用户名: 密码: 验证码:
单色光诱导的豚鼠近视眼中黑视素和褪黑激素受体-1A表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分不同波长光线日间照明对豚鼠生物节律的影响
     目的:探讨绿光、蓝光日间照明对豚鼠生物节律分子褪黑激素的影响。
     方法:选取10天龄豚鼠48只,分为三组分别饲养于绿光照明(波长530nm)、蓝光照明(波长480nm)、白光照明(各波长混合)的环境中,每天照明时间8:00am至8:00pm,共10天。分别于10:00am和10:00pm取各组豚鼠脑松果体组织,以高效液相色谱方法检测褪黑激素的含量。以白光组的褪黑激素含量作为基线值,比较绿光组、蓝光组褪黑激素的含量的改变。统计学分析采用Stata软件作单因素方差分析和配对t检验,P<0.05为具有统计学意义。
     结果:10:00am时绿光照明组、蓝光照明组和白光照明组豚鼠脑松果体组织内褪黑激素的含量分别是85.2±2.79 pg/ml,45.92±1.74 pg/ml,53.32±2.51pg/ml;10:00pm时三组豚鼠脑松果体组织内褪黑激素的含量分别是118.15±4.23 pg/ml,63.27±1.43pg/ml,73.12±2.72 pg/ml。与白光照明组相比,绿光照明组豚鼠日间、夜间褪黑激素的含量均上升(P<0.05),而蓝光组下降(P<0.05)。
     结论:绿光和蓝光照明日间与夜间均可引起豚鼠生物节律改变,绿光照明组豚鼠脑松果体组织内褪黑激素含量较蓝光照明组高,说明绿光照明可以减轻光刺激导致的褪黑激素分泌抑制,而蓝光照明可以加剧光刺激导致的褪黑分泌抑制。
     第二部分单色光诱导豚鼠近视眼中褪黑激素受体-1A和黑视素的表达变化
     目的:观察530nm绿光诱导的豚鼠近视眼球内黑视素和褪黑激素受体-1A的表达变化,并初步探讨两种蛋白表达与色光诱导近视之间的关系。
     方法:30只十天龄英国短毛豚鼠随机分为3组,分别以绿光(530nm)、蓝光(480nm)和混合白光作为照明光饲养8周。实验前及实验后,各组经散瞳联合带状光检影法测定其屈光不正状态,A超测量玻璃体腔深度和眼轴长度。实验结束时各组于10:00pm摘除眼球,分别行透射电镜检查观察巩膜增殖状态;免疫荧光法观察黑视素和褪黑激素受体-1A在视网膜的分布、表达;实时荧光定量-聚合酶链反应法观察黑视素和褪黑激素受体-1A mRNA的变化;Western-blot观察蛋白的变化。
     结果:1)实验前的屈光状态、玻璃体腔深度和眼轴长度,各组之间的差异无统计学意义。经不同色光照明8周后,各组均发生玻璃体腔深度增加、眼轴延长。实验后绿光组、白光组和蓝光组屈光不正值分别为1.37±0.75D,3.10±0.84D.3.25±0.78D(F=17.46,P=0.0032);玻璃体腔深度分别为3.70mm±0.16mm,3.24mm±0.21mm,3.21mm±0.19mm(F=11.04,P=0.0098);眼轴长度8.46±0.13mm,7.62±0.17mm,7.56±0.18mm(F=20.86,P=0.0020);绿光组豚鼠明显趋于近视化。2)经免疫荧光法证实,与蓝光组相比,绿光组视网膜内黑视素蛋白密度下降,而褪黑激素受体-1A表达增多。3)绿光照明组黑视素mRNA较蓝光组显著减少(F=3.61,p=0.016),蛋白表达也明显降低。同时,绿光组豚鼠巩膜和视网膜中褪黑激素受体-1A mRNA与蓝光组相比均显著增加(分别为F=0.7945,p=0.000;F=5.3987,p=0.000),绿光照明组豚鼠巩膜和视网膜中褪黑激素受体-1A蛋白表达也增加。
     结论:530nm单色光(绿光)照明可以相对促使豚鼠玻璃体腔深度增加,眼轴延长,改变其屈光状态、加速眼球近视的发生。530nm单色光照明时豚鼠眼内黑视素表达下降、褪黑激素受体-1A表达上升。褪黑激素受体-1A和黑视素的变化可能在530nm单色光照明诱导的近视中起相应作用。
     第三部分褪黑激素球旁注射对豚鼠近视的影响
     目的:探讨褪黑激素球旁注射对豚鼠正常的眼球生长及屈光状态的影响。
