用户名: 密码: 验证码:
欧亚大陆及其边缘海地区瑞利波群速度结构及方位各向异性层析成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧亚大陆及其边缘海地区是由30多块尺度不同、形成时代和性质各异的板块或地块拼合而成。欧亚大陆及其边缘海的板块或地块可以分为以下六类:(1)前寒武纪巨型克拉通地块及地盾;(2)前寒武纪小型克拉通地块及板块;(3)显生宙造山带及汇聚地块;(4)陆陆碰撞型地块及造山带;(5)新生代边缘海海盆;(6)大陆裂谷盆地及增生地块。
     地壳及上地幔各向异性的研究在地球动力学领域有着广泛的应用和重要的科学意义,其研究有助于许多地质和地球物理基本问题的解释。本文利用Rayleigh波层析成像研究欧亚大陆及其边缘海地区地壳上地幔群速度结构及方位各向异性。根据欧亚大陆及西太平洋地区102个数字化台站记录的近万个地震事件的长周期垂直向面波资料,利用时频分析方法测量并经过筛选后共得到11213条质量较高的基阶瑞雷面波群速度频散资料。纯路径频散反演中同时计算方位各向异性,将研究区域划分成1o×1o,反演获得欧亚大陆及其边缘海地区(10oE~150oE, 10oS~80oN)8~200s共28个周期的瑞利波群速度结构及各向异性空间分布图像。
     Rayleigh波高分辨率成像表明:同一类型板块或地块的岩石圈和软流圈的速度结构十分相似,呈现出其独有的速度分布特征。不同类型板块或地块的速度结构有重大差异。30~60s周期,以青藏高原为中心呈极低速分布。60~200s周期显示,速度差异幅度较大,在东亚东部及西太平洋边缘海,自北向南显示出一条宽2500~4000km,长约8000km的巨型低速异常带。相对海洋来说,欧亚大陆各向异性强度较弱且快波方向较复杂。印度板块、西伯利亚板块与中国大陆间的碰撞引起强大的水平压力和一定的下插作用,是造成青藏高原隆起、地壳增厚的最根本的因素,同时也促成壳幔中橄榄石的定向排列和物质运移,因而出现明显的各向异性现象。中国大陆西部的各向异性强度明显大于大陆东部。在几处波速各向异性显著的区域,快波方向与地壳最大主压应力方向和现代地壳运动方向一致。
The continent of Eurasia and its marginal seas are assembled by more than thirty plates and blocks with different scales、characteristics、and different ages.These plates and blocks in the Eurasia and its marginal seas can be divided intosix types: (1) large Precambrian cratonic plates or shields; (2) small Precambriancratonic plates or blocks; (3) Phanerozoic orogens; (4) continent-continent colli-sional orogens; (5) Neozoic marginal sea basins; (6) continental rift basins.
     Studies of seismic anisotropy in the crust and mantle are of wide applicat-ion and scientific implication in geodynamics, which could interpret much geol-ogical and geophysical problem. In the study, Rayleigh wave tomography was used to produce group velocity and azimuthal anisotropy of crust and upper mantle in the Eurasia and its marginal seas. Using a FTAN method and vertical component records of Rayleigh waves from 102 seismograph stations and nearly ten thousands earthquakes in the Eurasia and western Pacific marginal seas, wemeasured fundamental mode Rayleigh wave group velocity dispersion curves ina period range from 8s to 200s for 11213 paths. The study area was divided into a grid of 1o×1o, we take azimuthal anisotropy into consideration when we performed pure-path dispersion by inversion method. Dispersion data were then used to invert for 28 group velocity and azimuthal anisotropy spatial maps from 8s to 200s in the Eurasia and its marginal seas(10oE~150oE,10oS~80oN).
     High-resolution surface wave tomographic images indicate that: the velocitycharacteristics of the lithosphere and asthenosphere are quite similar for the sametype of plates or blocks. However, the velocity characteristics are different for different types of plates or blocks. For a period range from 30s to 60s, very low velocity distribution in the western region-centering around Qinghai-TibetPlateau; for a period range from 60s to 200s indicates: a giant low velocity anomaly belt 2500km to 4000km wide and 8000km long are shown in the easternpart of the Eastearn Asia and Western Pacific marginal seas. Compared with the sea, weak anisotropy and relatively complex direction of maximum velocityis observed in the Eurasia. The collision of Indian plate, Seberia plate and Ch-inamainland produced strong horizontal compression and a certain subduction,which is the most basic factor making the uplift of Tibetan plateau, tremendous thickness of crust in the latter region, as well as the formation of orientationarrangement of the olivine and substance migration in crust-mantle, hence app-eared obvious anisotropy. Anisotropic strength in the western part of the conti-nental China is greater obviously than in the eastern part of the continental China. In several regions with significant velocity anisotropy the direction of fastRayleigh velocity is consistent with the orientation of maximum crustal compres-sive stress, and also with the direction of present-day crust movement.
