用户名: 密码: 验证码:
城市新区生态雨水基础设施规划理论、方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化进程破坏了城市的自然水文过程,加之传统“以排为主”的管网工程措施的雨洪管理理念与体制,引发了一系列的城市雨洪问题,集中表现为:洪涝灾害频发、水环境持续恶化以及水资源严重短缺。城市新区作为我国城市化进程中的建设主体,是未来城市雨洪管理的重点区域,因此需要从规划阶段、在新城建设前,便引入具有前瞻性的雨洪生态管理理念,规避现有旧城区出现的雨洪管理问题。本研究以生态雨水基础设施(ESI)为核心理论,结合我国城市新区的实际情况和规划编制体系,系统地提出了多目标、多尺度的中国城市新区生态雨水基础设施规划的理论框架和方法论体系,并以上海临港新城为例进行实证研究,为临港新城的雨洪生态管理提供技术支撑。论文主要研究结论如下:
     理论与方法研究:
     (1)生态基础设施(Ecoligical Stormwater Infrastructure, ESI)是雨洪生态管理的核心理论,强调生态系统有关雨洪调蓄、径流削减、水质保护、清洁水源提供等方面的生态系统服务价值,注重自然水处理与人工设施之间的协调互动。生态雨水基础设施规划包括集中式、终端控制的BMPs-ESI和就地/分散式、源头与过程控制的LID-ESI以及传输型ESI三个组分。
     (2)生态雨水基础设施规划具有多目标性以及多领域性,其核心是在“近自然软排水”雨洪生态管理理念的指导下,从水循环、水安全、水环境、水资源等角度,在不同尺度、规划编制阶段,对生态雨水基础设施的类型、规模、布局、结构等进行系统性的保护和规划,形成完整的生态雨水基础设施的网络体系,进而实现城市的可持续雨洪管理和精明增长。
     (3)结合城市规划编制体系,提出了城市新区生态雨水基础设施规划的体系、理论、方法与技术流程,包括三个层面:生态雨水基础设施总体规划、生态雨水基础设施控制性规划以及生态雨水基础设施修建性规划。总体规划侧重考虑雨洪生态管理重点区域的BMPs-ESI的规划,雨洪管理景观安全格局(SWMSP)是生态雨水基础设施总体规划的规划成果;控制性规划侧重考虑LID-ESI的规划,有效透水面指标EPA(尤其是有效绿地EGA)是生态雨水基础设施控制性规划的规划成果;修建性规划则是对总体规划和控制性规划确定的ESI提出具体的安排和详细规划设计,指导工程设计与建设。
     应用研究:
     结合研究区实际情况,确立了上海临港新城生态雨水基础设施规划的总体目标,建设了生态雨水基础设施规划数据库,并从区域生态雨水基础设施总体规划、典型地块生态雨水基础设施控制性规划、生态雨水基础设施示范工程修建性规划等三个层面展开了实证研究。
     (1)区域生态雨水基础设施总体规划实证研究
     在城市总体规划的规划愿景下,对临港新城主城区的雨洪生态过程进行空间模拟分析,确定了生态雨水基础设施总体规划的重点区域。结合BMPs-ESI适宜性评价,判别出BMPs-ESI的空间位置、组分及其关系,构建区域雨洪管理景观安全格局。研究区基于洪涝控制、径流削减、水质保护等单个雨洪生态管理目标的BMPs-ESI分别为5.71km2、1.81km2以及4.49km2。将单个雨洪生态管理目标的BMPs-ESI格局进行空间叠加、综合分析,形成了连续而完整的、系列化的区域雨洪管理景观安全格局SWMSP,SWMSP的用地面积为8.75km2,占研究区总面积的12.97%,它是研究区城市发展建设中不可逾越的生态底线,应重点保护和严格限制开发建设。
     (2)典型地块生态雨水基础设施控制性规划实证研究
     结合生态雨水基础设施总体规划成果,基于城市控制性规划的规划愿景,运用有效(不)透水面理论和USCSWEM下垫面分类方法,在利益相关方调查分析的基础上,确定了五个规划情景方案,通过水量平衡分析,得出不同情景方案对应的EPA(EGA)的面积指标,并通过SWMM模型对情景规划结果进行验证,最终选定了两个情景规划方案(方案二S2和方案三S3),分别对应绿色建筑评价标准中的基本项和优选项标准。S2对应的EPA、EGA面积分别为2.38hm2、2.02hm2,EGA占绿地面积、地块总面积的比例分别为77.69%、7.52%;S3对应的EPA、EGA面积为1.66hm2、1.30hm2,EGA占绿地面积、总面积的比例为50.16%、4.86%。
     (3)生态雨水基础设施示范工程修建性规划与设计实证研究
     对临港新城护城环路附近的两处生态雨水基础设施示范工程进行了修建性规划与设计,包括砂石生态过滤池、“阶梯式”多级梯度生态净化塘系统(挺水植物塘、沉水植物塘)、生态渗滤沟、表流湿地、复合生态塘系统、潜流湿地等组分。两处示范工程建成后,即使在暴雨、冬季等恶劣气候条件下,也可正常地运行,保持稳定的水质净化效果,具有一定的耐冲击负荷能力,生态、社会、经济效益良好。
The rapid urbanization has greatly changed the surface of the Earth. Numerous research studies have documented that Land Use/Land Cover Change (LUCC) caused by urban expansion, i.e., the increase of impervious surface, and conventional Stormwater Management (SWM) methods, which remove runoff with piped conveyance systems and route runoff directly to stream to prevent ponding, are considered as the main cause for the destruction of urban natural water cycles. It will lead to a series of stormwater problems, such as an increase in flash floods, increased pollution generated by urban nonpoint sources, shortage of water resource, degradation of ecological value of rivers, to name but a few.
     Being one of the most rapidly urbanizing countries in the world, China is suffering a lot from the environmental and ecological problems induced by urban stormwater. As the major part of China's urbanization process, new urban districts are the key areas of SWM in the future. Conventional SWM system, i.e., gray stormwater management is no longer adequate to deal with larger and more intense storm events and the associated pollution, and there has been a shift from gray stormwater management to Stormwater Ecological Management (SWEM), i.e., Ecological Stormwater Infrastructure (ESI).
     In this paper, an systematic innovative theory, method and technical architecture of ESI planning for new urban district is given in multi-scale, that combined with the current situation of new urban district and China's urban planning system, and aimed at natural hydro logical process protection and urban sustainable development. A case study of Shanghai Lingang New City (SHLNC),which is one of the major satellite towns of Shanghai and an important sector of the world's shipping center, is demonstrated with a multi-objective comprehensive ESI planning target for flood control, runoff reduction, water quality and rainwater resource utilization. The main research results and conclusions are as follows:
     Theory and Method
     (1) The core concept of ESI planning is to form an interconnected network of ESI which consisted of ESI's type, size, layout and structure. A combination of proposed ESI system ranging from on site LID-ESI features at the property or neighborhood level, to BMPs-ESI features at the regional scale, and transfer ESI.
     (2) The innovative theory, method, andframework for ESI planning on different scales was proposed based on China's urban planning system. It consists of three parts:On the regional scale, it concerned with Stormwater Management Landscape Security Pattern (SWMSP) base on urban master plan; on the mesoscale and microscale, it concerned LID-ESI and effective pervious areas (EPA) based on the regulatory planning; the site construction detailed planning concerned with with the planning, design and construction of ESI.
     (3) According to the concept of Effective Pervious Areas (EPA), that compared to Effective Impervious Area (EIA), an innovation classification system, which called as USCSWEM (Urban Underlying Surface Classification for Stormwater Eco-management) is put forward. EPA indicates the pervious area that receives and stores runoff from other underlying surface, and EPA (espically Effective Green Area, EGA) should be listed as planning index for urban regulatory detailed planning.
     Case Study of SHLNC
     Under the multi-objective comprehensive ESI planning target, a space-based database system for ESI planning was constructed in GIS platform.
