用户名: 密码: 验证码:
匙吻鲟消化酶发育、特性、分布及酶谱特点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类消化酶受年龄、食性、食物组成及环境因素等的影响。本文研究了0~53日龄匙吻鲟消化酶的发育模式,匙吻鲟、鳙和杂交鲟消化酶活力、特性及酶谱的差异,池塘与网箱养殖匙吻鲟消化酶活力及活力分布的不同,饲料蛋白水平对匙吻鲟消化酶活力的影响以及温度、pH对匙吻鲟蛋白酶和淀粉酶活力的影响。初步了解匙吻鲟的消化生理特点,以期为了解匙吻鲟营养需求和研制匙吻鲟专用配合饲料提供基础资料。本研究获得以下结果:
     1、碱性蛋白酶和酸性蛋白酶分别在出膜后3d(3DAH)和刚出膜时(0DAH)检测出活力;试验期间碱性蛋白酶活力高于酸性蛋白酶;在12DAH~40DAH期间α-淀粉酶活力相对稳定;发育早期脂肪酶活力较高;磷酸酶活力在20DAH开始显著增加,且碱性磷酸酶活力高于酸性磷酸酶。结果表明,蛋白酶,α-淀粉酶和磷酸酶随个体发育活力增加;碱性蛋白酶在个体发育早期对蛋白质的消化具有重要作用。养殖环境和食物发生改变时,酸性蛋白酶、α-淀粉酶、碱性磷酸酶和酸性磷酸酶活力在生长减慢时增加,生长加快时降低;脂肪酶活力在环境和食物发生变化时维持稳定。
     2、匙吻鲟总蛋白酶活力在pH 2.3~3达到最大,随pH增大活力显著下降,但在pH 7.0处出现另一个峰值。鳙总蛋白酶活力在pH 4.0~4.5、pH 8.0~8.5和pH 11.0处表现出三个峰值,而杂交鲟分别在pH2.5~3.0和pH 8.0~8.5处出现两个峰值。匙吻鲟酸性蛋白酶和脂肪酶活力显著高于鳙和杂交鲟,而碱性蛋白酶和α-淀粉酶活力显著低于鳙和杂交鲟。TLCK对匙吻鲟碱性蛋白酶活力的抑制率低于TPCK,而TLCK对鳙和杂交鲟碱性蛋白酶的抑制率均高于TPCK。匙吻鲟和杂交鲟存在一些相同或相似的条带;匙吻鲟与鳙的酶谱特征表现出较大的差异。
     3、池塘组碱性蛋白酶、α-淀粉酶和脂肪酶活力均显著低于网箱组;两组间酸性蛋白酶活力差异不显著;酸性蛋白酶活力在食道、胃和瓣肠中检测出,且食道和胃中的活力高于瓣肠;碱性蛋白酶在十二指肠和瓣肠中检测出,十二指肠中的活力高于瓣肠;淀粉酶活力在四个部位中都检测到,十二指肠中淀粉酶活力最大;脂肪酶只在胃中检测出活力。食道和胃中酸性蛋白酶活力在两组中差异不显著,而池塘组瓣肠酸性蛋白酶活力显著高于网箱组;池塘组十二指肠和瓣肠中碱性蛋白酶活力均显著低于网箱组;池塘组食道和十二指肠中淀粉酶活力显著低于网箱组,胃和瓣肠中淀粉酶活力两组间差异不显著;池塘组胃中脂肪酶活力显著低于网箱组。
     4、酸性蛋白酶和肝胰脏碱性蛋白酶活力随饲料蛋白水平的增加而增加,而肠道碱性蛋白酶活力随饲料蛋白水平的增加而降低;消化道α-淀粉酶活力随饲料蛋白水平的增加而降低,而肝胰脏α-淀粉酶活力表现出相反的趋势;饲料蛋白水平对消化道和肝胰脏脂肪酶活力影响不显著,各组脂肪酶活力差异不显著。结果表明,饲料蛋白水平对匙吻鲟肌肉粗蛋白含量,酸性蛋白酶,碱性蛋白酶和α-淀粉酶都会产生显著影响;饲料蛋白质水平为39.10%比较适宜。
     5、匙吻鲟酸性蛋白酶的最适温度为35~40℃,最适pH为2~3;碱性蛋白酶的最适温度为35℃,最适pH为7以上;淀粉酶活力受温度的影响不显著,在pH 5.5和pH8.0时出现峰值。
A series of biochemical determination and electrophoretic observations have been conducted to analyze development, characterization, distribution and zymogram of protease,α-amylase and lipase in paddlefish Polyodon spathula. The research included study on development of digestive enzymes in paddlefish from 0 to 53 day after hatching, comparing activrty and characterization of protease, amylase and lipase in paddlefish with those of bighead carp (Aristichthys nobilis) and hybrid sturgeon (Huso dauricus♀×Acipenser schrenki Brandt♂), a comparative study of a comparative study of enzymatic activity, distribution and characterization between pond-reared (with commercial feed) and cage-reared (with natural live food) paddlefish, effects of diet protein level on digestive enzyme activity of paddlefish and effects on tempareture and pH value on protease and amylase on paddlefish. The important results were in the followings:
     1. The alkaline protease activity was detected at 3 DAH and acid protease activity was quantifiable from eggs. Alkaline protease activity was consistently higher than acid protease activity.α-amylases activity was relatively stable during incubation period in workshop (12DAH~40DAH). High lipase activity indicated the importance of lipid utilization. Phosphatases activity significantly increased from 20DAH and alkaline phosphatases activity was higher than acid phosphatases activity. It is suggested that protease,α-amylase and phosphatase activities were increased with the ontogenesis of paddlefish and alkaline protease was important to paddlefish larval. Acid protease,α-amylase, acid and alkaline phosphatase activities were increased with growth decreasing and decreased with growth increasing when fish transferred to pond.
