用户名: 密码: 验证码:
塔里木盆地早海西期风化壳岩溶洞穴层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层序地层学与古岩溶学的交叉学科渗透研究是当前古岩溶研究中的前缘方向,其主要目的是通过建立海(水)平面周期性升降变化下碳酸盐岩内部发生古岩溶与盆地内沉积层序的内在联系,探索层序界面相关古岩溶(包括大型风化壳、侵蚀型层序界面和短期暴露地表的各种层序界面古岩溶)的发育机制、发育分布规律,并建立相关研究方法及预测技术。目前该研究领域刚刚起步,前期研究成果非常少,尤其在地下古岩溶洞穴层研究方面。由于层序界面相关古岩溶是碳酸盐岩大型隐蔽油气藏储层(如塔河油田、普光气田)的主要形成机制,因此,开展该方向研究,对于碳酸盐岩油气藏勘探具有重要理论意义及应用价值。本文在总结前期研究成果基础上,将层序地层学理论引入岩溶洞穴层研究,建立碳酸盐岩陆块内部洞穴层与盆地内同时期形成的沉积层序内部等时层的关系,以等时层作为约束条件,对塔北、塔中、和田地区的洞穴层进行盆地范围内的跨地区的对比研究,为间歇性海平面上升过程中形成的多期次风化壳岩溶洞穴层研究提供对比的理论依据及方法;将洞穴层和洞穴内多旋回“坍塌角砾-暗河沉积层”形成的水动力条件及过程与盆地内海平面升降变化曲线联系在一起,分析海平面升降变化所引起的不同地质条件下的岩溶作用方式与特征,揭示地下深埋洞穴层的成因机制。通过古岩溶洞穴层预测的关键技术攻关研究,建立较为完整的古岩溶洞穴层预测方法技术,并对塔中、和田古隆起洞穴层进行预测,为大型隐蔽油气藏勘探提供决策依据。取得的主要成果如下:
     1)通过和田、塔中、塔北古隆起大量古地貌研究实践,形成完善的古地貌恢复技术,并将其应用于塔中、和田古隆起早海西期洞穴层对比和预测,较早地得出塔里木盆地在早海西岩溶期发育了下(C-Ⅰ)、中(C-Ⅱ-1,C-Ⅱ-2)、上(C-Ⅲ)3套大型洞穴层的结论;
     2)将层序地层学理论引入古岩溶洞穴层研究,较为全面地阐述了洞穴层形成演化与海平面升降变化关系,建立了多期次洞穴层与盆地沉积层序的内在联系,提出了洞穴等时层的概念,以及利用等时层进行跨地区对比的方法与原理;
     3)利用洞穴内沉积物的沉积结构、影响洞穴层形成的内在、外在地质因素方面的证据,论证了3套洞穴层的形成序次。明确指出3套洞穴层主要是在晚泥盆世-早石炭世海平面间歇性上升过程中形成的,每个洞穴层发育期与盆地内沉积层序的高水位海平面稳定期对应,洞穴层序次为下老上新;
     4)提出了利用洞穴等时层为古洞穴层间接定年方法技术,推断出底部C-Ⅰ洞穴层主要形成于早石炭世东河砂岩沉积期,C-Ⅱ洞穴层形成于早石炭世生屑灰岩段沉积期,C-Ⅲ洞穴层形成于早石炭世下泥岩段上部沉积期。使用McArthur(2002)~(87)Sr/~(86)Sr定年曲线,通过生屑灰岩等时层定年,C-Ⅱ洞穴层的形成时间大约为358.2ma;
     5)提出了叠积层序、叠积洞穴概念,建立了海(水)平面快速上升过程中陆块内部潜水面上升迟后带快速向上侵蚀岩溶的成因地质模式,得出巨厚洞穴内的多旋回“坍塌角砾-暗河沉积”组合是海平面快速上升后斜坡内陆区潜流面相对于潜水面迟后上升,在老的洞穴带基础上潜流持续向上侵蚀岩溶的结果;
     6)通过塔北、塔中、和田这3大古隆起早海西期古岩溶地质条件综合分析及对比研究,得出古隆起形成演化构造背景是控制洞穴层发育分布的主要因素,认为塔北强烈挤压褶皱型整体隆升使得裂缝均匀发育,暴露面积、入出水口间高差、汇水量大,为盆地边缘碳酸盐岩陆块台地式岩溶,可发育很多个纵向叠置的多重大型洞穴系统;塔中地区因为局部发育冲断褶皱而整体隆升幅度小,使得仅局部暴露地表,呈盆地内岛屿式古岩溶,因为岛小而导致的汇水量少是大型洞穴系统不发育的主要因素,局部因裂缝极为发育可形成小型洞穴系统;和田古隆起主要为斜坡背景中通过两翼分期沉降而形成的古隆起,发育盆地边缘斜坡阶地式古岩溶,宽缓构造背景使得暴露区面积、汇水量大,但入出水口间高差小、裂缝欠发育,导致3个洞穴层分地发育而不能纵向叠置;
     7)利用几何学原理,通过建立一个简化的裂隙空间替代模型,经过公式推导,获得断层裂隙空间的一种定量计算方法:
     8)结合风化壳岩溶洞穴在不同地质条件下的发育分布规律,将“古地貌恢复技术、古裂缝描述技术、洞穴层跨地区对比技术、“3位一体”洞穴层定位技术整合成一套较为完整的风化壳岩溶洞穴层综合分析预测技术;
     9)通过和田古隆起油气成藏条件综合分析,得出在和田河气田以南的和田古隆起北部,4500-7500m深度范围内,发育一个面积达4800 km~2的C-Ⅰ洞穴层发育带,可能是很好的碳酸盐岩隐蔽圈闭中的油气储层。
The interdisciplinary study between Sequence Stratigraphy and Paleokarst is the frontier trend presently. The main objects for this research are to explore the developmental mechanism, distribution pattern of some paleokarst related with sequence boundary (including huge weathering crust, erosion-type sequences boundary and various sequences boundary paleokarst exposed in short-term) through the establishment of the interrelationship between paleokarst occurred in inner carbonate land and depositional sequences in basin under the cycles of sea level change, then to establish method and techniques for predicting cave systems. It is obvious that this study has prominent theory significant and application value for hydrocarbon exploration in carbonate rocks because the sequence boundary associated paleokarst are the main mechanism of carbonate reservoir of huge subtle traps (e.g. Tahe oilfield, Puguang gasfield). At present, however, the study in this field is just at its initial stage, thus the previous results are very few. In this paper, based on the summarization of previous results, it introduced sequence stratigraphy theory into the study of paleokarst cave horizons in order to establish the interrelation of isochronous beds between the cave horizons occurred in inner carbonate land and the depositional sequences which are corresponding to mentioned cave horizons in time in this basin, then taking isochronous beds as a constraint, conducts a correlation study on cave horizons developed on Tabei, Tazhong and Hetian uplifts across different carbonate lands in this basin to provide theory evidences and method for the study of multiple weathering crust karst cave horizons during the time of intermissive rising of sea level; then linking the hydrodynamic conditions and process of cave horizons and inner cave multicyclic combination of "collapsed breccias interbedded with underflow sediments" with the eustatic sea level change curve in this basin to analyze the karstification ways and characteristics under different geological conditions caused by the eustatic sea level change and then to reveal the origin mechanism of the cave horizons deeply buried. By the research of key methods for predicating the underground cave horizons, a series of methods had been obtained and applied into the predication of cave horizons in Hetian and Tazhong paleouplifts in order to provide the foundations for looking for subtle oil and gas pools in these areas. Main results obtained are as following:
     1) Has formed the perfect technique for restoring the paleogeomorphy through the integrate research and practices. This technique was applied in the prediction of paleokarst on Hetian, Tazhong and Tabei uplifts. Has concluded early that there are three huge cave horizons (the lower one, C-I ; the middle one, C- II; the upper one C-III) were developed during Early Hercynian;
     2) Has introduced sequence stratigraphy into the study of paleokarst cave horizons, discussed comprehensively the relationship between the development evolution of cave horizons and the eustatic sea level change, and established the interrelationship between multiple cave horizons and depositional sequences in this basin, and introduced the concept of isochronous bed of cave, the method and principle of the correlation of cave horizons in different region by using isochronous beds;
     3) Has discussed the forming order of three cave horizons by the evidences of depositional configurations in cave deposits, the intrinsic and extrinsic factors of paleokarst. It concluded that they are developed during the time of intermissive rising of sea level in Early Carboniferous, ach one corresponding to the highstands of sea level change cycles, in an order of the lower the older;
     4) Has advanced an indirect method for dating the cave horizons through their isochronous beds. Has deduced that the cave horizon C-I , C- II and C-III were individually formed during the deposition of Donghe sandstones, Bioclastic limestones and upper part of Lower mudstones of Lower Carboniferous. Using the Sr isotopic fitting curve drawn up by McArthur (2002) for the dating, the age of the bioclastic limestones (the isochronous bed of C- II) is 358.2 ma;
     5) Has introduced the concepts of aggradational sequences and aggradational caves, and established the hydrodynamic and geological model of the hysteresis rising effect of underflow surface on the inland caused by abrupt rising of sea level, and pointed out that the inner huge cave multicyclic combination of "collapsed breccias interbedded with underflow sediments" is the effect of the rising of underflow surface delayed to the rising of water table in the inland of basin marginal slope, which is caused by abrupt rising of sea level, and the result of upward persistent erosion of underflow based on the older cave zones;
     6) Has concluded that the different development and occurrence of cave horizons on Tabei, Tazhong and Hetian paleo-uplifts were mainly controlled by the differences of their tectonic features and evolutional history. In Early Hercynian, the whole Tabei area was folded and uplifted violently, which led to a basin marginal paleokarst terrane with a large exposure area, homogeneous fractures, well water catchment and high water falling between input and output, as a result, a lots of large scale cave systems with multi cave horizons was developed there. Whereas the Tazhong uplift was uplifted softly in this stage, which led to the small exposure area, poor water catchment, island paleokarst terranes in the center part of basin. As a result, it is in lack of large scale cave systems due to the poor water catchment, but small cave systems may be occurred on the zones of well-developed fractures. The Hetian paleo-uplift is a flat uplift evolved from the separated subsidence of the two limbs in different stage, which led to a large basin marginal karst terrane on a flat slope, poor development of fractures, as a result, 3 cave horizons may be developed owing to that the well water catchments, but multi cave horizons could not be occurred vertically due to the flat slope;
     7) Using area balancing technique and geometrical relationship, a 2-D model to calculate the pore space of fractures associated with fault development have been developed. The equation created for calculating of fault fracture pore space provides a new way and method for the quantitative description of the development of fault fractures.