     (1) Based on the vision of SHLNC's master plan, and through the analysis and simulation of hydrological processes, strategic BMPs-ESI nodes which have critical significance in safeguarding and controlling hydrological processes are identified to form an integrated SWMSP. The areas of BMPs-ESI for flood control, stormwater control, runoff reduction, water quality are3.94sq km,1.77sq km,1.81sq km, and4.49sq km respectively. The comprehensive BMPs-ESI network of SHLNC, also called SWMSP compose about12.97%of the total area, with the size of8.75sq km. SWMSP should not be used as construction land.
     (2) Under the vision of regulatory detailed planning, ESI regulatory detailed planning research of a typical area is studied. Different LID-ESI approaches are compared and suitability evaluation is carried out to determine the most appropriate types of LID-ESI considering local guidelines, stakeholders'concerns, and other related environmental and economical factors, and low elevation greenbelt is considered to be the most appropriate approach. Five scenario simulation planings are setted, based on the concepts of EPA and USCSWEM, including rainwater collection, green roof, pervious surface, depth of low elevation greenbelt. In scenario2, the area of EPA and EGA are2.38hm2and2.02hm2, the area proportion of EGA is77.69%, moreover, in scenario3, the area of EPA and EGA are1.66hm2and1.30hm2, the area proportion of EGA is50.16%. The results are verifid by SWMM, the EPA and EGA indexs of two scenarios should be listed as SWEM planning index for urban regulatory detailed planning.
     (3) Two stromwater eco-management demonstration projects which located by Hucheng Ring Road in SHLNC were established based on the construction planning and design, including sand eco-filter tank, multi-stage eco-wetponds, upflow-catch basin, eco-infiltration ditch, surface flow wetland, compound ecological pond, and subsurface flow constructed wetland. The two projects run normally and effectively in any condition, even if in harsh climates. In the eleven rianfall events, the demonstration projects could purify the rainfall runoff pollution with their concentration remarkably decreasing. It is proposed that multiple ecological, economic and social benefits will be greatly realized.
引文
[1]Alley W. M, Veenhuis J. E.. Effective Impervious Area in Urban Runoff Modeling[J]. Journal of Hydraulic Engineering-ASCE.1983,109(2):313-319.
    [2]Ballo S., Liu M., Hou L., et al. Pollutants in Stormwater Runoff in Shanghai(China): Implications for Management of Urban Runoff Pollution[J]. Progress in Natural Science. 2009(19):873-880.
    [3]Barraud S., Gautier A., Bardin J. P., et al. The Impact of Intentional Stormwater Infiltration on Soil and Groundwater[J]. Water Science and Technology,1999,39(2):185-192.
    [4]Beatley T.. Green Urbanism:Learning From European Cities[M]. Washington:Island. Press,2000.
    [5]Beighley R. E., Kargar M., He Y. P.. Effects of Impervious Area Estimation Methods on Simulated Peak Discharges[J]. Journal of Hydrologic Engineering,2009,14(4):388-398.
    [6]Benedict Mark, Edward McMahon. Green Infrastructure:Linking Landscape and Communities [M]. USA:Island Press,2006.
    [7]Beyers C. Mobilising "community" for justice in District Six:Stakeholder Politics Warly in The Land Restitution Process[J]. South African Historical Journal,2007,58(1):253-276.
    [8]Booth D. B., Hartley D., Jackson R.. Forest Cover, Impervious-surface Area, and The Mitigation of Stormwater Impacts [J]. Journal of The American Water Resources Association, 2002,38(3):835-845.
    [9]Boucher A. B., Tremwel T. K., Campbell K. L.. Best Management Practices for Water Quality Iimprovement in The Lake Okeechobee watershed[J]. Ecological Engineering Phosphorus dynamics in the Lake Okeechobee Watershed, Florida.1995,5(2-3):341-356.
    [10]Bratieres K., Flietcher T. D., Deletic A., et al. Nutrient and Sediment Removal by Stormwater Biofilters:A Large-scale Design Optimization Study[J]. Water Research, 2008(42):3930-3940.
    [11]Braune M. J., Wood A. Best management Practices Applied to Urban Runoff Quantity and Quality Control[J]. Water Science and Technology.1999,39(12):117-121.
    [12]Braune M. J.. Best Management Practices Applied to Urban Runoff Quantity and Quality Control[J]. Water Science and Technology,1999,39(12):117-121.
    [13]Bystrom O., Anderssona H., Gren I. Economic Criteria for Using Wetlands As Nitrogen Sinks Under Uncertainty [J]. Ecological Economics,2000,35(1):35-45.
    [14]Bystrom O.. The Nitrogen Abatement Cost in Wetlands [J]. Ecological Economics,1998, 26(3):321-331.
    [15]Carleton J. N., Grizzard T.F., Godrej A. N., et al. Factors Affecting The Performance of Stromwater Treatment Wetlands[J], Water Resource,2001,35(6):1552-1562.
    [16]Castelle A. J., Johnson A. W, Conolly C. Wetland and Stream Buffer Size Requirements: A Review[J]. Environmental Quality,1994(23):878-882.
    [17]Center for Neighborhood Technology (CNT). A Sustainable Community-Based Approach to Reducing Non-Point Source Pollution[R]. Chicago, USA,2009.
    [18]Center for Neighborhood Techno logy(CNT), American Rivers. The Value of Green Infrastructure:A Guide to Recognizing Its Economic, Environmental and Social Benefits [EB/OL]. http://www.cnt.org/repository/gi-values-guide.pdf,2010.
    [19]Centner T. J., Houston J. E., Keeler A. G., et al. The Adoption of Best Management Practices to Reduce Agricultural Water Contamination[J]. Limnologica-Ecology and Management of Inland Waters,1999,29(3):366-373.
    [20]CIRIA, U.K.. Sustainable Urban Drainage Systems:Design Manual for England Scotland and Wales Northern Ireland[M]. London, U.K.:Cromwell Press,2000.
    [21]Clark D. L., Asplund R.. Composite Sampling of Highway Runoff [J]. Journal of Environmental Engineering,1981,107(5):1067-1081.
    [22]Clark M. J.. Dealing With Uncertainty:Adaptive Approaches to Sustainable River Management [J]. Aquatic Conservation:Marine and Freshwater Ecosystems,2002,12(4): 347-363.
    [23]Corwin D. L., Vaughan P. J., Loague K. Modeling Nonpoint Source Pollutants in The Vadose Zone With GIS [J]. Environmental Science & Technology,1997,31(8):2157-2175.
    [24]Costanza R., d'Arge R., de Groot R., et al. The Value of The World's Ecosystem Services and Natural Capital[J]. Nature,1997(387):252-259.
    [25]Daily, G. Nature's Services:Society Dependence on Natural Ecosystems[M]. Island Press, Washington, D.C.,1997.
    [26]David R. Tilley, Mark T. Brown. Wetland Networks for Stormwater Management in Subtropical Urban Watersheds[J]. Ecological Engineering,1998(2):131-158.
    [27]Davis A.P., McCuen R.H.. Stormwater Management for Smart Growth[M]. US:Springer Press,2005.
    [28]Dayaratne S. T., Perera B. Regionalisation of Impervious Area Parameters of Urban Drainage Models[J]. Urban Water Journal,2008,5(3):231-246.
    [29]Department of Environmental Resources Programs and Planning Division. Low-Impact Development Hydro logic Analysis[S]. Prince George's County, Maryland,1999.
    [30]Duda A. M.. Addressing Nonpoint Sources of Water Pollution Must Become An International Priority[J]. Water Science & Technology,1993,28(3):1-11.
    [31]Duke J.M., Aull-Hyde R.. Identifying Public Preferences for Land Preservation Using The Analytic Hierarchy Process[J]. Ecological Economics,.2002,42(1-2):131-145.
    [32]Dunphy A., Beecham S., Jones C, et al. "Confined Water Sensitive Urban Design (WSUD) Stormwater Filtration/Infiltration Systems for Australian Conditions." [C]. The 10th International Conference on Urban Drainage, Copenhagen, Denmark,2005.