     2. Higher proteolytic activity was observed in the pH range 2.5–3.0 and at a pH of 7.0 for paddlefish; proteolytic activity of bighead carp had three peak in pH 4.0~4.5, pH 8.0~8.5, pH 11.0 and hybrid sturgeon indicated higher proteolytic activity in pH2.5~3.0 and pH 8.0~8.5. Levels of acid protease activity of paddlefish were similar to that of hybrid sturgeon, and significantly higher than that of bighead carp; while alkaline protease and amylase activity of paddlefish was significantly lower than those of bighead carp and hubrid sturgeon. The inhibition assay of paddlefish showed that the rate of inhibition of tosyl-phenylalanine chloromethyl ketone (TPCK) was approximately 2.6-fold that of tosyl-lysine chloromethyl ketone (TLCK). The substrate sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) analysis further showed that there were certain types of enzymes, especiallyα-amylase, with similar molecular mass in the paddlefish and hybrid sturgeon.
     3. There was no significant difference observed for acid protease activity between pond and cage groups, whereas the activity of alkaline protease,α-amylase and lipase in the pond group were significantly lower than those in the cage group. Acid protease activity was detected in the esophagus, stomach and intestine, and alkaline protease demonstrated detectable activity in the duodenum and intestine; Theα-amylase showed activity across the entire digestive tract, whereas lipase activity was only detected in the stomach. The activity of acid protease in the intestine of the pond group was significantly higher than that in the cage group; however, there was no difference in enzyme activity of esophagus and stomach between both groups. The alkaline protease activity of pond group was significantly lower than that of cage group in both duodenum and intestine . In addition, theα-amylase activity of pond group was significantly lower than that of cage in the esophageal and duodenal sections; however, there was no difference in the activity in the stomach and intestine. Lipase demonstrated higher activity in the stomach of the pond group than that of the cage group.
     4、Both acid protease activity and alkaline protease activity of hepatopancreas were significantly increased with the increase of diet protein level, while alkaline protease activity of intestine was decreased with increase of diet protein level. The activity ofα-amylases in digestive tract was decreased with increase of diet protein level, whileα-amylases activity in hepatopancreas showed an opposite trend. There was no significant difference on lipase activity in all tested tissues among dietary protein treatments. The results indicated that there were significant effects of diet protein level on activities of acid protease, alkaline protease andα-amylase. The test indicated that 39.10% protein content suited the protein demands of paddlefish juvenile.