     8) Has established a relatively entire method series for predicating the cave horizons by combine the method of resuming the paleo-physiognomy, description of paleo-fractures , transregional correlation of cave horizons and the locating of cave horizons by the " intersection of fracture zone and water table".
     9) Has concluded that there is an area of the cave horizon C-I occurred on the Maigaiti slope in the south of Hetian River gas field (northern part of Hetian paleouplift), with a depth of 4500~7500m, occupying an area of 60×80 km~2, could be good carbonate reservoir of subtle traps in this area.
引文
[1] 班风梅,潘根兴,王新中.北京石花洞石笋微层层面有机物质的形成时间及机理初探[J].第四纪研究:2005,25(2):266-268.
    [2] 崔之久,高全洲,刘耕年,等.青藏高原夷平面与岩溶时代及其起始高度[J].科学通报:1996,41(15):1402-1406.
    [3] 陈强路,王恕一,钱一雄.塔里木盆地阿克库勒地区下奥陶统古岩溶及油气分布[J].沉积学报:2002,20(4):633-638.
    [4] 陈广汉.华北地区海相碳酸盐岩岩溶与油气富集[J].中国岩溶:1993, 12(1):77-84.
    [5] 代宗仰,周翼,陈景山,等.塔中中上奥陶统礁、滩相储层的特征及评价[J].西南石油学院学报:2001,23(4):1-4.
    [6] 福特D.c.古岩溶是现代岩溶作用“靶区”[M],国外地质科技:1996, 7:51-59.
    [7] 郭建华.塔里木盆地轮南地区奥陶系濳山古岩溶及其所控制的储层非均质性[J],沉积学报:1993,11(1):56-64.
    [8] 郭建华,刘生国.塔中地区石炭系碎屑岩岩石学特征与物源分析[J].江汉石油学院学报:1995,17(3):1-6.
    [9] 郭建华,塔北、塔中地区下古生界深埋藏古岩溶[J].中国岩溶,1996,15(3):207-216.
    [10] 郭建华.王明艳,蒋小琼,等.塔里木盆地塔中和满西地区石炭系层序地层[J].中南大学学报:自然科学版,2004,35(1):122-128.
    [11] 龚福华,刘小平.塔里木盆地轮古西地区断裂对奥陶系古岩溶的控制作用[J].中国岩溶:2003,22(4):313-317.
    [12] 顾家裕.塔里木盆地石炭系东问砂岩沉积环境分析及储层研究[J].地质学报:1996,70(2):153-161.
    [13] 顾家裕,周兴熙.塔里木盆地轮南潜山岩溶及油气分布规律[M].北京:石油工业出版社,2001.
    [14] 顾乔元,杨威,王清华,赵仁德,刘效曾.和田河气田奥陶系碳酸盐岩成岩作用及孔隙演化[J].成都理工学院学报,2001,28(4):390-395
    [15] 高全洲,崔之久,陶贞,等.青藏高原古岩溶的性质、发育时代和环境特征[J].地理学报:2002,57(3):267-274.
    [16] 韩行瑞.鄂尔多斯盆地南西缘的古岩溶及地文期划分[J].中国岩溶:2001,20(2):125-129.
    [17] 韩宝平.岩溶作用对任丘古替山碳酸盐岩油藏赋存的控制作用.中国岩溶:1998,17(1), 75-80.
    [18] 何登发,李德生.塔里木盆地构造演化与油气聚集[M].北京: 地质出版社,1996.
    [19] 何发歧、韩振华等泽编.裂缝碳酸盐岩勘探开发和盐下地震成像技术.石油物探译丛:2000年增刊.
    [20] 何发歧.碳酸盐岩地层中不整合—岩溶风化壳油气田[J].地质论评:2002,48(4):391-397.
    [21] 黄成毅,邹胜章,潘文庆,等.古潮湿环境下碳酸盐岩缝洞型油气藏结构模式-以塔里木盆地奥陶系为例[J].中国岩溶:2006,25(3):250-255.
    [22] 郝蜀民,司建平,许万年.鄂尔多斯盆地北部古生代岩溶及有利油气勘探区块预测[J].中国岩溶:1994,13(2):176-188.