    [33]Edwin D., Ongley, Zhang X..L, et al. Current Status of Agricultural and Rural Non-point Source Pollution Assessment in China[J]. Environmental Pollution,2010,158:1159-1168.
    [34]Environment Australia Department of the Environment and Heritage Introduction to Urban Stormwater Management in Australia [M]. Common Wealth of Australia,2002.
    [35]Erik Ristenpart. Planning of Stormwater Management With A New Model for Drainage Best Management Practices[J]. Water science and technology,1999,39 (9):253-260.
    [36]Figueira J., Greco S., Ehrogott M. Multiple Criteria Decision Analysis:State of the Art Surveys[M]. New York:Springer,2005.
    [37]Forman R. T. T., Godron M.. Landscape Ecology[M]. New York:John Wiley & Sons, 1986.
    [38]Goriup P. The Pan-European Biological and Landscape Diversity Strategy:Integration of Ecological Agriculture and Grassland Conservation[J]. Parks,1998,8(3):37-46.
    [39]Gromaire-Mertz M. C., Garnaud S., Gonzalez S., et al. Characterisation of Urban Runoff Pollution in Paris [J]. Water Science Technology,1999,39(2):1-8.
    [40]Han W. S., Burian S. J.. Determining Effective Impervious Area for Urban Hydrologic Modeling[J]. Journal of Hydrologic Engineering,2009,14(2):111-120.
    [41]Hancock D. "Low Impact Design—A Critical Evaluation of Long Term Benefits Versus Short Term Impact. "[C]. The Fourth South Pacific Conference on Stormwater and Aquatic Resource Protection, Auckland, New Zealand 2005.
    [42]Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007:The Physical Science Basis[R]. IPCC Secretariat, WMO,7bis, Avenue de la Paix,1211 Geneva2, Switzerland.2007.
    [43]Jang S., Cho M., Yoon J., et al. Using SWMM as A Tool for Hydrologic Impact Assessment[J]. Desalination,2007,212(1-3):344-356.
    [44]Jennings, D. B., Jarnagin, S T. Changes in Anthropogenic Iimpervious Surfaces, Precipitation and Daily Stream Flow Discharge:A Historical Perspective in A Mid-Atlantic Subwatershed[J]. Landscape Ecology,2002(17):471-489.
    [45]Jessel B., Jacobs J.. Land Use Scenario Development and Stakeholder Involvement As Tools for Watershed Management Within The Havel River Basin[J]. Limnologica,2005,35(3): 220-233.
    [46]Jiri Marsalek, Hans Schreier, Innovation in Stormwater Management in Canada:The Way Forward[J]. Water Quality Research Journal of Canada,2008:5-10.
    [47]Johnson L.. Cities in Nature:Case Studies of Urban Greening Partnerships[M]. Toronto, 2002.
    [48]Johnson M.S., Coon W.F., Mehta V.K., et al. Application of Two Hydrologic Models with Different Runoff Mechanisms to A Hillslope Dominated Watershed in The Northeastern US: A Comparison of HSPF and SMR[J]. Journal of Hydrology,2003,284(1-4):57-76.
    [49]Jones J. E., Earles T. A., Fassman E. A., et al. Urban Stormwater Regulations-Are Impervious Area Llimits A Good Idea?[J]. Journal of Environmental Engineering-ASCE, 2005,131(2):176-179.
    [50]Kline J., Wichelns D.. Measuring Heterogeneous Preferences for Preserving Farmland and Open Space[J]. Ecological Economics,1998,26(2):211-224.
    [51]Koontz T.M.. We Finished The Plan, So Now What? Impacts of Collaborative Stakeholder Participation on Land Use Policy[J]. Policy Studies Journal,2005,33(3): 459-481.
    [52]Leegflang M., Monster N., Van De Ven F.. Design Graphs for Stormwater Infiltration Facilities[J]. Hydrological Sciences.1998,43(2):173-180.
    [53]Leopold, L. B.. Hydrology for Urban Land Planning:A Guidebook on The Hydrologic Effects of Urban Land Use. Geological Survey Circular,1968.
    [54]Lewis A.. Rossman. Storm Water Management Model User's Manual Version5.0[S]. National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH.USEAP.2004.
    [55]Line D. E., White N. M.. Effects of Development on Runoff and Pollutant Export[J]. Water Environment Research,2007,79 (2):185-190.
    [56]Low impact Development Center. Low Impact Development(LID)A Literature Review[M]. Washington:United States Environmental Protection Agency,2000.
    [57]Makepeace D. K., Smith D. W., Stanley S. J.. Urban Stormwater Quality:Summary of Contaminant Data[J]. Critical Reviews in Environmental Science and Technology,1995, 25(2):93-139.
    [58]Malmqvist P.A.. Strategic Planning of Sustainable Urban Waster Management[M]. London:IWA Publishing,2006.
    [59]Mander U, Jagomagi J, KulvikM. Network of Compensative Area as an Ecological Infrastructure of Territories[C]. Connectivity in Landscape Ecology, Proceedings of the 2nd International Seminar of the International Association for Landscape Ecology, Ferdinand Sconingh,Paderborn,1988:35-38.
    [60]Marsalek J., Jimenez-Cisneros B., Karamouz M., et al. Urban Water Cycle Processes and Interactions[M]. Taylor & Francis, Leiden, The Netherlands,2006.
    [61]Martin C., Ruperd Y, Legret M.. Urban Stormwater Drainage Management:The Development of A Multicriteria Decision Aid Approach for Best Management Practices[J]. European Journal of Operational Research,2007,181(1):338-349.
    [62]Maryland Department of the Environment. Maryland Stormwater Design Manual Volumes I&II[S]. Maryland,2000.
    [63]Mays L. W. Stormwater Collection Systems Design Handbook[M]. New York, USA: McGraw-Hill,2001.
    [64]McAlister T.. National Guidelines for Evaluating Water Sensitive Urban Design (WSUD)[R]. BMT WBM Pty Ltd,2007.
    [65]McCarthy D. T., Deletic A., Mitchell V. G, et al. Uncertainties in Stormwater E.coli levels[J]. Water Research,2008(42):1812-1824.
    [66]Melbourne Water. WSUD engineering Procedures:Stormwater[M]. Melbourne, Australia: CSIRO publishing,2005.
    [67]Michael L.Clar, Billy J.Barfield, Thomas P.O'Connor. Stormwater Best Management Practice Design Guide Volume 2:Vegetative Biofilters[S]. The U.S. Environmental Protenction Agency. (EPA/600/R-04/121A).2004.
    [68]Mishra S. K., Geetha, K., Rastogi, A. K., et al. Long-term Hydrologic Simulation Using Storage and Source Area Concepts[J]. Hydrological Processes,2005(19):2845-2861.
    [69]Mishra S. K.. Long-term Hydrologic Simulation Using Storage and Source Area Concepts[J]. Hydrological Processes,2005(19):2845-2861.
    [70]Mishra S.K., Singh VP. SCS-CN methodpart-1:Derivation of SCS-CN Based Models[J]. Acta Geophys Polonica,2002,50(3):457-477.
    [71]Mitsch W. J., Gosselink J. G.. The Value of Wetlands:Importance of Scale and Landscape Setting[J]. Ecology Economic,2000(35):25-33.
    [72]Morari F., Lugato E., Borin M. An Integrated Non-point Source Model-GIS System for Selectingm Criteria of Best Management Practices in Tthe Po Valley, North Italy [J]. Agriculture, Ecosystems & Environment,2004,102(3):247-262.
    [73]New Low Impact Design:Site Planning and Design Techniques for Stormwater Management[EB/OL].http://design.asu.edu/apa/proceedings98/Coffmn/coffmn.html.2008.
    [74]Nidumolu U.B., van Keulen H., Lubbers M., et al. Combining Interactive Multiple Goal Linear Programming with An Inter-stakeholder Communication Matrix to Generate Land Use Options[J]. Environmental Modeling & Software,2007,22(1):73-83.