     方法:30只四周龄英国短毛豚鼠随机分为2组,饲养于12小时明暗周期环境中。实验组随机选取一眼每天8:00pm球旁注射溶于2%乙醇中的500pg/ml浓度褪黑激素0.2ml,对照组每天球旁注射溶剂2%乙醇0.2ml,共两周。实验前及实验后行散瞳联合带状光检影法测定屈光不正值,A超测定玻璃体腔深度和眼轴长度,并取眼球做病理切片,测量相同部位视网膜、脉络膜和巩膜的厚度。
     结果:实验组处理前随机选择眼和对照组随机选择眼的屈光不正值、玻璃体腔深度和眼轴长度三者组间比较均不具有统计学意义(均P>0.05)。2周后对照组屈光不正值为3.65D±0.81D,玻璃体腔深度为3.28mm±0.49mm,眼轴长度为7.6mm±0.29mm,视网膜厚度0.1270mm±0.0057mm,脉络膜厚度0.0473mm±0.0016mm,巩膜厚度0.1181mm±0.0022mm;实验处理眼屈光不正值为2.76D±0.45D,玻璃体腔深度为3.59mm±0.86mm,眼轴长为8.7mm±0.38mm,视网膜厚度0.1028mm±0.0061mm,脉络膜厚度0.0449mm±0.0023mm,巩膜厚度0.0901mm±0.0012mm。各项指标两组间比较,差异均具有显著统计学意义(P<0.05)。
     结论:褪黑激素球旁注射可改变豚鼠眼球组织生长时的多项生物参数,其中玻璃体腔深度增加、眼轴延长,视网膜、脉络膜和巩膜厚度降低,结果导致近视发生。提示褪黑激素可能参与调节眼球的节律性生长。
     第四部分褪黑激素对大鼠巩膜成纤维细胞增殖的影响
     目的:研究褪黑激素在体外对大鼠后巩膜成纤维细胞生长的影响,并探讨其可能的调控机制。
     方法:采用植块法培养大鼠后巩膜成纤维细胞,细胞经传代纯化鉴定后,取第3~4代细胞分为6组,加入不同浓度的褪黑激素(分为空白对照、溶剂对照、50pg/ml、100pg/ml、500pg/ml和1000pg/ml组),分别培养于24、48、72h后采用四甲基偶氮唑盐法检测细胞的增殖密度、氯胺T法检测胶原蛋白的合成;培养72h后采用免疫荧光法观察褪黑激素受体-1A蛋白在细胞内的表达;采用实时定量聚合酶链反应法测定褪黑激素受体-1A的mRNA表达水平。
     结果:褪黑激素在体外对大鼠巩膜成纤维细胞生长具有明显的抑制增殖作用,最佳浓度为500pg/ml;褪黑激素在100~500pg/ml浓度范围内可以抑制胶原蛋白的合成,且该抑制作用呈剂量相关性。在褪黑激素培养的条件下,褪黑激素受体-1AmRNA表达明显增加,蛋白浓度上升。
     结论:一定浓度的褪黑激素对体外培养的大鼠巩膜成纤维细胞的生长及其胶原蛋白合成均具有抑制作用,褪黑激素受体的表达可能在其中发挥重要作用。
Part 1 The effect of blue and green light in daytime on the the light-induced melatonin suppression in guinea pig
     Objective:To investigate the effect of blue and green light in daytime on the the light-induced melatonin suppression in guinea pigs.
     Method:48 guinea pigs aged 10 days were exposed to blue light(wavelength 480nm)、green light(wavelength 530nm) and white light(mixed wavelength) respectively,between 08:00am and 08:00pm for 10 days.The amounts of pineal gland melatonin were measured before and after the light pulse at 10:00am and 10:00pm.Changes observed between before and after the light pulse was compared with a melatonin baseline obtained in the white light group.
