines in the FlightSafe Database. http://www.flightsafe.co.uk/ public/ mainframe.html
    5赵伟.加入WTO背景下的中国飞机维修业. http://news.carnoc.com/ list/ 8/ 8788.html
    6 C. R. Mercer, D. L. Simon, G. W. Hunter, et al. Fundamental Technology Development for Gas-Turbine Engine Health Management. http://ntrs.nasa.gov/ search.jsp?R=510883&id=1&qs=Ntt%3DFundamental%2BTechnology%2BDevelopment%2Bfor%2BGas-Turbine
    7冉隆吉.飞机维修成本标准化控制初探.航空维修与工程. 2009, (6): 44~45
    8 N. Cotaina, F. Matos, J. Chabrol, et al. Study of Existing Reliability Centered Maintenance (RCM) Approaches Used in Different Industries. Universidad Politécnica de Madrid, FIM/110.1/DATSI/00. Madrid, 2000: 54~63
    9马乃苍,贾向君,祝华远.航空装备维修思想的发展探讨.航空科学技术. 2003, (6): 27~29
    10 S. Goh, C. P. Coleman. Sustainment of Commercial Aircraft Gas Turbine Engines: an Organizational and Cognitive Engineering Approach. AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech. Denver, 2003: 7~9
    11 e-works.制造即服务. http://wiki.e-works.net.cn/wikipage/200909/ entry7400.htm
    12李浩,纪杨建,祁国宁,等.制造与服务融合的内涵、理论与关键技术体系研究. 2010全国现代制造集成技术学术会议论文集.北京, 2010: 810~821
    13 M. Kans. The Advancement of Maintenance Information Technology: A Literature Review. Journal of Quality in Maintenance Engineering. 2009, 15(1): 5~16
    14 H. A. Gabbar, H. Yamashita, K. Suzuki, et al. Computer-Aided RCM-Based Plant Maintenance Management System. Robotics and Computer Integrated Manufacturing. 2003, 19: 449~458
    15 D. L. Doel. TEMPER-A Gas-path Analysis Tool for Commercial Jet Engines. Journal of Engineering for Gas Turbines and Power. 1994, 116(1): 82~89
    16 R. De Hoff, C. Maltbaek. Turbine Engine Diagnostics (TEDTM) System. AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference. Monterey, 1993: 1~9
    17 F. Mustapha, S. M. Sapuan, N. Ismail, et al. A Computer-Based Intelligent System for Fault Diagnosis of an Aircraft Engine. Engineering Computations. 2004, 21(1): 78~90
    18 A. M. Pashayev, D. D. Askerov, C. Ardil, et al. Complex Condition Monitoring System of Aircraft Gas Turbine Engine. International Journal of Applied Science, Engineering and Technology. 2007, 3(1): 1~7
    19 S. Demirci, C. Hajiyev, A. Schwenke. Fuzzy Logic-Based Automated Engine Health Monitoring for Commercial Aircraft. Aircraft Engineering and Aerospace Technology. 2008, 80(5): 516~525
    20 T. Fujii, T. Fujioka. Development of Gas Turbine Hot Gas Path Parts Maintenance Planning Support System. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, 2008: 1~8
    21 J. R. Meng, Y. L. Luo. A Damage Assessment System for Aero-engine Borscopic Inspection Based on Support Vector Machines. 2009 Ninth International Conference on Hybrid Intelligent Systems. Shenyang, 2009: 3~8
    22耿炎.基于C/S和B/S混合模式的民航维修发动机工程指令管理系统的设计与开发.西北工业大学硕士论文. 2005: 8~22
    23樊江,隋明君,孔瑞莲.基于可复用面向对象的航空发动机典型故障管理系统.航空发动机. 2005, (2): 55~58
    24 A. Fabricius. Maintenance Planning and Control Tools. Cranfield University Master's Thesis. 2003: 39~44
    25汤新民.基于Petri网的航空发动机车间维修过程建模及其应用研究.哈尔滨工业大学博士论文. 2007: 52~117
    26赵新灿.增强现实维修诱导系统关键技术研究.南京航空航天大学博士论文. 2007: 105~121
    27 G. F. Liang, J. T. Lin, S. L. Hwang, et al. Preventing Human Errors in Aviation Maintenance Using an On-line Maintenance Assistance Platform. International Journal of Industrial Ergonomics. 2010, 40(3): 356~367
    28 X. Rong, H. F. Zuo, Z. X. Chen. Civil Aero-engine Health Management Integrating with Life Prediction and Maintenance Decision-making. Prognostics & System Health Management Conference 2010. Macau, 2010: 1~6