    [75]Noel Corkery, Andrew Kielniacz, David Chubb. Water Sensitive Urban Design Technical Guidelines for Western Sydney[S]. URS Australia Pty Ltd(URS),2004.
    [76]Novotny V., Brown P. (Eds.). Cities of Tthe Future:Towards Integrated Sustainable Water and Landscape Management[M]. IWA Publishing, London, U.K.,2007.
    [77]Novotny V, Olem V.. Water Quality:Prevention, Identification and Management of Diffuse Pollution[M]. U. S. New York:Van Nostrand Reinhold Company,1994.
    [78]O'Connell I.J., Keller C.P.. Design of Decision Support for Stakeholder-driven Collaborative Land Valuation[J]. Environment and Planning B-Planning & Design,2002, 29(4):607-628.
    [79]Office of Research and Development Washington. The Use of Best Management Practices (BMPs) in Urban Watersheds [M]. Washington:United States Environmental Protection Agency,2004, EPA/600/R-04/184.
    [80]Omerinik J..M.. The Iinfluence of Land Use on Stream Nutrient Level. USEPA Ecological Research Series EPA-60013-76-014[R]. Corvallis, Oregon:USEPA,1976.
    [81]Pandit A., Gopalakrishan G. Estimation of Annual Storm Runoff Coefficients by Continuous Simulation[J]. Journal of Irrigation and Drainage Engineering,122:211-220.
    [82]Park S. Y., Lee K. W, Park I. H., et al. Effect of The Aggregation Level of Surface Runoff Fields and Sewer Network for A SWMM Simulation[J]. DesalinationlOth IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management -18-22 September 2006, Istanbul, Turkey,10th IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management,2008,226(1-3):328-337.
    [83]Patela M., Kok K., Rothman D.S. Participatory Scenario Construction in Land Use Analysis:An Insight into The Experiences Created by Stakeholder Involvement in The Northern Mediterranean[J]. Land Use Policy,2007,24(3):546-561.
    [84]Pauleit S., Duhme F.. Assessing The Environmental Performance of Land Cover Types For Urban Planning[J]. Landscape and Urban Planning,2000, (52):1-20.
    [85]Pauleit S., Ennos R., Golding Y. Modeling The Environmental Iimpacts of Urban Land Use and Land Cover Change-A Study in Merseyside, UK [J]. Landscape and Urban Planning, 2005, (71):295-310.
    [86]Peterson E. W., Wicks C. M.. Assessing The Importance of Conduit Geometry and Physical Parameters in Karst Systems Using The Stormwater Management Model (SWMM)[J]. Journal of Hydrology,2006,329(1-2):294-305.
    [87]PGC Prince George's County, Maryland. Low Impact Development Design Manual[R]. Maryland,1997.
    [88]PGC Prince George's County, Maryland. Low Impact Development Design Strategies: An Integrated Design Approach.[R]. Maryland,1999.
    [89]Powell S. L., Cohen W. B., Yang Z., et al. Quantification of Impervious Surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006[J]. Remote Sensing of Environment,2008,112(4):1895-1908.
    [90]Ranran Yang, Baoshan Cui.2012. Framework of Integrated Stormwater Management of Jinan City, China[J]. Procedia Environmental Sciences,2012,13:2346-2352.
    [91]Rao N. S., Easton Z. M., Schneiderman E. M., et al. Modeling Watershed-scale Effectiveness of Agricultural Best Management Practices to Reduce Phosphorus Loading[J]. Journal of Environmental Management,2009,90(3):1385-1395.
    [92]Sanders R. A.. Urban Vegetation Impacts on the Hydrology of Dayton, Ohio[J]. Urban Ecology,1986,9(3-4):361-376.
    [93]Scholz-Barth K.. Green Roofs:Stormwater Management From the Top Down[J]. Environmental Design & Construction,2001,01/02.
    [94]Schwilch G, Bachmann F., Liniger H.P.. Appraising and Selecting Conservation Measures to Mitigate Desertification and Land Degradation Based on Stakeholder Participation and Global Best Practices[J]. Land Degradation & Development,2009,20(3): 308-326.
    [95]Selm, A. J. Van. Ecological Infrastructure:A Conceptual Framework for Designing Habitat Network[C]. In Schrieiber, K.-F. (ed.), Connectivity in Landscape Ecology, Proceedings of the 2nd International Seminar of the International Association for Landscape Ecology. Ferdinand Schoningh. Paderborn.1988:63-66.
    [96]Sharifan R.A., Roshan A., Aflatoni M., et al. Uncertainty and Sensitivity Analysis of SWMM Model in Computation of Manhole Water Depth and Subcatchment Peak Flood[J]. Procedia-Social and Behavioral Sciences Sixth International Conference on Sensitivity Analysis of Model Output,2010,2(6):7739-7740.
    [97]Shaver E.. Low Impact Design Manual for the Auckland Region[R]. Auckland Regional Council, New Zealand,2000.
    [98]Sieker F.. On-site Stormwater Management as an Alternative to Conventional Sewer Systems:A New Concept Spreading in Germany [J]. Water Science and Technology,1998, 38(10):65-71.
    [99]Sieker H., Klein M.. Best Management Practices for Stormwater-runoff with Alternative Methods in a Large Urban Catchment in Berlin, Germany[J]. Water Science and Technology, 1998,38(10):91-97.
    [100]Singh P. K., Bhunya P. K., Mishra S. K., et al. A Sediment Graph Model Based on SCS-CN method[J]. Journal of Hydrology,2008,349(2):244-255.
    [101]Soil Conservation Service. National Engineering Handbook, Section 4:Hydrology [S]. USD A, Springfield, VA,1972.
    [102]Stender I. Policy Incentives for Green Roofs in Germany[Z]. The Green Roof Infrastructure Monitor.2002.
    [103]Steve Wise. Green Infrastructure Rising:Best Practices in Stormwater Management [EB/OLJ]. Planning.2008,74(8):14-19.http://www.cnt.Org/repository/APA-article.Green infrastructure.080108. Pdf,2008-12-14.
    [104]Stewart T. A., Criterical Survey on the Status of Multiple Criteria Decision Making: Theory and Practice[J]. OME-GA,1992,20 (5/6):569-586.
    [105]Stormwater Committee. Best Practice Environmental Management Guidelines[S]. CSIRO, Australia,2006.
    [106]Stormwater Steering Committee(SSC). The Minnesota Stormwater Manual[S]. Minnesota,USA,2007.43-57.
    [107]Stormwater/Sediment Team Auckland Regional Council. Stormwater management devices design manual[M]. Auckland:Stormwater/Sediment Team Auckland Regional Council,2003.
    [108]Strager M.P., Rosenberger R.S.. Incorporating Stakeholder Preferences for Land Conservation:Weights and Measures in Spatial MCA[J]. Ecological Economics,2006,58(1): 79-92.
    [109]Ted Weber, Anne Sloan, John Wolf. Maryland's Green Infrastructure Assessment: Development of a Comprehensive Approach to Land Conservation[J]. Landscape and Urban Planning,2006(77):94-110.
    [110]Tian Y., Huang Z., Xiao W. F.. Reductions in Non-point Source Pollution Through Different Management Practices for an Agricultural Watershed in the Three Gorges Reservoir Area[J]. Journal of Environmental Sciences,2010,22(2):184-191.
    [111]Tillinghast E. D., Hunt W. F., Jennings G. D.. Stormwater Control Measure (SCM) Design Standards to Llimit Stream Erosion for Piedmont North Carolina[J]. Journal of Hydrology,2011(411):185-196.
    [112]Tracy Tackett. Seattle's Policy and Pilots to Support Green Stormwater Infrastructure[A].2008 International Low Impact Development Conference[C]. Washington: Environmental and Water Resources institute of ASCE,2008.
    [113]Turner M. G.. Landscape Ecology:The Effect of Pattern on Process[J]. Annual Review of Ecological System,1989,20(1):171-197.
    [114]U. S. Green Building Council. Green Building Rating System for New Construction& Major Renovations Version 2.2[M]. U. S.:Green Building Council,2005:11-12.