     Results:The amount of pineal gland melatonin was 45.92±1.74pg/ml at 10:00am and 63.27±1.43pg/ml at 10:00pm in blue light group,53.32±2.51 pg/ml and 73.12±2.72 pg/ml in white light group,85.2±2.79 pg/ml and 118.15±4.23 pg/ml in green light group.A significant increase was observed in the red light group(P<0.05) whereas a significant reduction was observed in the blue light group at night(P<0.05).
     Conclusions:Green light means to prevent the light-induced melatonin suppression, blue light enhances the light-induced melatonin suppression,they all change biological rhythms.
     Part 2 The changes of expression of melanopsin and melatonin receptor -1A for myopia induced by 530nm monochromatic light in guinea pig
     Objective:To investigate the expression of melanopsin and melatonin receptor 1-A in myopia induced by 530nm monochromatic light in guinea pig and the relationship between the expression of melanopsin and melatonin receptor 1-A and myopia induced by 530nm monochromatic light.
     Method:Thirty 10-day-old guinea pigs were randomized into3 groups and exposed to green light(530nm),blue light(480nm) and white light for 8 weeks. Measurement of the refractive status was taken after cycloplegia with streak retinoscopy,ocular length and vitreous depth detected by ultrasound biometry were examined before and after the experiment in guinea pigs.Eyes were dissected at 10:00pm,and the ultramicro-structures of the sclear were observed through electromicroscope.The expression of melanopsin and melatonin receptor 1-A were observed by immunocytochemisty.The level of melanopsin and melatonin receptor 1-A and their mRNA were observed through Western-blot and real-time PCR respectively.
     Result:1) There were no statistically significantly variance of the refractive error,ocular length nd vitreous depth among green light group,white light group and blue light group before experiment.Eye elongation and vitreous depth gain could be observed after 8 weeks of light treatment.The refractive status was 1.37±0.75D in green light group,3.10±0.84D in white light group and 3.25±0.78D in blue light group(F= 17.46,P=0.0032);The vitreous depth was 3.70mm±0.16mm in green light group, 3.24mm±0.21mm in white light group and 3.21mm±0.19mm in blue light group respectively(F=11.04,P=0.0098).Ocular length was 8.46±0.13mm,7.62±0.17mm and 7.56±0.18mm respectively(F=20.86,P=0.0020).Statistical analysis of the three parameter mentioned above indicate statistically significance among them. Guinea pigs in 530nm green light group were in relatively myopic refractive status.2) Compared with those in retina of blue light group,density of melanopsin in retina of green light group decreased,but melatonin receptor 1-A was more abundant in the retina of green light group by immunocytochemisty.3) There was significant difference in expression of melanopsin mRNA and protein between the green light group and blue light group(F=3.61,p=0.016).There was also significant difference in expression of melatonin receptor 1-A mRNA and protein in retina and sclea between the green light group and blue light group(F=0.7945,p= 0.000;F=5.3987,p=0.000)).Green light group expressed higher level of melatonin receptor 1-A mRNA and protein in retina and sclea,while blue light group expressed lower level.
     Conclusion:Green light(530nm) alter the refractive status of guinea pig,may accelerate myopic development.Monochromatic light with the long-wavelength of 530nm induces the increment of melatonin receptor 1-A and decreasement of melanopsin in myopic guinea pigs.melatonin receptor 1-A and melanopsin might play a role in the forming of 530nm monochromatic induced guinea pig myopia.
     Part 3 The effect of melatonin injecting periglomerularly on guinea pig myopic shift.
     Objective:To examine the role of the circadian signaling molecule melatonin in normal ocular growth and the exaggerated ocular growth associated with the development of myopia in guinea pig.
     Method:30 pigmented guinea pigs aged 4weeks were maintained on a 12-hour lightdark cycle for 14 days.During the 14-day treatment period,guinea pigs were injected periglomerularly on one randomly selected eye during the early dark period(8:00pm) with melatonin 0.2ml(500pg/ml) or 2%ethanol vehicle control 0.2ml each day,and the fellow eye was taken as control. Measurement of the refractive status after cycloplegia with streak retinoscopy,ocular length and vitreous depth detected by ultrasound biometry were examined before experiment and 2 weeks after the treatment of MLT or 2%ethanol in guinea pigs. The eyes were conducted electron microscopy examination to evaluate the pathological changes of the melatonin treated eye and the control eye.Sclera thickness,choroidal thickness and retina thickness were measured in the same site by HE bioscopy.