     5、The optimum temperature for acid protease and alkaline protease were 35~40℃and 35℃, respectively. Effect of temperature on amylase was not significant and there was no optimum temperature for amylase. The optimum pH value for acid protease, alkaline protease and amylase were2~3, >7.0, 5.5 and 8.0, respectively.
引文
陈昌齐,刘建虎,袁锡立. 1997.匙吻鲟早期形态发育与生长阶段划分.西南农业大学学报. 19(6):550-553.
    陈国伟,许曹鲁,叶海滨,等. 2011.温度和pH对美国红鱼蛋白酶和淀粉酶活力的影响.现代渔业信息. 26(2):13-16.
    陈进树. 2009.鱼类消化酶研究进展.生物学教学. 34(12): 4-5.
    陈品健,王重刚,黄崇能,等. 1997. pH影响真鲷仔、幼鱼蛋白酶活力的研究.海洋学报. 19(3): 97-101.
    丁立云,张利民,王际英,等. 2010.饲料蛋白水平对星斑川鲽幼鱼生长、体组成及血浆生化指标的影响.中国水产科学. 17(6):1285-1292.
    董宏伟,韩志忠,康志平,等. 2007.匙吻鲟含肉率及肌肉营养成分分析.淡水渔业. 37(4): 49- 51.
    樊启学,程鹏,刘文奎. 2008.饥饿和再投喂对翘嘴鲌幼鱼消化酶活性的影响.中国水产科学.15(3): 439-445.
    傅应华,王金观. 2005.槐耳颗粒蛋白含量测定方法的改进.中国药物应用与监测. (6) : 21 -23.
    谷金皇,杨毅,冷向军,等.2010.添加外源性脂肪酶对瓦氏黄颡鱼的生长、消化酶及血清生化指标的影响.上海海洋大学学报. 2010,(19)6:798-804.
    韩庆,刘良国,张建平,等. 2011.温度和pH对洞庭鲇鱼消化酶活性的影响.水生生物学报. 35 (1):22-29.
    黄峰,严安生,张桂蓉,等. 2003.不同蛋白含量饲料对南方鲇胃蛋白酶和淀粉酶活性的影响[J].水生生物学报.27(5): 451-456.
    吉红,单世涛,曹福余,等.2009.安康地区利用家鱼产卵池培育匙吻鲟苗种技术研究.中国水产. 3: 43-44.
    吉红,孙海涛,单世涛. 2011.池塘与网箱养殖匙吻鲟肌肉营养成分及品质评价.水产学报. 35(2): 261-267.
    蒋广震,刘文斌,王煜衡,等. 2010.饲料中蛋白脂肪比对斑点叉尾鮰幼鱼生长、消化酶活性及肌肉成分的影响.水产学报.34(7):1129-1135.
    江慧芳,王雅琴,刘春国.三种脂肪酶活力测定方法的比较及改进.化学与生物工程,2007,24(8):72-75.
    李爱杰. 1996.水产动物营养与饲料学.北京:中国农业出版社.
    黎军胜,李建林,吴婷婷.外源消化酶和柠檬酸对奥尼罗非鱼内源消化酶活力的影响.南京农业大学学报. 2005,28(3):97-101.
    林永泰,蔡志全. 2000.匙吻鲟成鱼摄食虾的食性观察.水利渔业. 20(4): 10-11.
    刘家寿,余志堂. 1990.美国的匙吻鲟及其渔业.水生生物学报. 14(1):75-83.
    刘建虎,陈昌齐,刁晓明,等. 1998.匙吻鲟摄食器官数量性状胚后发育研究.上海水产大学学报. 7(4):288-293.
    刘香江,呼光富,王长忠,等. 2008.匙吻鲟研究概述及发展前景.北京水产. 3: 19-23.
    逯尚尉,刘兆普,余燕. 2010.不同饵料对点带石斑鱼幼鱼生长、营养成分及组织消化酶活性的影响.上海海洋大学学报. 19(5):648-653.