    [115]U.S. Environmental Protection Agency (USEPA). Guidance Manual for Developing Best Management Practices[S]. Washington, D.C.,1993. EPA-833-B-93-004.7-11.
    [116]U.S. EPA. Low Impact Development(LID):A Literature Review. United States Environmental Protection Agency [R]. EPA-841-B-00-005,Washington DC:United States Environmental Brotection Agency,2000.
    [117]U.S. EPA. Stormwater Best Management Practice Design Guide (Volume 1) [M]. Washington DC:Office of Research and Development,2004.
    [118]U.S. Soil Conservation Service. National Engineering Handbook Section 4, Hydrology[M]. USA:U. S Government Printing Office,1972.
    [119]Unified Facilities Criteria(UFC) Design. Low impact Development Manual[M]. U.S. Army Corps of Engineers,2000.
    [120]United States Environmental Protection Agency (USEPA). The Use of Best Management Practices (BMPs) in Urban Watersheds [M]. Washington:United States Environmental Protection Agency,2004, EPA/600/R-04/184.21-71.
    [121]USEPA. Low Impact Development(LID):A Literature Review. United States Environmental Protection Agency [R]. Washington DC:United States Environ mental Brotection Agency,2000, EPA-841-B-00-005.
    [122]USEPA. National Management Measures to Control Nonpoint Source Pollution from Urban Area[R]. USA,2005.
    [123]USEPA. Stormwater Best Management Practice Design Guide (Volume 1) [S]. Washington DC:Office of Research and Development,2004.
    [124]Van Roon M., Van Roon H. Low Impact Urban Design and Development:The Big Picture[M]. Lincoln, New Zealand:Manaaki Whenua Press,2009.
    [125]Van Roon M.. Emerging Approaches to Urban Ecosystem Management:The Potential of Low Impact Urban Design and Development Principles[J]. Journal of Environmental Assessment Policy and Management,2005,7(1):125-148.
    [126]Van Roon M.. Water Localisation and Reclamation:Steps towards Low Impact Urban Design and Development [J]. Journal of Environmental Management,2007,83(4):437-447.
    [127]Vernon B., Tiwari R.. Place-Making through Water Sensitive Urban Design[J]. Sustainability,2009,29(1):789-814.
    [128]Wattage P., Mardle S. Stakeholder Preferences towards Conservation Versus Development for a Wetland in Sri Lanka[J]. Journal of Environmental Management,2005, 77(2):122-132.
    [129]Wayne C. Huber, Robert E., Dickinson et al. Stormwater Management Model, Version 4: User's Manual[S]. Environmental Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Athens, Georgia,2004.
    [130]Weber T., Aviram,R.. Forestand Green Infrastructure loss in Maryland1997-2000, and implications for the future. Maryland Department Nat. Res., Annapolis, MD,36pp., plus appendices.2002, Online:available at http://www.dnr.state.md.us/greenways/gi/gi.html.
    [131]Weber T.. Maryland's Green Infrastructure Assessment:A Comprehensive Strategy for Land conservation and Restoration[J]. Maryland Department Nat.Res., Annapolis, MD, 246pp., plus appendices.2003, Online:available at http://www.dnr.state.md.us/greenways/gi /gi.html.
    [132]Whitforda V., Ennosa A.R., Handley J.F.. "City From and Natural process"—Indicators for the Ecological Performance of Urban Areas and Their Application to Merseyside UK[J]. Landscape and Urban Planning,2001(57):91-103.
    [133]Wilson S, Bray R, Cooper P. Sustainable Drainage Systems[R]. London, UK:Hydraulic, Structural and Water Quality Advice. Construction Industry Research and Information Association(CIRIA),2004.
    [134]Wood-Ballard B., Kellagher R., Martin P., et al. The SUDS Manual[S]. CIRIA, Classic House,174-180 Old Street, London ECIV 9BP, UK,2007.
    [135]Wu J., Hobbs R.. Key Issues and Research Priorities in Landscape Ecology:An Idiosyncratic Synthesis[J]. Landscape Ecology,2002,17(4):355-365.
    [136]Yin X., Saha U. K., Ma L. Q.. Effectiveness of Best Management Practices in Reducing Pb-bullet Weathering in a Shooting Range in Florida[J]. Journal of Hazardous Materials,2010, 179(1-3):895-900.
    [137]Yu K. J.. Security Patterns and Surface Model in Landscape Planning[J]. Landscape and Urban Planning,1996(36):1-17.
    [138]Yu K. J.. Security Patterns in Landscape Planning with a Case Study in South China[D]. Graduate School of Design, Harvard University, MA,USA,1995.
    [139]Zaghloul N. A., Abu Kiefa M. A.. Neural Network Solution of Inverse Parameters Used in the Sensitivity-calibration Analyses of the SWMM Model Simulations[J]. Advances in Engineering Software,2001,32(7):587-595.
    [140]包雄伟.上海临港新城:21世纪新城规划实施模式的有益探索[J].上海城市规划,2010(1):19-23.
    [141]鲍超,方创琳.水资源约束力的内涵、研究意义及战略框架[J].自然资源学报,2006,21(5):844-852.
    [142]暴丽杰.基于情景的上海浦东暴雨洪涝灾害脆弱性评估[D].上海:上海师范大学,2009:40-46.
    [143]毕华松,崔心红,陈国霞,等.上海临港新城滨海盐渍土壤年内盐水动态及其分析[J].安徽农业科学,2007,35(34):11149-11151.
    [144]曹秀芹,车武.城市屋面雨水收集利用系统方案设计分析[J].给水排水,2002,28(1):13-15.
    [145]常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地 理研究,2006,25(6):994-1002.
    [146]车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制[J].给水排水,2003,29(10):38-42.
    [147]车伍,吕放放,李俊奇,等.发达国家典型雨洪管理体系及启示——构建我国城市现代雨洪控制利用体系[J].中国给水排水,2009,25(20):12-17.
    [148]车伍,马震.针对城市雨洪控制利用的不同目标合理设计调蓄设施[J].中国给水排水,2009,25(24):5-10.
    [149]车伍,王建龙,何卫华,等.城市雨洪控制利用——理念与实践[J].建设科技,2008(21):30-31.
    [150]车伍,张炜,李俊奇,等.城市雨水径流污染的初期弃流控制[J].中国给水排水,2007,23(6):1-5.
    [151]车伍,周晓兵.城市风景园林设计中的新型雨洪控制利用[J].中国园林,2008,24(155):52-56.
    [152]车越.中国东部平原河网地区水源地的环境管理:理论、方法与实践[D].华东师范大学,2005.
    [153]沈桂芬,张敬东,严小轩,等.武汉降雨径流水质特性及主要影响因素分析[J].水资源保护,2005,21(2):57-58.
    [154]陈丁江.流域非点源污染物输移通量与总量控制研究[D].杭州:浙江大学,2010.
    [155]陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义[J],生态学报,2006,26(5):1444-1449.
    [156]陈利顶,吕一河,傅伯杰,等.基于模式识别的景观格局分析与尺度转换研究框架[J],生态学报,2006,26(3):663-670.
    [157]陈利群,王召森,石炼.暴雨内涝后城市排水规划管理的思考[J].资源科学,2011,37(10):29-33.
    [158]陈守珊.城市化地区雨洪模拟及雨洪资源化利用研究[D].南京:河海大学,2007.
    [159]陈爽,张秀英,彭立华.基于高分辨卫星影像的城市用地不透水率分析[J].资源科学,2006,28(2):41-46.
    [160]陈蔚镇,朱俊,樊正球,等.上海临港新城总体规划的生态学思考[J].城市规划,2007,31(6):32-38.
    [161]陈莹,赵剑强,胡博.西安市城市主干道路面径流污染特征研究[J].南京林业大学学报(自然科学版),2011,31(6):781-788.
    [162]陈永贵,郝红科,李鹏飞.GIS在园林规划设计中的应用[J].西北林学院学报,2005, 20(4):174-176.