     Results:There was no statistically significantly variance of the refractive error,ocular length and vitreous depth between control group and melatonin treated group before treatment.Two weeks later,Eye elongation and vitreous depth gain could be observed.In control group,the refractive status was 3.65D±0.81D,the vitreous depth was 3.28mm±0.49mm,ocular length was 7.6mm±0.29mm,retina thickness was 0.1270mm±0.0057mm,Choroidal thickness was 0.0473mm±0.0016mm,Sclera thickness was 0.1181mm±0.0022mm;In melatonin treated group,the refractive status was 2.76D±0.45D,the vitreous depth was 3.59mm±0.86mm,ocular length was 8.7mm±0.38mm,retina thickness was 0.1028mm±0.0061mm,Choroidal thickness was 0.0449mm±0.0023mm,Sclera thickness was 0.0901mm±0.0012mm respectively.There were statistically significantly variance of the refractive error,ocular length,vitreous depth,retina thickness,choroidal thickness and sclera thickness between control group and melatonin treated group(P<0.05).
     Conclusions:The finding that administration of melatonin alters the growth of several ocular tissues in pigmented guinea pig's eyes suggests that melatonin plays a role in ocular growth and myopic development.This conclusion suggests that the action of melatonin is involved in the regulation of the diurnal rhythm of ocular growth。
     Part 4 Effect of melatonin on rat scleral fibroblasts proliferation in vitro
     Objective:To investigate the effects of melatonin on rat scleral fibroblasts proliferation in vitro and its mechanisms.
     Methods:The rat scleral fibroblasts were grown in tissue culture,then were treated with different doses of melatonin((0 vacuity matched control,0 solvent matched control,50pg/ml、100pg/ml、500pg/ml and 1000pg/ml) for 24h、48h、72h individually.The effects of melatonin on scleral fibroblasts proliferation were measured by MTT assay,synthesis of collagen was observed by Chlorozone T Results.After 72h,the expression of melatonin receptor-1A mRNA and protein was detected by real time PCR and immunofluorescent staining respectively.Results melatonin inhibited rat scleral fibroblasts proliferation in vitro significantly,the most efficient concentrations was 500pg/ml;melatonin could inhibit collagen synthesis of scleral fibroblast in concentrations from 100~500pg/ml; Cultured with melatonin,the expression of melatonin receptor-1A mRNA and protein increased.
     Conclusions:The growth of rat scleral fibroblasts in vitro and collagen synthesis could be inhibited by melatonin.Increased melatonin receptor 1A expression might be involved.
引文
1 Wiesel T N,Raviola E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J].Nature,1977,266(5597):66 - 68.
    2 Nathan J,Crewther S G,Crewther D P,et al.Effects of retinal image degradation on ocular growth in eats[J].Invest Ophthalmol Vis Sci,1984,25(11):1300-1306.
    3 孟兆明,魏佑震.色觉异常与屈光状态的关系.泰山医学院学报,2001,22(4):351-352.
    4 Kroger RH,Binder S.Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development.Br J Ophthalmol,2000,84(8):890-893.
    5 陈冬红,褚仁远,周国民,等.不同波长有色光对豚鼠眼球生长发育的影响.眼视光学杂志,2003,5(3):144-146.
    6 Kroger RH,Wagner HJ.The eye of the blue acara(Aequidens pulcher,Cichlidae)grows to compensate for defocus due to chromatic aberration.J Comp Physiol[A].A,Sensory,neural,and behavioral physiology,1996,119(6):837-842.
    7 J.Vandesompele,K.De Preter,Pattyn,B,et al.Accurate normalization of real-time quatitative RT-PCR data by geometric averaging of multiple internal control genes,Genome Biol.2002(3) research 0034.1-0034.11.
    8 Hattar,S.,Liao,H.W.,Takao,M.,et al.Melanopsin-containing retinal ganglion cells:architecture projections,and intrinsic photosensitivity.Science 2002,295,1065-1070.