    [23] 贺振华.杜正聪,文晓涛.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测[J].地球科学进展:2004,19(3):399-402.
    [24] 贺振华等,黄光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略.石油地球物理勘探:2005,40(2):190-196.
    [25] 贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质:1999,20(3):177-183.
    [26] 蒋炳南主编.塔里木盆地北部油气田勘探与开发论文集[M].北京:地质出版社,2000.
    [27] 蒋裕强,王兴志,周新源.和田河气田石炭系沉积相特征与演化[J].石油与天然气地质:2001,22(4),342-345.
    [28] 纪友亮.层序地层学[M].上海:同济大学出版社,2005.
    [29] 康玉柱.塔里木盆地油气勘查获巨大成果[J].石油与天然气地质:1989,10(3):14-20.
    [30] 康玉柱等.中国塔里木盆地石油地质特征及资源评价[M].北京,地质出版社,1996.
    [31] 康志宏,吴铭东.利用层序地层学恢复岩溶古地貌技术—以塔河油田6区为例[J].新疆地质:2003,21(3):290-292.
    [32] 李汉瑜,张锦泉等译编,古岩溶与油气储层[M].成都:成都科技大学出版社,1991.
    [33] 李道燧.鄂尔多斯盆地中部古地貌与构造对气藏的控制作用[J].石油勘探与开发:1994,21(3):9-14.
    [34] 李小地等.塔里木盆地油气系统与油气分布规律[M].北京:地质出版社,2000.
    [35] 李德文,崔之久,刘耕年.青藏高原古岩溶的存在及其与东邻地区岩溶的对比[J].中国岩溶:1999,18(1):309-318.
    [36] 李定龙.皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J].地学前缘:2000,7(2):353-365.
    [37] 李定龙,杨为民,汪才会,等.皖北奥陶系古岩溶分期分类及岩溶岩特征[J].淮南工业学院学报(自然科学版):1999,19(1):5-12.
    [38] 李国蓉,王鑫,周心怀,等.碳酸盐岩层序地层储层预测—十万大山地区的应用[J].石油与天然气地质,2006,27(3):413-421.
    [39] 李亚林,雷晓,林万昌,等.用神经网络方法识别碳酸盐岩裂缝系统中的气与水.天然气工业:2000,20(1):32-36.
    [40] 刘殊,范菊芬,曲国胜,等.气烟囱效应—礁滩相岩性气藏的典型地震响应特征[J].天然气工业:2006,26(11):52-55.
    [41] 李志勇,曾佐勋,罗文强.微分几何学在地质构造定量研究中的应用.地质力学学报2005,11(4):370-376.
    [42] 刘启明,王世杰,欧阳自远,等.石笋的荧光特征及其高分辨率气候环境记录.矿物岩石地球化学通报[J]:2003,22(4),361-364.
    [43] 林忠民.塔里木盆地塔河油田奥陶系大型油气藏形成条件[J].地质论评:2002,48(4):371-376.
    [44] 马永生,傅强,郭彤楼,等.川东北地区普光气田长兴—飞仙关气藏成藏模式与成藏过程[J].石油实验地质:2005,27(5):455-461.
    [45] 马永生,牟传龙,郭彤楼,等.四川盆地东北部长兴组层序地层与储层分布[J].地学前缘:2005,12(3),180-185.
    [46] 秦胜飞,贾承造,李梅.和田河气田天然气东西部差异及原因[J].石油勘探与开发:2002,29(5):16-18.
    [47] 秦胜飞,李梅,戴金星,等.塔里木盆地和田河气田天然气裂解类型[J].石油与天然气地质:2005,26(4):455-460.
    [48] 任美锷,刘振中主编.岩溶学概论[M].北京:商务印书馆,1983.
    [49] 宋国奇,徐春华,樊庆真,等.应用层序地层学方法恢复加里东期古地貌-以济阳坳陷沾化地区为例[J].石油实验地质:2002,22(4):350-354.
    [50] 时华星,向奎,杨品荣,等.从阿尔伯达盆地的油气勘探论塔西南地区的勘探策略[J].中国石油勘探:2003,8(4):1-8.
    [51] 宋惠珍,贾承造,欧阳键,等.裂缝性储层研究理论与方法-塔里木盆地碳酸盐岩裂缝性储集层裂缝预测[M].北京:石油工业出版社,2001.
    [52] 沈忠民,周光甲,李辉祥,等.Supercritical Carbon Dioxide Extraction of Organic Matter from Petroleum Source Rocks and Its implications[J].中国地球化学学报(英文版).1994,15(4):324-330.
    [53] 唐飞.冀中溶蚀裂缝型储层与古潜山油气藏[J].古潜山:1992,3:44-51.
    [54] 田作基.南天山造山带和塔北前陆盆地构造样式及油气远景[M].成都:成都科技大学出版社,1995.
    [55] 田纳新,徐国强,李学永,等.塔中地区早海西期风化壳古岩溶控制因素分析[J].江汉石油学院学报:2004,26(2):61-63.