引文
[1]朱介寿,曹家敏,蔡学林,等.欧亚大陆及西太平洋边缘海岩石圈结构.地球科学进展,2004, 19(3):387-392.
    [2]冯锐,朱介寿,丁玉,等.利用地震面波研究中国地壳结构.地震学报,1981 ,3(4):335-50.
    [3]徐果明,姚华建,朱良保,沈玉松,等.中国西部及其邻域地壳上地幔横波速度结构.地球物理学报, 2007 ,50(1):193-208.
    [4]朱介寿,曹家敏,蔡学林,等.东亚及西太平洋边缘海高分辨率面波层析成像.地球物理学报, 2002, 45(5):646-664.
    [5]宋仲和,陈国英,安昌强,等.中国东部及其相邻海域S波三维速度结构.地球物理学报,1992,35(3): 316-329.
    [6]顾勤平,朱介寿,伍练,等.欧亚大陆及西太平洋边缘海瑞利面波层析成像研究. CT理论与应用研究, 2007 ,16(2):36-41.
    [11] Huang Z, Luo Y, Peng Y J, et al. Azimuthal anisotropy of Rayleigh waves in East Asia. Geophys Res Let, 2004, 31,L15617,doi:10.1029/2004G020399.
    [12] Raitt R. W. Seismic refraction studies of the Mendocino fracture zone. Rep. MPL– U– 23/63, Mar. Phys. Lab. Scripps Ins. Ocean. 1963, U.C.S.D.
    [13] Hess H. Seismic anisotropy of the upper most mantle under oceans. Nature,1964,203(9):629-631.
    [14] Dziewonski A, Bloch S, Landisman M. A technique for the analysis of transient signals. Bull Seismol Soc Am,1969,59(1):427-444.
    [15] Smith M L, Dahlen F A. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res, 1973 ,78,3321-3333.
    [16] Montagner, J.-P., and Nataf, H.-C. A simple method for inverting the azimuthal anisotropy of surface waves, J. geophys. Res., 1986 ,91,511-520.
    [17] Lees J. M,Crosson R S. Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res.,1989, 94: 5716-5728.
    [18] Liang C, Song X D, Huang J L. Tomographic inversion of Pn travel times in china.J.Geophys. Res., 2004 , 109(B11304),doi:10.1029/2003JB002789.
    [19] Paige C C, Saunders M. A. LSQR: An algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Software , 1982,8(1):43-71.
    [20] Paige C C, Saunders M. A. LSQR: Sparse linear equations and least squares problems. ACM Trans. Math. Software , 1982, 8(2),195-209.
    [21] Hearn,T.M.,and J.F. Ni. Pn velocities beneath continental collision zones:The Turkish-Iranian Plateau,Geophys. J. Int.,1994,117,273-283.
    [22] Debayle E,Kennett B,Priestley K. Global azimuthal seismic anisotropy and the uniqueplate-motion deformation of Australia. Nature,2005,433,doi:10.1038/nature03247.
    [23] Priestley K,Debayle E,Mc Kenzie D,et al. Upper mantle structure of eastern Asiafrommultimode surface waveform tomography[J]. J Geophys Res,2006,111:B10304,doi:10.1029/2005JB004082.
    [24]马杏垣主编.中国岩石圈动力学地图集[M].北京:中国地图出版社,68,1989.
    [25]朱介寿,曹家敏,严忠琼,等.中国及邻区瑞利面波高分辨率层析成像及其地球动力学意义.中国地质, 2007 ,34(5):759-767.
    [26]赵小艳,苏有锦,付红,等.欧亚地震带现代构造应力场及其分区特征.地震学报,2007,30(2):146-151.
    [27]谢富仁,崔效锋,赵建涛,等.全球应力场与构造分析.地学前缘,2003,10,增刊.
    [28]罗艳,黄忠贤,彭艳菊,等.中国大陆及邻区SKS波分裂研究.地球物理学报,47(5):812-821.
    [29]许忠淮.东亚地区现今构造应力图的编制.地震学报,2001,23(5):492-501.