    9 Panda,S.,Sato,T.K.,Castrucci,A.M.,et,al.Melanopsin(Opn4) requirement for normal light-induced circadian phase shifting.Science 2002,298,2213-2216.
    10 Qiu,X.,Kumbalasiri,T.,Carlson,S.Metal.Induction of photosensitivity by heterologous expression of melanopsin.Nature 2005,433,745-749.
    11 Nickla,D.L.,Rada,J.A.,Wallman,J.Isolated chick sclera shows a circadian rhythm in proteoglycan synthesis perhaps associated with the rhythm in ocular elongation.J.Comp.Physiol.A 1999.185,81-90.
    12 Weiss S,Schaeffel F.Diurnal growth rhythms in the chicken eye:relation to myopia development and retinal dopamine levels.J Comp Physiol[A].1993;172:263-270.
    13 Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes . Exp Eye Res. 1998:66:163-181.
    14 Nickla DL, Wildsoet C, Wallman J. The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks. Exp Eye Res. 1998:66:183-193.
    15 Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA. 1994:91:6133-6137.
    16 Rada J A, Johnson J M, Achen VR, et al. Inhibition of scleral proteoglycan synthesis blocks deprivation-induced axial elongation in chicks[J]. Exp Eye Res, 2002, 74(2): 205—215.
    17 Mcbrien N A, Gentle A. The role of visual information in the control of scleral matrix biology in myopia[J]. Curr Eye Res, 2001,23(5): 313-319.
    18 Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[J]. Vision Res, 1995, 35(9): 1175—1194.
    19 ZHU X, WINAWER J A, WALLMAN J. Potency of myopic defocus in spectacle lens compensation[J]. Invest Ophthalmol Vis Sci, 2003, 44(7): 2818—2827.
    20 Howlett, M. C, & McFadden, S. A. A fast and effective mammalian model to study the visual regulation of eye growth. [ARVO abstract]. Investigative Ophthalmology and Visual Science, 2002, 43:E-Abstract #2928.
    21 Zhou X, Qu J, Xie R, et al. Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res, 2006, 46(18):2815-23.
    22 Jonson, K. M, Lyle, J. G, Edwards, M. J, & Penny, R. H. Spatial and non-spatial discrimination reversal (SDR) learning in the guinea pig. Animal Behaviour, 1974, 22(1): 118-23.
    23 Sluckin W. Imprinting in guinea-pigs. Nature ,1968,220(5172):1148.
    24 Lodge, A, Peto, T, &McFadden, S. Form deprivation myopia and emmetropization in the guinea pig. Proceedings of the Australian Neuroscience Society, 1994,5:123.
    25 RosolenSG, RigaudiereF, LeGargasson JF, et al. Comparing the photopic ERG i-wave in different species. Vet Ophthalmol ,2004,7(3):189-92.
    26 欧阳朝祜[2],褚仁远[1],胡文政[1].哌仑西平对豚鼠透镜诱导性近视眼的作用.中华眼科杂志,2003,39(6):348-351.
    27 McFadden SA,Howlett MH,Mertz JR.Retinoic acid signals the direction of ocular elongation in the guinea pig eye.Vision Res JT - Vision research,2004,44(7):643-53.
    28 Howlett MH,McFadden SA.Form-deprivation myopia in the guinea pig(Carla porcellus).Vision Res,2006,46(1-2):267-83.
    29.Nickla DL,Wildsoet CF,Troilo D.Endogenous rhythms in axial length and choroidal thickness in chicks:implications for ocular growth regulation.Invest Ophthalmol Vis Sci.2001;42:584-588.
    30.Papastergiou GI,Schmid GF,Riva CE,Mendel MJ,Stone RA,Laties AM.Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes.Exp Eye Res.1998;66:195-205.
    31.Rivkees SA.Developing circadian rhythmicity in infants.Pediatrics 2003,112,373-381.
    32.Brainard GC,Lewy AJ,Menaker M et al.Dose - response relationship between light irradiance and the suppression of plasma melatonin in human volunteers.Brain Res 1988;454:212-218.
    33.Aoki H,Yamada N,Ozeki Y et al.Minimum light intensity required to suppress nocturnal melatonin concentration in human saliva.Neurosci Lett 1998;252:91 - 94.