    [163]程江,吕永鹏,黄小芳,等.上海中心城区合流制排水系统调蓄池环境效应研究[J].环境科学,2009,30(8):2234-2240.
    [164]程江,吴阿娜,车越,等.平原河网地区水体黑臭预测评价关键指标研究[J].中国给水排水,2006,22(9):18-22.
    [165]程江,徐启新,杨凯,等.国外城市雨水资源利用管理体系的比较及启示[J].中国给水排水,2007,23(12):68-72.
    [166]程江,徐启新,杨凯,等.下凹式绿地雨水渗蓄效应及其影响因素[J].给水排水,2007,33(5):45-49.
    [167]程江,杨凯,黄民生,等.下凹式绿地对城市降雨径流污染的削减效应[J].中国环境科学,2009,29(6):611-616.
    [168]程江,杨凯,黄小芳,等.上海中心城区苏州河沿岸排水系统降雨径流水文水质特性研究[J].环境科学,2009,30(7):1893-1900.
    [169]程江,杨凯,吕永鹏,等.城市绿地削减降雨地表径流污染效应的试验研究[J].环境科学,2009,30(11):3236-3242.
    [170]程涛.城市雨水资源化技术应用研究[D].武汉:武汉理工大学,2008.
    [171]丛翔宇,倪广恒,惠士博,等.基于SWMM的北京市典型城区暴雨洪水模拟分析[J].水利水电技术,2006,34(4):64-67.
    [172]单保庆,陈庆锋,尹澄.塘-湿地组合系统对城市旅游区降雨径流污染的在线截控作用[J].研究环境科学学报,2006,26(7):1068-1075.
    [173]董静静.上海临港新城雨水资源化利用中试研究[D].上海:华东师范大学,2012.
    [174]董淑秋,韩志刚.基于“生态海绵城市”构建的雨水利用规划研究[J].城市发展研究,2011,18(12):37-41.
    [175]董欣,陈吉宁,赵冬泉SWMM模型在城市排水系统规划中的应用[J].给水排水,2006,32(5):106-109.
    [176]樊在义,宋兵魁,杨勇,等.非点源污染负荷估算方法探讨[J].环境科学导刊,2011,3:1-6.
    [177]冯伟,王建龙,车伍.不同地表雨水径流冲刷特性分析[J].环境工程学报,2012,6(3):817-822.
    [178]傅伯杰,陈利顶,马克明,等景观生态学原理及应用[M].北京:科学出版社,2001.
    [179]甘华阳,卓慕宁,李定强,等.广州城市道路雨水径流的水质特征[J].生态环境,2006,15(5):969-973.
    [180]高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则[J].生态学报,2004,24(1):109-116.
    [181]龚清宇,王林超,苏毅.可渗水面积率在控规中的估算方法与设计应用[J].城市规划,2006,30(3):68-72.
    [182]苟红英.绿色居住小区节水与水资源利用技术研究[D].重庆:重庆大学,2007.
    [183]关丹桔,吕伟娅,秦海燕.居住区雨水收集利用及景观水循环处理运行总结[J].给水排水,2009,35(05):86-89.
    [184]郭青海,马克明,赵景柱,等.城市非点源污染控制的景观生态学途径[J].应用生态学报,2005,16(5):977-981.
    [185]韩冰,王效科,欧阳志云.北京市城市非点源污染特征的研究[J].中国环境监测,2005,21(6):63-65.
    [186]韩冰,王效科,欧阳志云.城市面源污染特征的分析[J].水资源保护,2005,21(2):1-4.
    [187]韩文晓.城市雨水综合利用决策及调蓄、渗透技术研究[D].西安:西安建筑科技大学,2008.
    [188]韩秀娣.最佳管理措施在非点源污染防治中的应用[J].上海环境科学,2000,19(3):102-105.
    [189]韩易.基于“总量控制”的城市径流污染模拟及生态化处理技术研究[D].重庆:重庆大学,2010.
    [190]韩志刚,董淑秋,杜娟,等.基于生态城构建的雨水利用规划[A].转型与重构——2011中国城市规划年会论文集[C],2011.
    [191]贺宝根,陈春根,周乃晟.城市化地区径流系数及其应用[J].上海环境科学,2003,22(7):472-475.
    [192]侯爱中,唐莉华,张思聪.下凹式绿地和蓄水池对城市型洪水的影响[J].北京水务,2007,2:42-45.
    [193]侯立柱,丁跃元,冯绍元,等.北京城区不同下垫面的雨水径流水质比较[J].中国给水排水,2006,22(23):35-38.
    [194]胡爱兵,张书函,陈建刚.生物滞留池改善城市雨水径流水质的研究进展[J].环境污染与防治,2011,33(1):74-77.
    [195]胡倩.城市雨水利用系统研究[D].北京:北京林业大学,2008.
    [196]黄莉.生态滤沟处理城市降雨径流的中试研究[D].重庆:重庆大学,2006.
    [197]黄群贤,刘红梅,李海燕,等.石家庄市多年降水分析及雨水利用研究[J].河北科 技大学学报,2006,27(4):332-336.
    [198]黄玮.人工土快速渗滤系统削减城市面源污染负荷的试验研究[D].南京:河海大学,2006.
    [199]黄亚伟.西安市城市雨水利用可行性与技术方案研究[D].西安:西安建筑科技大学,2006.
    [200]黄勇强,吴涛,杨飚,等.镇江市雨水利用示范工程水量平衡计算及效益分析[J].工业安全与环保,2011,37(1):41-43.
    [201]蒋玮,沙爱民,肖晶晶,等.透水沥青路面的储水-渗透模型与效能[J].同济大学学报:自然科学版,2013,41(1):72-77.
    [202]蒋文燕.平原海岛地区非点源污染负荷估算及水环境效应研究——以上海崇明岛为例[D].上海:华东师范大学,2008.
    [203]金可礼,陈俊,龚利民.最佳管理措施及其在非点源污染控制中的应用[J].水资源与水工程学报,2007,18(1):38-40.
    [204]金树权,吕军.水环境非点源污染模型的研究进展和展望[J].土壤通报,2006,37(5):1022-1026.
    [205]景垠娜,尹占娥,殷杰,等.基于GIS的上海浦东新区暴雨内涝灾害危险性分析[J].灾害学,2010,25(2):58-63.
    [206]李博.上海高度城市化地区土地利用变化对雨水径流影[D].上海:华东师范大学,2008.
    [207]李海军.北京城区水文地质条件分区及老城区雨洪利用示范工程研究[D].长春:吉林大学,2005.
    [208]李家科,李亚娇,李怀恩.城市地表径流污染负荷计算方法研究[J].水资源与水工程学报,2010,21(2):5-13.
    [209]李靖.生态城市给水排水系统综合规划体系研究[D],上海:同济大学,2006.
    [210]李俊奇,曾新宇,何建平.激励机制在环境管理中的运用[J].北京建筑工程学院学报,2005,21(2):17-20.
    [211]李俊奇,曾新宇,鹿佳明.城市雨水排放费征收标准的量化方法探讨[J].中国给水排水,2008,24(10):1-6.
    [212]李俊奇,车武,孟光辉,等.城市雨水利用方案设计与技术经济分析[J].给水排水,2001,27(12):25-28.
    [213]李俊奇,车伍,池莲,等.住区低势绿地设计的关键参数及其影响因素分析[J].给水排水,2004,30(9):41-46.
    [214]李俊奇,邝诺,刘洋,等.北京城市雨水利用政策剖析与启示[J].中国给水排水,2008,24(12):75-78.
    [215]李俊奇,向璐璐,毛坤,等.雨水花园蓄渗处置屋面径流案例分析[J].中国给水排水,2010,6(10):1-133.
    [216]李俊奇,车武.德国城市雨水利用技术考察分析[J].城市环境与城市生态,2002,15(1):47-49.
    [217]李立青,尹澄清,何庆慈,等.城市降水径流的污染来源与排放特征研究进展[J].水科学进展,2006,17(2):288-294.