    29雷达.计及硬件损伤的航空发动机拆发预测方法及其应用研究.哈尔滨工业大学硕士论文. 2009: 28~37
    30 C. Chatfield. The Analysis of Time Series: An Introduction, Sixth Edition. Chapman & Hall/CRC, 2003: 33~54
    31侯胜利,王威,胡金海,等.一种航空发动机性能监控的免疫神经网络模型.航空动力学报. 2008, 23(9): 1748~1752
    32 S. G. Luan, S. S. Zhong, Y. Li. Hybrid Recurrent Process Neural Network for Aero Engine Condition Monitoring. Neural Network World. 2008, 18(2): 133~145
    33李晓白,崔秀伶,郎荣玲.航空发动机性能参数预测方法.北京航空航天大学学报. 2008, 34(3): 253~256
    34于文武.发动机综合状态评估与在翼使用时间预测.中国民航大学硕士论文. 2008: 23~32
    35王凌.智能优化算法及其应用.清华大学出版社, 2001: 1~16
    36白芳,左洪福,文振华,等.基于视情维修策略的航空发动机调度方法.交通运输工程学报. 2007, 7(3): 29~33
    37白芳,左洪福,任淑红,等.航空发动机拆换率平滑方法研究.航空动力学报. 2008, 23(10): 1821~1828
    38 S. J. Joo. Scheduling Preventive Maintenance for Modular Designed Components: A Dynamic Approach. European Journal of Operational Research. 2009, 192(2): 512~520
    39 A. Stranjak, P. S. Dutta, M. Ebden, et al. A Multi-agent Simulation System for Prediction and Scheduling of Aero Engine Overhaul. Proceedings of the 7thInternational Joint Conference on Autonomous Agents and Multiagent Systems. Estoril, 2008: 81~88
    40严志军,严立.设备维修级别模糊综合判别法.中国设备管理. 1996, (9): 12~14
    41沈建军.工程机械维修级别决策体系的研究.长安大学硕士论文. 2004: 11~40
    42梁剑,左洪福,常继百,等.基于统计粗集模型的航空发动机维修等级预测方法研究.应用科学学报. 2005, 23(2): 196~199
    43 H. J. Zhang, H. F. Zuo, J. Liang. Maintenance Level Decision of Aero-engine Based on VPRS Theory. Transactions of Nanjing University of Aeronautics & Astronautics. 2005, 22(4): 281~284
    44张海军,朱思洪,文振华,等. SOM网络离散化法用于复杂可修系统维修决策研究.机械科学与技术. 2008, 27(10): 1132~1135
    45雍成喜.民航发动机送修方案制定及其应用系统开发.南京航空航天大学硕士论文. 2008: 21~42
    46 J. R. Wang, T. B. Yu, W. S. Wang. Integrating Analytic Hierarchy Process and Genetic Algorithm for Aircraft Engine Maintenance Scheduling Problem. Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology. Hong Kong, 2009: 897~915
    47 Y. Asiedu, P. Gu. Product Life Cycle Cost Analysis: State of the Art Review. Journal of Production Research. 1998, 36(4): 883~908
    48白暴力,杨琳,陈云翔.飞机维修费用估算的分析.空军工程大学学报(自然科学版). 2005, 6(5): 8~10
    49 A. Niazi, J. S. Dai, S. Balabani, et al. Product Cost Estimation: Technique Classification and Methodology Review. Journal of Manufacturing Science and Engineering. 2006, 128(5): 563~575
    50 J. S. Chou. Web-Based CBR System Applied to Early Cost Budgeting for Pavement Maintenance Project. Expert Systems with Applications. 2009, 36(2): 2947~2960
    51张晓晖,朱家元,张恒喜.基于LS_SVM的小样本费用智能预测.计算机工程与应用. 2004, 40(27): 203~204
    52 K. K. Seo, B. J. Ahn. A Learning Algorithm Based Estimation Method for Maintenance Cost of Product Concepts. Computers & Industrial Engineering.2006, 50(1): 66~75
    53 M. Ficko, I. Drstvensek, M. Brezocnik, et al. Prediction of Total Manufacturing Costs for Stamping Tool on the Basis of CAD-model of Finished Product. Journal of Materials Processing Technology. 2005, 164-165: 1327~1335
    54 M. Kang, S. Ogaji, P. Pilidis, et al. An Approach to Maintenance Cost Estimation for Aircraft Engines. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, 2008: 1~9
    55 J. S. Wong, J. P. Scanlan, M. H. Eres. Modelling the Life Cycle Cost of Aero-engine Maintenance. 15th International Conference on Concurrent Engineering. Belfast, 2008: 233~240
    56江龙平,叶新农.基于方差分量的航空发动机大修费用估算.航空维修与工程. 2006, (5): 27~29
    57谢庆华,梁剑,张琦.基于统计粗集的航空发动机维修成本组合预测模型.兵工学报. 2006, 27(5): 857~861
    58梁剑.基于成本优化的民用航空发动机视情维修决策研究.南京航空航天大学博士论文. 2005: 58~77