    [56] 汤良杰.略论塔里木盆地主要构造运动[J].石油实验地质:1997,19(2):108-114.
    [57] 吴熙纯.鄂尔多斯南部奥陶系古岩溶带对天然气储层的控制[J].石油与天然气地质:1997,18(4):294-299.
    [58] 胡宁.雷卞军,黄照先,等.鄂西娄山关组顶部古岩溶不整合面的发现及其层序地层学意义[J].中国区域地质:1997,16(1):15-20.
    [59] 王宝清.山西省柳林奥陶系古岩溶顶部方解石充填物[J].地质论评:1995,41(5):473-79.
    [60] 王宝清,山西省柳林奥陶系古岩溶顶部储层及控制因素[J].地质论评(增刊):1996,42:130-136.
    [61] 王泽中.山西兴县奥陶系马五亚段的古岩溶[J].江汉石油学院学报:1992,14(4):103-104.
    [62] 汪蕴璞.中国冀中拗陷古岩溶及潜山油藏形成的水文地质论证[J].中国岩溶:1988,7(3):219-222.
    [63] 王尚彦,杨家碌,孟德保,等.湘黔交界娄山关组层序地层学研究[J].地质论评:2000,46(3):295-300.
    [64] 王毅,纪友亮,熊继辉,等.塔里木盆地上泥盆统与石炭系层序地层分析[J].沉积学报:1998,16(2):74-81.
    [65] 王维勇,王瑞久.国内外裂隙水的研究动向:国内外裂隙-岩溶水研究[D].地质部情报研究所:1981.
    [66] 王招明,王清华等.塔里木盆地和田河气田成藏条件及控制因素[J].海相油气地质:2000,5(1-2):124-132.
    [67] 夏日元,唐建生,邹胜章,等.塔里木盆地北缘古岩溶充填物包裹体特征[J].中国岩溶:2006,25(3):246-249.
    [68] 许俊,段永康,胡毅力,等.曲靖电厂冷却塔桩位下浅层基岩内洞穴的震波勘探研究[J].地震研究(增刊):2004,27:85-89.
    [69] 徐国强,刘树根,武恒志,等,海平面升降周期性变化与岩溶洞穴层期次关系探讨[J].沉积学报:2005,23(2):316-322.
    [70] 徐国强,李国蓉,刘树根,等.塔里木盆地早海西期多期次风化壳岩溶洞穴层[J].地质学报:2005、79(4):557-568.
    [71] 徐国强,李国蓉,刘树根,等.向源岩溶侵蚀作用及其成因机理[J].中国岩溶:2005,24(1):35-40.
    [72] 徐国强,李国蓉,刘树根,等.塔中、塔北古隆起形成演化及油气地质条件对比[J].石油天然气地质:2005,26(1):114-119.
    [73] 徐国强,刘树根,YANG Qinming,等,断层相关裂隙的一种定量计算方法[J].地质学报:2006,80(2):192-195.
    [74] 徐国强,吴伟航,武恒志,等.塔里木盆地利田河地区上奥陶统礁滩沉积体系地震识别及其发育分布规律[J],矿物岩古:2006,26(2):80-86.
    [75] 徐国强,鲁慧丽,武恒志,等.塔中西北部上奥陶统丘状地震反射异常体的成因[J].新疆石油地质:2006,27(4):403-406.
    [76] 徐国强,沈忠民,刘传虎,等.Successively upward growing of cave caused by abrupt rising of sea level[J].科学研究月刊:2006,17:116-119.
    [77] 徐国强,邵大力,刘树根,等.塔北隆起区一间房组礁滩沉积体特征[J],天然气工业,2006,26(8),16-19.
    [78] 徐希坤,刘树根,黎剑,徐国强.和田古隆起早海西古地貌恢复[J].特种油气藏:2003,10(3):32-35.
    [79] 肖玉茹,王敦则,沈杉平.新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质: 2003,17(1):92-98.
    [80] 肖姹莉,彭勇,王兴,等.1995.地震模式识别技术在碳酸盐岩油气预测中的应用[J].石油地球物理勘探:30(2):39-46.
    [81] 易士威.鄂尔多斯盆地东部加里东期的古地貌及其对气藏的控制[J],古潜山: 1998,4:9-13.
    [82] 叶德胜,王根长,林忠民,等.塔里木盆地北部寒武系—奥陶系碳酸盐岩储层特征及油气远景[M].成都:四川大学出版社,2000.
    [83] 闰相宾,韩振华,李永宏.塔河油田奥陶系油藏的储层特征和成因机理探讨[J].地质论评:2002,48(6):626-629.
    [84] 闰相宾,张涛.塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J].地质论评:2004,50(4):370-376.
    [85] 杨威,王清华.和田河气田碳酸盐岩岩芯裂缝分维数及与物性的关系[J].石油勘探与开发:2001,28(3):46-48.
    [86] 杨俊杰.鄂尔多斯盆地奥陶系风化壳古地貌成藏模式及气藏序列[J].天然气工业:1992, 12(4):8-13.