    [218]李立青,尹澄清,何庆慈,等.武汉市城区降雨径流污染负荷对受纳水体的贡献[J].中国环境科学,2007,27(3):312-316.
    [219]李林林.滨海区域生态环境建设及雨水资源利用研究[D].大连:大连理工大学,2006.
    [220]李帅杰,程晓陶.福建福州市屋顶绿化及雨水收集对雨洪的调节作用[J].中国防汛抗旱,2012,22(2):16-21.
    [221]李兆富,杨桂山,李恒鹏.西苕溪流域不同土地利用类型营养盐输出系数估算[J].水土保持学报,2007,21(1):1-5.
    [222]练雄.上海滴水湖集水区土地利用动态及其对径流污染的影响[D].上海:华东师范大学,2011.
    [223]林莉峰,李田,李贺.上海市城区非渗透性地面径流的污染特性研究[J].环境科学,2007,28(7):1430-1434.
    [224]刘海龙,李迪华,韩西丽.生态基础设施概念及其研究进展综述[J].城市规划,2005,29(9):70-75.
    [225]刘俊,郭亮辉,张建涛,等.基于SWMM模拟上海市区排水及地面淹水过程[J],中国给水排水,2006(21):156-168.
    [226]刘兰岚.上海市中心城区土地利用变化对径流影响及其水环境效应研究[D].上海:华东师范大学,2007.
    [227]刘森,闫红伟.论地理信息系统GIS在景观规划设计场地分析中的价值及应用[J].沈阳农业大学学报,2006,8(2):28-282.
    [228]刘小勇,吴特普.雨水资源集蓄利用研究综述[J].自然资源学报,2000,15(2):
    189-193.[5]丁悦元.德国的雨水利用技术[J].北京水利,2002(6):38-40.
    [229]刘延恺.东京墨田区的雨水利用及其补助金制度[J].北京水利,2005(6):44-46.
    [230]刘燕,尹澄清,车伍.植草沟在城市面源污染控制系统的应用[J].环境工程学报, 2006,2(3):334-339.
    [231]刘应宗,李明,金宇澄.城市排水规划中雨水资源化问题探讨[J].中国给水排水,2003,19(12):97-98.
    [232]刘勇华,高超,王登峰,汪磊.城市降雨径流污染初始冲刷效应对BMPs选择的启示[J].水资源保护,2009,25(6):29-32.
    [233]鲁航线,张开军,陈微静.城市防洪、排涝及排水三种设计标准的关系初探[J].城市道桥与防洪,2007(11):64-66.
    [234]吕永鹏.平原河网地区城市集水区非点源污染过程模拟与系统调控管理研究[D].上海:华东师范大学,2011.
    [235]罗红梅,车伍,李俊奇,等.雨水花园在雨洪控制与利用中的应用[J].中国给水排水,2008,24(6):48-52.
    [236]马震.我国城市雨洪控制利用规划研究[D].北京:北京建筑工程学院,2010.
    [237]莫琳,俞孔坚.构建城市绿色海绵——生态雨洪调蓄系统规划研究[J].城市发展研究,2012,19(5):4-8.
    [238]聂发辉.上海城市景观绿地削减地表径流及其污染负荷的可行性研究[D].上海:同济大学,2008.
    [239]欧阳丽,王晓明.城市新区雨洪控制规划方法研究[J].城市道桥与防洪,2009(6):175-179.
    [240]潘国庆,车伍,李俊奇,等.城镇雨水收集利用储存池优化规模的探讨[J].给水排水.2008,34(12):42-47.
    [241]潘国庆,车伍,李俊奇,等.中国城市径流污染控制量及其设计降雨量[J].中国给水排水,2008,24(22):25-29.
    [242]潘国庆.不同排水体制的污染负荷及控制措施研究[D].北京:北京建筑工程学院,2007.
    [243]祁继英.城市非点源污染负荷定量化研究[D].南京:河海大学,2005.
    [244]任霖光,潘文斌,蔡芫镔.基于非点源污染负荷模型PLOAD的最佳管理措施模拟研究[J].福州大学学报(自然科学版),2005,33(6):825-829.
    [245]任树梅,周纪明.利用下凹式绿地增加雨水蓄渗效果的分析与计算[J].中国农业大学学报,2000,5(2):50-54.
    [246]任玉芬,王效科,韩冰,等.城市不同下垫面的降雨径流污染[J].生态学报,25(12):3225-3230.
    [247]上海气象志编纂委员会.上海气象志[M].上海:上海社会科学院出版社,1997.
    [248]上海土壤普查办公室.上海土壤[M].上海:上海科学技术出版社,1992.
    [249]申丽勤,车伍,李海燕,等.我国城市道路雨水径流污染状况及控制措施[J].中国给水排水,2009,25(4):23-28.
    [250]师前进,何强,柴宏祥.绿色建筑住宅小区节水与水资源利用设计探讨[J.].给水排水,2008,34(1):77-79.
    [251]史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响[J].生态学报,2001,21(7):1041-1049.
    [252]宋力,王宏,余焕.GIS在国外环境及景观规划中的应用[J].中国园林,2002,(06):56-59.
    [253]宋秋霞,徐勇鹏,鄂勇.透水沥青路面对路面径流污染的净化功效[J].东北农业大学学报,2009,40(11):56-59.
    [254]宋云,俞孔坚.构建城市雨洪管理系统的景观规划途径——以威海市为例[J].城市问题,2007(8):64-69
    [255]孙建伟.邯郸市雨水利用及入渗补给地下水的研究[D].邯郸:河北工程大学,2007.
    [256]孙三祥,王彦斌.SCS模型在牛川流域的应用研究[J].水资源与水工程学报,1993,4(1):26-31.
    [257]孙书明,单保庆,彭万疆.草坪系统对城市降雨初期径流氮污染控制作用[J].生态学杂志,2009,28(1):23-26.
    [258]孙艳伟.城市化和低影响发展的生态水文效应研究[D].杨凌:西北农林科技大学,2011.
    [259]万里平,孟英峰,赵晓东.泡沫流体稳定性机理研究[J].新疆石油学院学报,2003,15(1):70-73.
    [260]汪冬冬,杨凯,车越,等.河段尺度的上海苏州河河岸带综合评价[J].生态学报,2010,30(13):3501-3510.
    [261]汪海英,周敏杰.临港新城——滴水湖富营养化现状评价及调控对策[J].上海水务,2006,22(4):24-26.
    [262]汪海英,周敏杰.临港新城滴水湖富营养现状评价及调控对策[J].上海水务,2006,22(4):273-277.
    [263]汪慧贞,李宪法.北京城区雨水径流的污染及控制[J].城市环境与城市生态,2002,15(2):16-19.
    [264]王宝庆,马奇涛.非点源污染负荷预测研究现状及发展趋势[J].西安建筑科技大学 学报(自然科学版),2010,42(5):717-722.
    [265]王宝山.城市雨水径流污染物输移规律研究[D].西安:西安建筑科技大学,2011.
    [266]王和意,刘敏,刘巧梅,等.城市暴雨径流初始冲刷效应和径流污染管理[J].水科学进展,2006,17(2):181-185.
    [267]王和意.上海城市降雨径流污染过程及管理措施研究[D].上海:华东师范大学,2005.
    [268]王磊,周玉文.国内外城市排水设计规范比较研究[J].中国给水排水,2012,28(8):23-27.
    [269]王玲.不同坡度下城市下垫面景观结构对降水蓄渗影响实验研究[D].长春:东北师范大学,2007.
    [270]王敏,吴建强,黄沈发.不同坡度缓冲带径流污染净化效果及其最佳宽度[J].生态学报,2008,28(10):4951-4956.
    [271]王全,李晓辉,徐建刚.基于GIS城市景观分析与规划[J].中国园林,2004(11):25-27.
    [272]王少东.济南市雨水利用对策研究[D].济南:山东大学,2007.
    [273]王淑芬,杨乐,白伟岚.技术与艺术的完美统——雨水花园建造探析[J].中国园林,2009(6):54-57.