    59吴静敏.民用飞机全寿命维修成本控制与分析关键问题研究.南京航空航天大学博士论文. 2006: 74~96
    60 J. M. Wilson. Gantt charts: A centenary Appreciation. European Journal of Operational Research. 2003, 149(2): 430~437
    61 E. S. Andersen. Warning: activity planning is hazardous to your project's health!. International Journal of Project Management. 1996, 14(2): 89~94
    62 K. Bergner, J. Friedrich. Using Project Procedure Diagrams for Milestone Planning. International Conference on Software Process, ICSP 2010. Paderborn, 2010: 88~99
    63毛义华.工程网络计划的理论与实践.浙江大学出版社, 2003: 27~65
    64 F. T. Anbari. Earned Value Project Management Method and Extensions. IEEE Engineering Management Review. 2004, 32(3): 97~97
    65 S. Vandevoorde, M. Vanhoucke. A Comparison of Different Project Duration Forecasting Methods Using Earned Value Metrics. International Journal of Project Management. 2006, 24(4): 289~302
    66孙世岩,邱志明,王航宇.级别不低于方法及其发展评述.管理工程学报. 2008, 22(3): 41~45
    67钟诗胜,王知行,何新贵.基于模糊区间分和模糊重心的决策方法.系统工程理论与实践. 1997, (3): 8~15
    68李帅,郭亚军,易平涛,等.基于模糊群决策的虚拟企业合作伙伴选择.东北大学学报(自然科学版). 2004, 25(3): 295~298
    69 S. Opricovic, G. H. Tzeng. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. European Journal of Operational Research. 2004, 156(2): 445~455
    70 D. L. Olson. Comparison of Weights in TOPSIS Models. Mathematical and Computer Modelling. 2004, 40(7-8): 721~727
    71 J. Hu, J. L. Peng. Application of Supplier Selection Based on the AHP Theory. 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop Proceedings. Wuhan, 2008: 1095~1097
    72徐克龙.基于ELECTRE法的风险决策方法.重庆工商大学学报(自然科学版). 2004, 21(1): 7~10
    73吴彩虹,陈常青.区间数多属性决策的一种ELECTRE方法.长沙大学学报. 2005, 19(5): 14~17
    74杨春燕,蔡文.可拓工程.科学出版社, 2007: 112~182
    75倪现存,左洪福,刘明,等.航材承修商可拓综合评价研究.哈尔滨工业大学学报. 2006, 38(7): 1168~1172
    76魏权龄.数据包络分析.科学出版社, 2004: 259~328
    77 M. W. Peck , C. A. Scheraga , R. P. Boisjoly. Assessing the Relative Efficiency of Aircraft Maintenance Technologies: an Application of Data Envelopment Analysis. Transportation Research Part A: Policy and Practice. 1998, 32(4): 261~269
    78 O. Semih, E. Tugba, S. K. Selin. A Combined Fuzzy MCDM Approach for Selecting Shopping Center Site: An Example from Istanbul, Turkey. Expert Systems with Applications. 2010, 37(3): 1973~1980
    79吴国祥,彭海军.制造企业供应链伙伴选择的一种多属性决策模型.工业工程. 2010, 13(2): 91~93
    80李向东,范玉青. PDM中的BOM面向对象模型及其应用.计算机集成制造系统. 2002, 8(7): 505~510
    81 SR Technics. Glossary. http://www.srtechnics.com/cms/index.asp?TopicID=214
    82代媛媛,葛漫江.航材适航指令和服务通告的控制.航空维修与工程. 2005,(2): 34~35
    83戎翔,左洪福,张海军.视情维修策略下的民航发动机拆换时间预测研究.机械科学与技术. 2008, 27(5): 583~587
    84 H. C. Liu, S. Shah, W. Jiang. Accurate Identification of Biased Measurements Under Serial Correlation. Computers and Chemical Engineering. 2004, 28(9): 1635~1647
    85贺尔铭,宋力涛. EGT影响因素分析及提高EGT裕度的措施.航空工程与维修. 1999, (6): 20~21
    86 T. W. Liao. Clustering of Time Series Data—A Survey. Pattern Recognition. 2005, 38(11): 1857~1874
    87 B. S. Choo. Best Practices in Aircraft Engine MRO: A Study of Commercial and Military Systems. Massachusetts Institute of Technology Master's Thesis. 2003: 51~70
    88韦昀.利用统计技术确定航空公司备发数量.民航科技. 2003, (98): 48~52
    89唐国春,张峰,罗守成等.现代排序论.上海科学普及出版社, 2003: 202~212
    90 R. Sedgewick. Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching (3rd ed). Addison-Wesley Professional, 1998: 27~68
    91徐国祥.统计预测和决策.第二版.上海财经大学出版社, 2005
    92 W. J. Hopp, Y. L. Kuo. An Optimal Structured Policy for Maintenance of Partially Observable Aircraft Engine Components. Naval Research Logistics. 1998, 45(4): 335~352