    吕耀平,陈建明,叶金云,等. 2009.饲料蛋白质水平对刺鲃幼鱼的生长、胴体营养组成及消化酶活性的影响.农业生物技术学报.17(2):276-281.
    梅景良,马燕梅. 2004.温度和pH对黑鲷主要消化酶活性的影响.集美大学学报(自然科学版). 9(3):276-230.
    聂国兴,明红,张玲,等. 2006.外源木聚糖酶对尼罗罗非鱼消化器官消化酶活力及分布的影响华北农学报. 21 (4):123-130.
    强俊,王辉,李瑞伟,等. 2009.不同饵料对奥尼罗非鱼仔稚鱼生长发育及消化酶活力的影响.水产科学. 28(11):618-623.
    邵庆均,苏小凤,许梓荣,等. 2004.饲料蛋白水平对宝石鲈生长和体组成影响研究.水生生物学报.28(4):367-373.
    沈硕,周继成,赵思明,等. 2009.匙吻鲟的营养成分及肌肉营养评价.营养学报. 31(3): 295- 297.
    沈文英,祝尧荣,钱科亮. 2006.温度和pH对澳洲宝石鱼消化酶活性的影响.大连水产学院学报. 21(2):189-192.
    石英,冷向军,李小勤,等. 2009.饲料蛋白水平对血鹦鹉幼鱼生长、体组成和肠道蛋白消化酶活性的影响.水生生物学报.33(5):874-880.
    孙翰昌,徐敬明,庞敏. 2010.饲料蛋白水平对瓦氏黄颡鱼消化酶活性的影响[J].水生态学杂志. 3(2): 84-88.
    吴业彪,林建国. 1999.美国匙吻鲟及其养殖技术.淡水渔业. 29(1):38-39.
    熊邦喜,梅新海,戴泽贵. 2008.匙吻鲟引进中国20年概述.淡水渔业. 38(5):70-73.
    王镜岩,朱圣庚,徐长法. 2002.生物化学.北京:高等教育出版社.
    尾崎久雄著.吴尚忠译. 1983.鱼类消化生理学(上、下册).上海:上海科技出版社.
    吴仁协,戈薇,洪万树,等. 2007.大弹涂鱼成鱼消化酶活性的研究.中国水产科学. 14(1):99-105.
    杨明生,熊邦喜,黄孝湘. 2005.匙吻鲟人工繁殖F2的早期发育.华中农业大学学报. 24(4): 391-393.
    叶元土. 1992.鲤鱼肝胰脏和肠道淀粉酶活性的研究.水产科学.11(10):14-16.
    叶元土,林仕梅,罗莉,等. 1998.温度、pH南方大口鲇、长吻鮠蛋白酶和淀粉酶活力的影响.大连水产学院学报.13(2):17-23.
    殷名称. 1995.鱼类生态学.北京:中国农业出版社.
    殷守礼,刘保占,刘磊. 2010.匙吻鲟肌肉与软骨营养成分分析.北京农业. 5: 12-14.
    郑惠芳,夏中生,林岗,等. 2009.饲料蛋白质和脂肪水平对赤眼鳟生长和鱼体营养成分的影响.淡水渔业.39(2):42-47.
    周景祥,陈勇,黄权,等. 2001.鱼类消化酶的活性及环境条件的影响.北华大学学报. 2(1): 70-73.
    支兵杰,刘伟,赵春刚,等. 2009.盐度对大马哈鱼幼鱼消化酶及碱性磷酸酶活力的影响. 18(3): 289- 294.
    朱爱意,谢佳彦,江丽华. 2010. pH和温度对黄姑鱼主要消化酶活力的影响.浙江海洋学院学报(自然科学版).29(6):531-536.
    朱爱意,褚学林. 2006.大黄鱼(Pseudosciaena crocea)消化道不同部位两种消化酶的活力分布及其
    受温度、pH的影响.海洋与湖沼.37(6):561-567.
    Alvarez-González C A, Cervantes-Trujano M, Tovar-Ramírez D, et al. 2006. Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol. Biochem. 31: 83-93.