    [274]王思思.国外城市雨水利用的进展[J].城市问题,2009,171(10):79-84.
    [275]王雯雯,赵智杰,秦华鹏.基于SWMM的低冲击开发模式水文效应模拟评估[J].北京大学学报(自然科学版),2012,48(2):303-309.
    [276]王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版),2002,23(1):91-101.
    [277]王延洋,李晓波,吴波,等.上海滴水湖浮游动物研究初报[J].上海师范大学学报(自然科学版),2008,37(2):167-172.
    [278]王延洋.滴水湖浮游动物群落结构及水质生态学评价[D].上海:上海师范大学,2008.
    [279]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:科学出版社,2007.
    [280]吴东敏,高巍,邓卓智.奥林匹克公园中心区雨洪利用成套技术集成[J].水利水电技术,2009,40(12):98-100.
    [281]吴建强,黄沈发,吴健,等.缓冲带径流污染物净化效果研究及其与草皮生物量的相关性[J].湖泊科学,2008,20(6):761-765.
    [282]吴建强.不同坡度缓冲带滞缓径流及污染物去除定量化[J].水科学进展,2011, 22(1):112-117.
    [283]吴鹏,陈少华,颜昌宙,等.基于日水量平衡设计城市小区雨水利用调蓄容量[J].中国给水排水,2008,24(16):43-47.
    [284]夏军,黄国和,庞进武,等.可持续水资源管理——理论、方法、应用[M].北京:化学工业出版社,2005.
    [285]向璐璐,李俊奇,邝诺,等.雨水花园设计方法探析[J].给水排水,2008(6):47-51.
    [286]向璐璐.雨水生物滞留技术设计方法与应用研究[D].北京:北京建筑工程学院2009.
    [287]肖海文,翟俊,邓荣森,等.道路雨水渗滤设施——浅草沟的设计[J].给水排水,2007,33(3):33-36.
    [288]辛向阳,周灿.优化城市水资源配置建设小区雨水利用系统[J].水利发展研究,2003(12):45-49.
    [289]徐延达,傅伯杰,吕一河.基于模型的景观格局与生态过程研究[J].生态学报,2010,30(1):212-220.
    [290]薛利红,杨林章.面源污染物输出系数模型的研究进展[J].生态学杂志,2009,28(4):755-761.
    [291]阳小成,康自华.成都活水公园人工湿地三种植物净化效能的比较研究[J].中国科技论文在线,2009,10(19).
    [292]杨俊,李建牢,赵俊侠.国内外雨水资源利用研究综述[J].水土保持学报,2000,14(1):88-92.
    [293]杨葳,粱伊任.基于GIS的园林规划设计方法的革新[J].中国园林,2003(11):30-32.
    [294]姚凯.近代上海城市规划管理思想的形成及其影响[J].城市规划,2007(02):77-83.
    [295]姚凯.上海城市总体规划的发展及其演化进程[J].城市规划学刊,2007,01:101-106.
    [296]姚凯.上海控制性编制单元规划的探索和实践——适应特大城市规划管理需要的一种新途径[J].城市规划,2007(08):52-59.
    [297]叶水根,刘红,孟光辉,等.设计暴雨条件下下凹式绿地的雨水蓄渗效果[J].中国农业大学学报,2001,6(6):53-58.
    [298]余爱华,石迪,赵尘.公路沥青路面的水质特性[J].南京林业大学学报(自然科学版),2008,32(5):149-152.
    [299]余瑞彰,李秀艳,孟飞琴,等.模拟装置研究绿地系统在暴雨径流污染控制中的作 用[J].安全与环境学报,2008,8(6):34-38.
    [300]俞孔坚,乔青,李迪华,等.基于景观安全格局分析的生态用地研究——以北京市东三乡为例[J].应用生态学报,2009,20(8):1932-1939.
    [301]袁作新.流域水文模型[M].北京:水利电力出版社,1990.
    [302]曾立雄,黄志霖,肖文发,等.河岸植被缓冲带的功能及其设计与管理[J].林业科学,2010,46(2):128-133.
    [303]曾艳.生态住宅水资源的再利用研究[D].成都:西南交通大学,2007.
    [304]张大弟,周建平,陈佩青.上海市郊4种地表径流深的的测算[J].上海环境科学,1997,16(9):1-3.
    [305]张大伟,赵冬泉,陈吉宁,等.城市暴雨径流控制技术综述与应用探讨[J].给水排水,2009,35(S1):25-29.
    [306]张华,尹占娥,殷杰,等.基于GIS的上海浦东暴雨内涝灾害脆弱性研究[J].上海师范大学学报,2011,40(4):427-434
    [307]张康年.西安市雨水综合利用技术与雨水资源化研究[D].西安:西安建筑科技大学,2008.
    [308]张配亮.天津市区暴雨径流模拟模型的研究[D].天津:天津大学,2007.
    [309]张倩,苏保林,罗运祥,等.截流式合流制降雨径流污染模拟研究[J].北京师范大学学报(自然科学版),2012,48(5):537-541.
    [310]张庆国.降水入渗量分析方法研究[D].济南:山东大学,2005.
    [311]张群,崔心红,夏檑,等.上海临港新城近60a筑堤区域植被与土壤特征[J].浙江林学院学报,2008,25(6):698-704.
    [312]张善发,李田,高廷耀.上海市地表径流污染负荷研究[J].中国给水排水,2006,22(21):57-62.
    [313]张伟,车伍,王建龙,等.利用绿色基础设施控制城市雨水径流[J].中国给水排水,2011,27(4):22-27.
    [314]张炜,车伍,李俊奇,等.图解法用于雨水渗透下凹式绿地的设计[J].中国给水排水,2008,24(20):35-39.
    [315]张新颖.浅草沟系统对城市暴雨径流的控制试验研究[D].重庆:重庆大学,2008.
    [316]张雪花,郭怀成SD-MOP整合模型在秦皇岛市生态环境规划中的应用研究[J].环境科学学报,2002,22(1):94-97.
    [317]张艳红.城市雨水利用的趋势、现状和措施探讨[J].南水北调与水利科技,2005,3(3):27-29.
    [318]赵冬泉,佟庆远,王浩正,等SWMM模型在城市雨水排除系统分析中的应用[J].给水排水,2009,35(5):198-201.
    [319]赵福增.我国绿色建筑节水及水资源利用技术措施和指标研究[D].重庆:重庆大学,2007.
    [320]赵警卫,胡彬.河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应[J].水土保持通报,2012,32(4):51-55.
    [321]赵然杭.城市水资源利用的关键问题研究[D].大连:大连理工大学,2009.
    [322]赵现勇,程方,张杏娟,等.不同结构透水路面对雨水径流污染物的削减作用[J].天津城市建设学院学报,2012,18(4):37-41.
    [323]郑涛,穆环珍,黄衍初,等.非点源污染控制研究进展[J].环境保护,2005(2):31-34.
    [324]郑兴,周孝德,计冰听.德国的雨水管理及其技术措施[J].中国给水排水,2005,21(2):104-106.
    [325]周晨,周江,龙岳林.城市绿地中隐形蓄水系统模式:湖南农业大学校园“红轴”景观设计[J].中国园林,2009,25(11):24-30.
    [326]周丰.下凹式绿地对城市雨水径流和汇流的影响[J].东北水利水电,2007(10):10-11.
    [327]周江.城市雨水资源的收集与利用研究[D].长沙:湖南农业大学,2008.
    [328]周晓兵.城市景观规划设计中的雨水控制利用研究[D].北京:北京建筑工程学院,2008.
    [329]宗净.城市的蓄水囊—滞留池和储水池在美国园林设计中的应用[J].中国园林,2005(3):51-55.
    [330]祖国庆.临港新城滨海盐碱地绿化给排水设计[J].给水排水,2009,35(11):84-87.
    [331]左俊杰.平原河网地区河岸植被缓冲带定量规划研究——以滴水湖汇水区为例[D].上海:华东师范大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700