    34.Brainard GC,Rollag MD,Hanifin JP.Photic regulation of melatonin in humans:ocular and neural signal transduction.J Biol Rhythms 1997;12:537-546.
    35.Alexandre S,Nathalie P,Jean S,et al.Blue blocker glasses impede the capacity of bright light to suppress melatonin production.J Pineal Res.2006;41:73-78.
    36.Chen An,Du LiZhong,Xu YaPing,et al.The effect of blue light exposure on the expression of circadian genes:Bmal1 and Cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates.Pediatric Research,2005,58,1180-1184.
    37.Brainard GC,Hanifin JP,Rollag MD,et al.Human melatonin regulation is not mediated by the three cone photopic visual system.J Clin Endocrinol Metab 2001;86:433 - 436.
    38. Panda S, Nayak SK, Campo B , et al. Illumination of the melanopsin signaling pathway. Science 2005; 307:600-604.
    39. Weiss S, Schaeffel F. Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels. J Comp Physiol 1993;172:263 - 270.
    40. Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 1998;66:163 - 181.
    41. Nickla DL, Wildsoet C, Wallman J. The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks. Exp Eye Res 1998:66:183-193.
    42. Yinon U, Koslowe KC. Hypermetropia in dark reared chicks and the effect of lid suture. Vision Res 1986:26:999-1005.
    43. Jody A, Summers R, Allan F, et al. melatonin receptors in chick ocular tissues: implications for a role of melatonin in ocular growth regulation. Invest Ophthalmol Vis Sci. 2006:47:25-33.
    44. Harper CL, Boulton ME, Bennett D, et al. Diurnal variations in human corneal thickness. Br J Ophthalmol. 1996:80:1068-1072.
    45. Gooley J, Lu J, Chou, T, et al. Melanopsin in cells of origin of the retinohypothalamic react. Neurosci. 2001, 4,1165.
    46. Iuvone PM, Tigges M, Fernandes A, Tigges J. Dopamine synthesis and metabolism in rhesus monkey retina: development, aging, and the effects of monocular visual deprivation. Vis Neurosci. 1989:2:465-471.
    47. Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM. Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci. 1991;32:1674 - 1677.
    48. Stone RA, Lin T, Laties AM, Iuvone PM. Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci USA. 1989:86:704- 706.
    49. Stone RA, Quinn GE, Francis EL, et al. Diurnal axial length fluctuations in human eyes. Invest Ophthalmol Vis Sci. 2004;45:63 - 70.
    50. Mapstone R, Clark CV. Diurnal variation in the dimensions of the anterior chamber. Arch Ophthalmol. 1985;103:1485 - 1486.
    51. Cahill GM, Besharse JC. Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Vis Neurosci. 1992:8:487-490.
    52. Martin XD, Malina HZ, Brennan MC, Hendrickson PH, Lichter PR. The ciliarybody: the third organ found to synthesize indolamines in humans. Eur J Ophthalmol. 1992:2:67-72.
    53. Cahill GM, Grace MS, Besharse JC. Rhythmic regulation of retinal melatonin : metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol. 1991:11:529-560.)
    54. Besharse JC, Dunis DA. Methoxyindoles and Photoreceptor metabolism: activation of rod shedding. Science. 1983:219:1341-1342.
    55. White MP, Fisher LJ. Effects of exogenous melatonin on circadian disc shedding in the albino rat retina. Vision Res. 1989:29:167- 179.
    56. Wiechmann AF, Yang XL, Wu SM, Hollyfield JG. melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res. 1988:453:377-380.
    57. Dubocovich ML. melatonin is a potent modulator of dopamine release in the retina. Nature. 1983:306:782-784.
    58. Pierce ME, Besharse JC. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol. 1985;86:671 - 689.
    59. Pintor J, Martin L, Pelaez T, Hoyle CH, Peral A. Involvement of melatonin MT(3) receptors in the regulation of intraocular pressure in rabbits. Eur J Pharmacol. 2001:416:251-254.
    60. Thomas B, Mohanakumar KP. melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res. 2004:36:25-32.
    61. Delagrange P, Atkinson J, Boutin JA, et al. Therapeutic perspectives for melatonin agonists and antagonists. J Neuroendocrinol. 2003:15:442-448.