    [87] 袁道先等.中国岩溶动力系统[M].北京:地质出版社,2002.
    [88] 朱莜敏,王贵文,谢庆宾.塔里木盆地志留系沉积体系及分布特特征[J].石油大学学报(自然科学版):2002,26(3):5-11.
    [89] 张光亚.塔里木盆地古生代克拉通盆地形成演化与油气[M].地质出版社,2000.
    [90] 周路.应用地震低速异常带特征研究轮南地区奥陶系古岩溶[J].石油勘探与开发:1998,25(3):29-31.
    [91] 郑聪斌.陕甘宁盆地中部奥陶系风化壳古岩溶发育特征[J].中国岩溶:1995,14(3):280-288.
    [92] 张瑞成.古环境对河北古岩溶发育影响[J],中国岩溶:1989, 8(3):213-221.
    [93] 张振生,李明杰,刘社平.塔中低凸起的形成演化[J].石油勘探与开发:2002,29(1):28-31.
    [94] 张宗命,贾承造.塔里木克拉通盆地内古隆起及其找油方向[J].西安石油学院学报:1997,12(3):8-13.
    [95] 朱怀诚,罗辉,王起飞.论塔里木盆地“东河砂岩”的地质时代[J].地层学杂志:2002,26(3):197-201.
    [96] 朱怀诚.塔里木盆地北部晚泥盆世袍子组合[J].古生物学报:2000, 39(2):159-176.
    [97] 赵孟军.塔里木盆地和田河气田天然气的特殊米源及非烃组分的成因[J].地质论评:2002,48(5):480-486.
    [98] 钟文胜,韦彬胨.陈贻祥,等.地面高精度重力测量技术在岩溶地区应用效果的探讨[J].中国科技信息: 2006(8):119-128.
    [99] 郑荣才,彭军,高红灿.渝东黄龙组碳酸盐岩的古岩溶特征及岩溶旋回[J].地质地球化学:2003,31(1):28-35.
    [100] 周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社,1998.
    [101] 周文,张哨楠,李良,等.鄂尔多斯盆地塔巴庙地区上古生界储层裂缝特征及分布评价[J].矿物岩石,2006,26(4):54-61.
    [102] 朱如凯,罗平,罗中.塔里木盆地石炭系碳酸盐岩同位素地球化学特征[J].新疆石油地质:2002, 23(5):382-384.
    [103] 翟晓先,俞仁连,何发岐,等.塔河地区奥陶系一间房组微裂隙颗粒灰岩储集体的发现与勘探意义,石油实验地质:2002,24(5):387-392.
    [104] 翟晓先,漆立新,陈惠超,等.塔河油气田勘探与评价文集[M].北京:石油工业出版社.2006
    [105] Andrea Billi, Andrea Valle, Mauro Brilli, et al. Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy[J]. Journal of Structural Geology,2007, 29(3): 385-395.
    [106] Arthur N. Palmer Geochemical models for the origin of macrocopic solution porosity in carbonate rocks. In: Unconformities and porosity in carbonate strata[J]. AAPG, 1995, Memoir 63:77-101.
    [107] Akazawa, T., Muhesen, S., Dodo, Y., Kondo, O., Mizoguchi, Y., Neanderthal infant burial[J]. Nature, 1995, 377:585-586.
    [108] Alastair Robertson, Minella Shallo, Mesozoic-Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context[J]. Tectonophysics, 2000, 316:197-254.
    [109] Baceta J I; Wright V P; Pujalte V . Palaeo-Mixing Zone Karst Features From Palaeocene Carbonates of North Spain: Criteria for Recognizing A Potentially Widespread but Rarely Documented Diagenetic System[J]. Sedimentgeology, 2001, 139(3-4):205-216.
    [110] Baker A. Smart P L.Edwards R L. et al. Annual growth banding in a cave stalagmite[J]. Nature, 1993, 364:518-520.
    [111]Bates, C. R. et al, 1999. The study of a naturally fractured gas reservoir using seismic techniques[J]. AAPG Bulletin, 83(9): 1392-1407.
    [112]Chappell, J. and Shackleton, N. J. Oxygen isotopes and sea level[J]. Nature, 1986, 324:37-140.
    [113]Cao H; Yang J; Wang. Paleokarsts In Late Precambrian And Ordovician Carbonates, Kalpin-Shaya Uplift Zone, Tarim Basin, China[J]. Carbonates Evaporites , 1999, 14(2):200-208.
    [114]Carlo Sanders et al. Kinematic structural restorations and discrete fracture modeling of a thrust trap: a case study from the Tarija Basin, Argentina[J]. Marine and Petroleum Geology 2004, 21: 845-855.
    [115]Caine, J.S., Evans, J.P., Forster, C.B.. Fault zone architecture and permeability structure [J].Geology,1996,24: 1125-1128.
    [116]Curtis W. Marean, Paul Goldberg, Graham Avery, Frederick E. Grine, Richard G. Klein, Middle Stone Age Stratigraphy and Excavations at Die Kelders Cave 1 (Western Cape Province, South Africa): the 1992, 1993, and 1995 Field Seasons[J]. Journal of Human Evolution, 2000, 38:7-42.