    93封涛.加强送修管理,提高民航发动机的使用可靠性.民航科技. 2004, (5): 89~90
    94 M. L. Barron. Crack Growth-Based Predictive Methodology for the Maintenance of the Structural Integrity of Repaired and Nonrepaired Aging Engine Stationary Components. National Technical Information Service, DOT/FAA/AR-97/88. Virginia, 1999: 5~17
    95 H. Saranga. Opportunistic Maintenance Using Genetic Algorithms. Journal of Quality in Maintenance Engineering. 2004, 10(1): 66~74
    96付尧明.民用涡扇发动机在使用和维护中的EGT裕度管理.航空维修与工程. 2005, (1): 44~45
    97胡宝清.模糊理论基础.武汉大学出版社, 2004: 76~88
    98刘宝碇,赵瑞清.随机规划与模糊规划.清华大学出版社, 1998: 164~183
    99 A. Kasperski, M. Kulej. The 0-1 Knapsack Problem with Fuzzy Data. Fuzzy Optimization and Decision Making. 2007, 6(2): 163~172
    100孙有朝,左洪福,倪凯.民用航空发动机维修成本.交通运输工程学报. 2003, 3(1): 93~96
    101 M. J. Day, R. S. Stahr. A Technique for Engine Maintenance Cost Forecasting.
    4th International Symposium on Air Breathing Engines. Orlando, 1979: 45~52
    102张恒喜,郭基联,朱家元,等.小样本多元数据分析方法及应用.西北工业大学出版社, 2002: 1~9
    103 C. F. Huang. Information Diffusion Techniques and Small-sample Problem. International Journal of Information technology & Decision Making. 2002, 1(2): 229~249
    104 C. F. Huang. Principle of Information Diffusion. Fuzzy Sets and Systems. 1997, 91(1): 69~90.
    105 J. Kennedy, R. C. Eberhart. A Discrete Binary Version of the Particle Swarm Algorithm. Proc of the World Multiconference on Systemics, Cybemetics and Informatics. Orlando, 1997: 4104~4109
    106 A. Salman, I. Ahmad, S. Ai-madani. Particle Swarm Optimization for Task Assignment Problem. Microprocessors and Microsystems. 2002, 26(8): 363~371
    107吴苏,罗延生.一种新PERT模型在项目管理中的应用.施工技术. 2007, 36(12): 50~53
    108 D. L. Keefer, W. A. Verdini. Better Estimation of PERT Activity Time Parameters. Management Science. 1993, 39(9): 1086~1091
    109 I. M. Premachandra. An Approximation of The Activity Duration Distribution in PERT. Computers & Operations Research. 2001, 28(5): 443~452
    110刘武,杜志达,刘祥瞻. PERT网络活动时间参数估计的改进.统计与决策. 2008, (4): 150~153
    111文平.计划评审技术的改进.数学的实践与认识. 2007, 37(21): 5~10
    112 J. J. Martin. Distribution of the Time through a Directed, Acyclic Network. Operations Research. 1965, 13(1): 46~66
    113 J. N. Hagstrom. Computing the Probability Distribution of Project Duration in a PERT Network. Networks. 1990, 20(2): 231~244
    114 R. M. Van Slyke. Monte Carlo Methods and the PERT Problem. OperationsResearch. 1963, 11(5): 839~860
    115 N-H Shih. Estimating Completion-Time Distribution in Stochastic Activity Networks. The Journal of the Operational Research Society. 2005, 56(6): 744~749
    116 B. Dodin. Approximating the distribution functions in stochastic networks. Computers & Operations Research. 1985, 12(3): 251~264
    117 M. J. Yao, W. M. Chu. A New Approximation Algorithm for Obtaining the Probability Distribution Function for Project Completion Time. Computers and Mathematics with Applications. 2007, 54(2): 282~295
    118 M. A. A. Cox. Simple Normal Approximation to the Completion Time Distribution for a PERT Network. International Journal of Project Management. 1995, 13(4): 265~270
    119 W. W. Cooper, L. M. Seiford, K. Tone. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Springer, 1999: 21~40
    120朱乔.数据包络分析(DEA)方法综述与展望.系统工程理论方法应用. 1994, 3(4): 1~9
    121吴文江,刘亚俊. DEA中确定指标是输入(出)的根据及其应用.运筹与管理. 2000, 9(4): 67~70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700