    [30] Montagner J P,Griot-Pommera D A. How to relate body wave and surface wave anisotropy? J Geophys Res,2000,105(B8):19015-1902.
    [31] Woodhouse J. H. and Dziewonski A. M. Mapping the upper mantle: three-dimensional modeling of the earth structure by inversion of the seismic waveforms. J .Geophys.Res.,1984 89: 5953-5986.
    [32]马宗晋,张培震,等.从GPS水平矢量场对中国及全球地壳运动的新认识.地球科学进展,2003,18(1):4-11.
    [33]朱介寿.欧亚大陆及边缘海岩石圈的结构特性.地学前缘,2007,14(3):1-20.
    [34]刘希强,周蕙兰.地震各向异性研究进展.地震研究, 1998,21(4):185-195.
    [35]苏伟,王椿镛,黄忠贤.青藏高原及邻区的Rayleigh面波的方位各向异性.中国科学[D]:38(6):674-682.
    [36]宋仲和,安昌强,陈国英,等.中国西部三维速度结构及其各向异性.地球物理学报,34(6):694-707,1991.
    [37]朱介寿,地震学中的计算方法,地震出版社,北京,1988.
    [38]杨文采.地球物理反演的理论与方法.北京:地质出版社,1996.
    [39]裴顺平,许忠淮,汪素云,等.中国及邻区Pn波速度结构成因探讨.地震学报,26(1):1-10,2004.
    [40]黄立人,张培震.中国大陆的GPS速度场、地块运动与应变场.工程地球物理学报,1(3):204-212,2004.
    [41]周兵.用地震面波研究上地幔各向异性.地震研究,14(1):401-408,1991.
    [42] Baackus, G. E., Possible forms of seismic anisotropy of the uppermost mantle underoceans,J. Geophys. Res,1965,70,3429-3439.
    [43]常利军,王椿镛,丁志峰,等.青藏高原东北缘上地幔各向异性研究.地球物理学报,2008,51(2):431-438.
    [44]王椿镛,常利军,吕智勇,等.青藏高原东部上地幔各各向异性及相关的壳幔耦合型式.中国科学D辑,2007,37(4):495-503.
    [45] Jeannot Trampert,John H. W. Global anisotropic phase velocity maps for fundamentalmode surface waves between 40 and 150s.Geophys.J.Int.2003,154:154-165.
    [46] Erik W. F.,Jeroen T.,Goran E. Effects of slight anisotropy on surface waves. Geophys.J.Int,1998,132:654-666.
    [47] K.Visser,J.Trampert,B.L.N.Kennett. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves.Geophys.J.Int,2008,172:1016-1032.
    [48]袁学诚主编.中国地球物理图集.北京:地质出版社,1996.
    [49] G.Nolet,edit,Seismic Tomography[M].Reidel,Dordrecht,1987.
    [50] Zhang Y.-S.,Lay T. Global surface wave phase velocity variations.J.Geophys.Res.,1996,101:8415-8436.
    [51]徐果明,李光品,王善恩,等.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造.地球物理学报,2000,43(3):366-375.
    [52] Zhang Y.-S.,Tanimoto T. High-resolution global upper mantle structure and plate tectonics. J.Geophys.Res.,1993,98:9793-9823.
    [53] Nolet , G.,Dahlen, F.A.,and Montelli,R.. Traveltimes and amplitudes of seismic waves:a re-assessment [A], in A.Levander , G. Nolet (eds.), SeismicEarth: Analysis of broadband seismograms, AGU Monograph Series [C], 2005,37-48.
    [54] Toksoz M. N., Anderson D.L. Phase velocities of long-period surface waves and structure of the upper mantle, 1, Great circle Love and Rayleigh wave data. J. Geophys.Res.,1966,71: 1649-1658.
    [55] Kovach R. L. Seismic surface waves and crustal and upper mantle structure.Reviews of Geophysics and Space Physics. 1978, 16: 1-13.
    [56] Feng, C. C.,Teng, T. L. Three-dimensional crust and upper mantle structureof the Eurasian Continent. J. Geophys. Res., 1983, 88: 2261-2273.
    [57] Nataf H.-C., Nakanishi I., Anderson D.L. Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy,3, inversion.J. Geophys. Res., 1986, 91:7261- 7307.
    [58]周兵,朱介寿,秦建业.青藏高原及邻近区域S波三维速度结构.地球物理学报,1991,34(4): 426-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700