    [117]Dorale, J.A., Gonzalez, L.A., Regan, M.K., Pickett, D.A., Murrel, M.T., Baker, R.G. A high resolution record of holocene climate change in speleothems calcite from Cold Water cave, Northeast Iowa[J]. Science,1992, 258:1626-1630.
    [118]Eugene A. Dembicki and Hans G. Machel. Recognition and delineation of paleokarst zones by the use of wireline logs in the bitumen-saturated Upper Devonian Grosmont Formation of northeastern Alberta, Canada[J]. AAPG Bulletin, 1996, 80: 695 -712.
    [119]Fei Qi and Wang Xie-Pei, Significant role of structural fractures in Renqiu buried-hill oil field in eastern China[J]. AAPG Bulletin, 1984. 68: 971-982.
    [120]Gu J. Characteristics And Evolutional Models Of Karst Reservoirs Of Lower Ordovician Carbonate Rocks In Lunnan Area Of Tarim Basin China[J]. AAPG Bull, 2000, 84(9): 14-31.
    [121]George A D; Chow N .Palaeokarst Development In A Lower Frasnian (Devonian) Platform Succession, Canning Basin, Northwestern Australia[J]. Australian J Earth Sci, 1999,46(6):905-913.
    [122]Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., VanExters, S., Precise dating of Dansgaard- Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature,2003,421:833- 837.
    [123]Han Baoping, Feng Qiyan, Luo Chengjian et al. The study of oilfield karst in buried block hill sin Jizhong Depression[M]. In: AAPG international conference and exhibition. AAPG Bulletin, 1999, 83(8):13-15.
    [124]Hanks, C.et al. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, Northeastern Brooks Range and North Slope Subsurface, Alaska[J]. AAPG Bulletin, 1997, 81(10): 1700-1720.
    [125]James N P; Choquette P W. Paleokarst[M]. Springer-Verlog, 1988.
    [126]Jones B. Void-Filling Deposits In Karst Terrains Of Isolated Oceanic Islands : A Case Study From Tertiary Carbonates Of The Cayman Islands[J]. Sedimentology, 1992, 39(5): 857-876.
    [127]John E. Mylroie and James L. Carew, Karst development on carbnate islands[J], In: Unconformities and porosity in carbonate strata, 1995,AAPG Memoir 63: 55-76.
    [128]Jamison, W. R. , 1997. Quantitative evaluation of fractures on Monkshood Anticline, a detachment fold in the foothills of western Canada[J]. AAPG Bulletin, 81(7): 1110-1132.
    [129]Jonathan B. Martin, Randolph W. Dean, Exchange of water between conduits and matrix in the Floridan aquifer [J]. Chemical Geology, 2001, 179:145-165.
    [130]James L. Carew and John E. Mylroie. Quaternary Tectonic stability of the Bahamian Archiprlago: Evidence from Fossil Coral Reefs and Fank Margin Caves[J]. Quaternary Science 1995, Review14:145-153.
    [131]Karel Eak, Jan Urban, Vaclav Cilek, Helena Hercman. Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model [J]. Chemical Geology, 2004, 206:119-136.
    [132]Kim, Y.-S., Peacock, D.C.P., Sanderson, D.J.. Strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta [J]. Journal of Structural Geology,2003, 25: 793-812.
    [133]Kindler, P., Herty,P.J. Carbonate petrography as an indicator of climate and sea level change: new data from Bahamian Quaternary units[J]. Sedimentology, 1996, 43:381-399
    [134]Lisle, R. J. Detection of zones of abnormal strains in structures using Gaussian curvature analysis[J]. AAPG Bulletin, 1994,78:1811-1819.
    [135]Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., Sidorin, A. Quazi-static fault growth and shear fracture energy in granite [J]. Nature,1991, 350:39-42.
    [136]McArthur J M, Burnett J, Hancock J M. Strontium isotopes at K/T boundary discussion[J]. Nature, 1992, 28:355
    [137]McArthur J M, Howarth R J, T R. Strontium isotope stratigraphy: Lower version 3: Best fit to the marine Sr-isotope cure for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology,2001, 109:155-170.
    [138]Masaferro, J. L. Kinematic evolution and fracture prediction of the Valle Morado structure inferred from 3-D seismic data, Salta province, northwest Argentina[J]. AAPG Bulletin, 2003, 87(7): 1083-1104.
    [139]Mark A. Pearce. Numerical analysis of fold curvature using data acquired by high-precision GPS[J]. Journal of Structural Geology ,2006, 28 :1640-1646.
    [140]Matthew A. d'Alessio, Stephen J. Martel, Fault terminations and barriers to fault growth [J]. Journal of Structural Geology,2004, 26:1885-1896.
    [141]McGrath, A.G., Davison, 1.. Damage zone geometry around fault tips [J]. Journal of Structural Geology, 1995, 17:1011 -1024.