    62. Wiechmann AF, 0' Steen W. melatonin increases Photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci. 1992:33:1894-1902.
    63. Carlberg C. Gene regulation by melatonin . Ann NY Acad Sci. 2000:917:387-396.
    64.Reiter, RJ, Tan D, Mayo JC, Sainz RM, Leon J, Czarnocki Z. melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Polon. 2003:50:1129-1146.
    65. Wiechmann AF, O' Steen W. melatonin increases Photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci. 1992:33:1894-1902.
    66. Reiter, RJ, Tan D, Mayo JC, Sainz RM, Leon J, Czarnocki Z. melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Polon. 2003:50:1129-1146.
    67. Nickla DL, Wildsoet CF. The effect of nonspecific nitric oxide synthase inhibitor NG-Nitro-L-Arginine methyl ester on the choroidal compensatory response to myopic defocus in chickens. Optom Vis Sci. 2004:81:111-118.
    68. Morgan IG, Wellard JW. Inhibitory modulation of Photoreceptor melatonin synthesis via a nitric oxide mediated mechanism. Neurochem Int. 2004;45:1143 - 1153.
    69. Christensen AM, Wallman J. Evidence that increased scleral growth underlies visual deprivation myopia in chicks. IOVS, 1991,2(7):2143-2150.
    70. Mcbrien NA, Cornell LM, Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci. 2001:42:2179-2187.
    71. Mcbrien NA, Lawlor P, Gentle A. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew. Invest OphthalmolVis Sci. 2000:41:3713-3719.
    72. Michael PI, Gianluca T, Nikita P, et al. Circadian clocks, clock networks, arylalkylamine N-acetyl transferase, and melatonin in the retina. Prog Relin Eye Res 2005; 24(4): 433-456.
    [1]Hatter.S,Mrosovsky,N,Thompson,S,et al.Melanopsin and rod-cone photoreceptive system account for all major accessory visual function in mice.Nature,2003,424,76-81.
    [2]Provencio,I,Jiang,Grip,W,et al.Melanopsin:an opsin in melanophores,brain,and eye.Proc.Natl Acad.Sci.USA 1998b,95,340-345.
    [3]J.Vandesompele,K.De Preter,Pattyn,B,et al.Accurate normalization of real-time quatitative RT-PCR data by geometric averaging of multiple internal control genes,Genome Biol.3(2002)research 0034.1-0034.11.
    [4]Provencio I,Cooper HM,Foster RG.Rentinal projections in mice with inherited retinal degeneration:implications for circadian photoentrainment.J Comp Neurol,1998,395:417-439.
    [5]Ralph Hermann,Laszlo Poppe,Sarolta Pilbak.Predicted 3D-stucure of melanopsin,the non-rod,non-cone photopigment of the mammalian circaclian clock,from Djungrian hamster.Neuroscience,2005,76-80.
    [6]Mitsumasa koyanagi,Kaoru Kubokawa,Hisao Tsukamoto.Cephalochordate Melanopsin:Evolutionary Linkage between Invertebrate visual cells and vertebrate photosensitive retinal ganglion cells.Current biology,200;1065-1069.
    [7]Qiu.Xudong,Kumbalasiri,rida 2;Carison.Induction of photosensitivity by heterologous expression of melanopsin.Nature,2005;74-749.
    [8]Tida Kumbalasiri,Ignacio Provencio.Melanopsin and other novel mammalian opsins.Experimental eye research,2005;368-375.
    [9]Panda,S.,Nayak,S.K.,Campo,B.,et al.Illumination of the melanopsin signaling pathway.Science 2000,307,600-604.
    [10]Melyan,Z,Tarttelin,E.E.,Bellingham,J,et al.Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005, 433,741-745.
    [11] Provencio, I., Cooper H.M., Foster RG. Rentinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol, 1998a, 395, 417-439.
    [12] Bellingham, J., Foster, R. G., Opsins and mammalian photoentrainment. Cell Tissue Res, 2002, 309,57-71.
    [13] Peirson. Expression of the candidate circadian photopigment melanopsin (Opn 4) in the mouse retinal pigment epithelium. Molecular Brain Research, 2004; 132-135.
    [14] Jens Hannibal, Peter Hindersson, Jens Φ stergaard, et al. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retino hypothalamic Tract. IVOS , 2004; 4202-4209.