    Alvarez-González C A, Moyano-López F J, Civera-Cerecedo R, et al. 2008. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus.1. Biochemical analysis. Fish Physiol Biochem. 34:373-384.
    Alvarez-González C A, Moyano-López F J, Civera-Cerecedo R, et al. 2010. Development of digestiveenzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus II:Electrophoretic analysis. Fish Physiol. Biochem 36:29-37
    Barrington E J W. 1957. The alimentary canal and digestion. In The Physiology of Fishes (Edited by Brown M. E.), Vol. 1, pp. 109-161. Academic Press, New York.
    Bezerra R S, Santos J F, Lino M A S, Vieira V L A, Carvalho L B (2000) Characterization of stomach and pyloric caeca proteinases of Tambaqui (Colossoma macropomum). Food Biochem 24:189-199
    Billard R, Lecointre G. 2001. Biology and conservation of sturgeon and paddlefish. Reviews in Fish Biology and Fisheries. 10:355-392.
    Cahu C, Zambonino Infante, J L. 1995. Effect of molecular form and dietary nitrogen supply in sea bass larvae: response of pancreatic enzymes and intestinal peptidases. Fish Physiol. Biochem. 14:209-214.
    Cahu C, Zambonino Infante J, 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture. 200:161-180.
    Cahu C, Zambonino Infante J, Escaffre A M, et al. 1998. Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture. 169:1-7.
    Cara B, Moynao F J, Cárdenas S, et al. 2003. Assessment of digestive enzyme activities during larval development of white bream. J. Fish Biol. 63: 48-58.
    Cedric J S. 2009. Digestive enzyme response to natural and formulated diets in cultured juvenile spiny lobster, Jasus edwardsii. Aquaculture. 294:271-281.
    Chakrabarti I, Gani Md A, Chaki K K, et al. 1995. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp. Biochem. Physiol. 112A:167-177.
    Chatzifotis S, Polemitou I, Divanach P,et al. 2008. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture. 275:201-208.
    Chen B N, Qin J G, Kumar M S, et al. 2006. Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture. 260:264-271.
    Chong A S C ,Hashim R, Chow-Yang L, et al. 2002. Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture. 203:321-333.
    Ghosh A. 1985. Observation on the digestive enzymes of the Indian feather back Notopterus chitulu (Ham.) in relation to its food habits. J. Inland Fish Sot. India. 17:25-28.
    Clark J, McDonald N L, Stark J R. 1985. Metabolism in marine flatfish: II. Protein digestion in dover sole (Solea solea L.). Comp. Biochem. Physiol. 81B:217-222.
    Comabella Y, Mendoza R, Aguilera C, et al. 2006. Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus. Fish Physiol Biochem. 32:147-157.
    Corrêa C F, Aguiar L H, Lundstedt L M, et al. 2007. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comp. Biochem. Physiol. 147A:857-862.
    Darias M J, Murray H M, Gallant J W, et al. 2006. Characterization of a partialα-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp. Biochem. Physiol. 143(B):209-218.
    Debnath D, Pal A K, Sahu N P, et al. 2007. Digestive enzymes and metabolic profile of Labeo rohitafingerlings feddiets with different crude protein levels. Comp. Biochem. Physiol. 146B:107-114.
    Díaz-López M, Moyano-López J F, Alarcón-López F J, et al. 1998. Characterization of fish acid proteases by substrate–gel electrophoresis. Comp. Biochem. Physiol. 121B:369-377.
    Douglas S E, Mandla S, Gallant J W. 2000. Molecular analysis of the amylase gene and its expression during the development in the winter flounder, Pleuronectes americanus. Aquaculture. 190:247-260.
    Fernandez-Diaz C, Yufera M. 1997. Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules. Aquaculture. 153:93-102.
    Freund J A, Schimansky-Geier L, Beisner B, et al. 2002. Behavioral stochastic resonance: How the noise from a Daphnia swarm enhances individual prey capture by juvenile Paddlefish. J. theor. Biol. 214:71-83.