    [142]Murray G.H. Quantitative Fracture Study, Sanish pool, Fracture controlled Production [J]. AAPG Bulletin Reprint Series 21,1977.
    [143]Olivier Maridet, Proposition of dating a Miocene Alpine tectonic event using mammal biochronology: example of the Four karst filling[J].GeodinamicaActa,2002,15:179-184.
    [144]Ognjen Bonacci. Ground water behaviour in karst: example of the Ombla Spring (Croatia)[J]. Journal of Hydrology, 1995, 165:113-134.
    [145]Odling N.E., Harris S.D., Knipe R.J.. Permeability scaling properties of fault damage zones in siliclastic rocks [J]. Journal of Structural Geology 26, 1727-1747(2004)
    [146]Paul J. Hearty, Storrs L. Olson, Darrell S. Kaufman, R. Lawrence Edwards, Hai Cheng. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda[J]. Quaternary Science Reviews,2004, 23:1151-1171.
    [147]Rink W.J., Schwarcz H.P., Weiner, P. et al. Age of the Mousterian industry at Hayonim Cave, Northern Israel, using electron spin resonance and ~(230)Th/~(234)U methods[J]. Journal of Archaeological Science ,2004, 31:953-964.
    [148]Ramsay, J. G. Folding and fracturing of rocks[M]. New York: McGraw-Hill Book Company, 1967.
    [149]Remane J, Faure-Muret A, Odin G S. International stratigraphic chart. Translated by Jin Yupn, Wang Xiangdong, Wang Yue. Journal of stratigraphy, 2001, 24: 321-340.
    [150] Shane Kenworthy and Steffen G. Hagemann. Fault and vein relationships in a reverse fault system at the Centenary orebody (Darlot gold deposit), Western Australia: Implications for gold mineralization[J]. Journal of Structural Geology, 2007, 29(4): 712-735.
    [151] Suppe,J.. Geometry and kinematics of fault-bend folding [J]. American Journal of Science 275-A, 684-721 (1983)
    [152] Tinker S. W., Ehrets J. R. and Brondos M. D., Multiple karst events related to stratigraphic cyclicity: San Andres Formation, Yates field, West Texas, In: Unconformities and porosity in carbonate strata[J]. 1995, AAPG Memoir 63:213-237.
    [153] Tord Erlend Skeie Johansen, Haakon Fossen and Richard Kluge. The impact of syn-faulting porosity reduction on damage zone architecture in porous sandstone: an outcrop example from the Moab Fault, Utah[J]. Journal of Structural Geology, 2005, 27(8): 1469-1485.
    [154] Vail P.R. Sequence stratigraphy workbook, fundamentals of sequence stratigraphy[C]. In: AAPG Annual Convention Short Course. Houston, Texas,1988.
    [155] Van Wagoner J.C. et.al..1988. An overview of the fundamentals of sequence stratigraphy an key definitions SEPM Special Publication 42,pp.39-45.
    [156] Van Wagoner J.C. et.al..1990. Siliciclastic sequence stratigraphy in well logs,cores and outcrops. AAPG Methods in Exploration Series 7
    [157] Young-Seog Kima, David C.P. Peacockb, David J. Sanderson. Fault damage zones [J]. Journal of Structural Geology,2004, 26:503-517.
    [158] Yves Geraud, Marc Diraison and Ney Orellana. Fault zone geometry of a mature active normal fault: A potential high permeability channel (Pirgaki fault, Corinth rift, Greece)[J]. Tectonophysics, 2006, 426( 1-2):61-76.
    [159] Zhang Lifei, Sun Min, Wang Shiguan et al. The composition of shales from the Ordos Basin, China; effects of source weathering and diagenesis [J]. Sedimentary Geology, 1998, 116(1-2):129-141.
    ① 刘树根,徐国强,李国蓉,等.和田古隆起形成演化及油气有利勘探区块选择.中石化胜利有限公司科研项目成果报告,2001.
    ② 李国蓉,刘存革,徐国强,等.塔河油田奥陶系碳酸盐岩古岩溶作用研究.中石化石油勘探开发研究院科研项目成果报告,2002.
    ③ 徐国强,李国蓉,赵锡奎,等.卡塔克隆起古岩溶地质条件研究.中石化河南石油勘探开发研究院科研项目成果报告,2002.
    ④ 李国蓉,徐国强,刘家铎.卡塔克隆起外围区油气地质条件评价与勘探靶区研究.“十·五”国家科技攻关科研项目成果报告(编号2001BA605A-03-01),2003.
    ⑤ 徐国强,刘树根,李国蓉,等.2004.和田古隆起有利储集相带及圈闭综合评价.中石化胜利有限公司科研项目成果报告,2003.
    ⑥ 徐国强,李国蓉,等.巴楚地区层序不整合面古岩溶研究,中石化勘探开发研究院科研项目成果报告,2006.
    ⑦ 王英民,张哨楠,徐国强,等.鄂尔多斯盆地北部古生界隐蔽圈闭研究,国家“八·五”科技攻关成果报告,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700