    [15] Sekaran, S., Foster, R.G.., Lucas R.J, et al. Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr. Biol. 2003,13, 1290-1298.
    [16] M.A. Belenky , C.A. Smeraski , I. Provencio , et al. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses,J. Comp. neurol. 2003, 460, 380-393.
    [17] Panda, S., Sato, T.K., Castrucci, A.M., et, al. Melanopsin(Opn4) requirement for normal light-induced circadian phase shifting. Science 2002, 298, 2213-2216.
    [18] Qiu, X., Kumbalasiri, T, Carlson, S.Met al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005,433 , 745-749.
    [19] Berson, D.M. Strange vision: ganglion cell as circadian photoreceptors. Trends Neurosci. 2003,26,314-320.
    [20] Dacey,D.M.,Liao,H.W.,Peterson,B.B.,et al. Melanopsin-expressing ganglion cekks in primate retina signal colour and irradiance and project to the LGN. Nature 2005,433,749-754.
    [21] Berson,D.M.,Dunn,F.A.,Takao,M. Phototransduction by retinal ganglion cells that set the circadian clock. Science ,2002,295,1070-1073.
    [22] Russell G, Foster, James B . Opsins and melanopsins, Current Biology, 2002, R543-R544
    [23] Stuart N. Peirson, P .,Bovee-Genurts, et al. Expression of the candidate circadian photopigment melanopsin(Opn4) in the mouse retinal pigment epithelium. Molecular brain research,2004; 132-135
    [24] Provencio, I. ,Rodriguez,I.R., Jiang, et al. A novel human opsin in the inner retina. J Neurosci, 2000,20, 600-605.
    [25] S.Hattar, R.J.Lucas, N.Mrosovsky. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 2003, 76-81.
    [26] Hattar,S., Liao,H.W., Takao,M., et al. Melanopsin-containing retinal ganglion cells: architecture projections, and intrinsic photosensitivity. Science 2002,295,1065-1070.
    [27] Gooley J, Lu.J., Fischer,D, et al. A broad role for melanopsin in nonvisual photoreception. J Neurosci, 20, 7093-7106.
    [28] Russell N. Van Gelder,. Making (a) sense of non-visual ocular photoreception, Neurosciences, 2003;458-461.
    [29] Gooley J, Lu J, Chou,T, et al. Melanopsin in cells of origin of the retinohypothalamic react. Neurosci. 2001,4,1165.
    [30] Emma E. T arttelin James, Belling ham et al. Expression of opsin genes early in ocular development of humans and mice. Experimental eye research,2003;393-396.
    [31] S.Sekaran, D.Lupi, S.Sekaran, et al. Melanopsin-dependent photoreception provide earliest light detection in the mammalian retina, Current biology, 2005;1099-l 107.
    [32] Lucas, R.J. et al. Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299,245-247(2003)
    [33] Alun R. Barnard, Samer Hattar , et al. Melanopsin regulates visual processing in the mouse retina. Current Biology, 2006 Feb 16, 389-395..
    [34] Jin Wan , Hua Zheng, Bao-Yan Hu, Acute Photoreceptor degeneration down-regulates melanopsin expression in adult rat retina, Neuroscience 2006;48-52.
    [35] K. Sakamoto, C. Liu, G. Tosini, Glassical photoreceptors regulate melanopsin mRNA levels in the rat retina, J. Neurosci. 2004 ,24 ,9693-9697.
    [36] K. Sakamoto, C. Liu, M. Kakamatsu, et al. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells, Eur. J. Neurosci. 2005, 22 3129-3136.
    [37] Hannibal, J., Moller, M., Ottersen, et al. PACAP and glutamate are co-stored in the retinohypothalamic tract. J. Comp. Neurol., 2000,418, 147-155.
    [38] J. Correa-Lacarcel, Maria J. Pujante, Francisco F. stimulus frequency affects c-fos expression in the rat visual system. J chemical Neuroanatomy , 2000; 13-146
    [39] Audrey H . Hobson , Maryanne. Apoptotic Photoreceptor death in the rhodopsin knockout mouse in the presence and absence of c-fos.Exp,Eye,Res.2000;247-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700