    FurnéM, Hidalgo M. C, López A, et al. 2005. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture. 250:391-398
    Gawlicka A, The SJ, Hung SSO, et al. 1995. Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem. 14: 357-371.
    Gisbert E, Giménez G, Fernández I, et al. 2009. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture. 287:381-387.
    Gisbert E, Piedrahita R H, Conklin D E. 2004. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture. 232: 455-470.
    Govoni J J, Boehlert G W, Watanabe Y. 1986. The physiology of digestion in fish larvae. Environ. Biol. Fisches. 16: 59-77.
    Hidalgo M C, Urea E A, Sanz. 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture. 170:267-283.
    Ji H, Wang C Z. 2009. China’s limited paddlefish culture focused on meat production. Global Aquaculture Advocate. July/August: 30-31.
    Jones D A, Kamurudin M S, Levay L. 1993. The potential for replacement of live feeds in larval culture. J. World Aquacult. 24:191-210.
    Jones D A, Kumlu M, Le Vay L, et al. 1997. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture.155:285-295.
    Kolkovski S. 2001. Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture. 200:181-201.
    Kolkovski S, Tandler A, Izquierdo M S. 1997. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass ( Dicentrarchus Zabrax) larvae. Aquaculture. 148:313-322.
    Kolkovski S, Tandler A, Kissil G, et al. 1993. The effect of dietary exogenous digestive enzymes on ingestion assimilation, growth and survival of gilthead seabream Sparus aurata, Sparidae, Linnaeus larvae. Fish Physiol. Biochem. 12:203-209.
    Kurokawa T, Shiraishi M, Suzuki T. 1998. Qualification of exogenous protease derived from zooplankton in the intestine of Japanese sardine Sardinops melanoticus larvae. Aquaculture. 161:491-499.
    Kuz’mina V V. 1990. Temperature influence on the total level of proteolytic activity in the digestive tract of some species of freshwater fishes. J. Ichthyol. 30: 97-109
    Kuz’mina V V. 1996. Influence of age on digestive enzyme activity in some freshwater teleosts.Aquaculture. 148:25-37.
    Lazo J P, Dinis M T, Holt G J, et al. 2000. Cofeeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture. 188:339-351.
    Lazo J P, Mendoza R, Holt G J, et al. 2007. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture. 265:194-205.
    Liu Z Y, Wang Z, Xu S Y, et al. 2008. Partial characterization and activity distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.). Aquaculture Nutrition. 14:31-39.
    Lowry O H, Rosebrough N J, Farr A L, et al. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265-275.
    Lundstedt L M, Melo J F B, Moraes G. 2004. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comp. Biochem. Physiol. 137B:331-339.
    Ma H, Cahu C, Zambonino Infante J L, et al. 2005. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture. 245: 239-248.
    Ma P, Sivaloganathan B, Reddy P K, et al. 2001. Ontogeny ofα-amylase gene expression in sea bass larvae (Lates calcarifer). Mar. Biotechnol. 3:463-469.
    Martínez I, Moyano F J, Fernández-Díaz C, et al. 1999.Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem. 21: 317-323.
    Mims S D, Shelton W L, Wynne F S, et al. 1999. Production of Paddlefish. SRAC Publication. 437: 22-28.
    Moyano F J, Sarasquete M C. 1993. A screening on some digestive enzyme activities of gilthead seabream (Sparus aurata) larvae. In: World Aquaculture’93.Special Publication No. 19. Torremolinos, Spain. Muhlia-Almazán A, Sánchez-Paz A, García-Carre?o F L. 2008. Invertebrate trypsins: a review. Comp. Biochem. Physiol. 178B: 655-672.
    Natalia Y, Hashim R, Ali A, et al. 2004. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture. 233:305-320 .
    Oozeki Y, Bailey K M. 1995. Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Mar Biol. 122:177-186.
    Pedersen B H. 1993. Growth and mortality in young larval herring (Clupea harengus): effects of repetitive changes in food availability. Mar. Biol. 117:177-186.
    Pérez-Casanova J C, Murray H M, Gallant J W, et al. 2006. Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture. 251:377- 401.
    Perrin A, Le Bihan E, Koueta N. 2004. Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). Journal of Experimental Marine Biology and Ecology. 311:267-285.
    Person-Le Ruyet J, Alexandre J C, Thébaud U, Mugnier C. 1993. Marine fish larvae feeding: formulated diets or live prey? J. World Aquacult. Soc. 24: 211-224.
    Phillip W B, George D S. 2006. Bycatch rates and initial mortality of paddlefish in a commercial gillnet fishery. Fisheries Research. 77: 343– 347.
    Ribeiro L, Zambonino-Infante J L, Cahu C. 2002. Digestive enzymes profile of Solea senegalensis postlarvae fed Artemia and a compound diet. Fish Physiol. Biochem. 27: 61-69.
    Ribeiro L, Zambonino-Infante J L, Cahu C L, et al. 1999. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture. 179: 465-473.
    Rosen R A, Hales E C. 1981. Feeding of paddlefish, pologydon spathula. Copeia. (2):441-455.
    Russell D F, Wilkens L A, Moss F. 1999. Use of behavioural stochastic resonance by paddlefish for feeding. Nature. 402:291-293.
    Salhi M, Bessonart M, Chediak G, et al. 2004. Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture. 231: 435- 444.
    Santamaría Rojas C A, Marín de Mateo M, Traveset R, et al. 2004. Organogenesis in larval common Dentex dentex L., (Sparidae): histological and histochemical aspects. Aquaculture. 237:207-228.
    Santigosa E, Sánchez J, Médale F, et al. 2008. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 282:68-74.
    Segner H, Rosch R. 1992. Rearing larval stages of fish on drydiets: The example of Coregonus lavaretus. Edited by B. Moav, V. Hilge and H. Rosenthal. EAS special publication, Oostende, Belgium, pp 279-296.
    Segner H, Storch V, Reinecke M, et al. 1994. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar Biol. 119:471-486.
    Sveinsdóttir S, Thorarensen H, Gudmundsdóttir A. 2006. Involvement of trypsin and chymotrypsin activities in Atlantic cod (Gadus morhua) embryogenesis. Aquaculture. 260: 307-314.
    Tandler A. 1985. Overview: Food for the larval stages of marine fish. Live or inert? Collect. repr. -Isr. Oceanogr. Limnol. Res. 11:419-424.
    Tengjaroenkul B, Smith B J, Caceci T, et al. 2000. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture. 182:317- 327.
    Tian X L, Ren X W, Dong S L, et al. 2008. The primary studied of the zymograms of digestive isozyme in Tongue-sole Cynoglossus semilaevis. Biotechnology Bulletin (in Chinese) Supplement:315-318.
    Uebersch(a|¨) r B. 1993. Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds), Physiological and biochemical aspects of fish development. University of Bergen, Norway. 233-237.
    Uys W, Hecht T. 1987. Assays on the digestive enzymes of sharptooth catfish, Clarias gariepinus (Pisces: Clariidae). Aquaculture. 63:301-313.
    Wang C F, Xie S Q, Zhu X M, et al. 2006. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture. 254: 554-562.
    Watanabe T, Kiron V. 1994. Review - Prospects in larval fish dietetics. Aquaculture 124:223-251.
    Wilkensa L A, Hofmannb M H, Wojtenek W. 2002. The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey. Journal of Physiology. 96:363-377.
    Zambonino Infante J L, Cahu C. 1994. Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 12: 399- 408.
    Zambonino-Infante J L, Cahu C. 1999. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J. Nutr. 129:1195-1200.
    Zambonino-Infante J L, Cahu C. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol. 130:477-487.
    Zambonino-Infante J L, Cahu C L. 2007. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture. 268: 98-105.
    Zambonino-Infante J L, Cahu C, Péres A. 1997. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. J. Nutr. 127:608-614.
    Zambonino-Infante J, Gisbert E, Sarasquete C, et al. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino J E O, Bureau D, Kapoor B G (Eds.) Feeding and Digestive Functions of Fish. Science Publishers, Inc, Enfield, USA, pp. 277-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700