用户名: 密码: 验证码:
大坡度小半径线路情况对盾构法施工开挖面稳定性及管片受力影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为了更好地满足线网规划、工程建设和运营的需要,广州市率先在国内采用了直线电机运载系统。与传统的运载系统相比,直线电机驱动地铁系统具有优良的动力性能和爬坡能力,线路的最大坡度可达80‰,最小曲线半径可以减小到80m。然而,直线电机驱动地铁系统带来选线灵活,减少隧道埋深,降低工程造价等众多优点的同时,也为其区间隧道的建设带来了一些新的挑战和问题,如开挖面的稳定问题、盾尾间隙的增大问题等。
     本论文以广州地铁4、5号线直线电机盾构隧道工程为背景,针对直线电机隧道大坡度和小曲线半径的显著特性,采用理论分析、数值计算、现场实测对比分析等方法,对小半径、大坡度线路条件下盾构隧道施工开挖面稳定性和管片受力相关问题进行了研究探讨。
     (1)以极限平衡理论为基础,考虑线路纵向坡度,引入Lagrange乘子,将土压力问题以变分学观点来描述,借助于极限平衡变分法以及求解问题的几何关系,将主动土压力和被动土压力的泛函极值问题转化为普通函数的极值问题,研究了盾构隧道施工工作面土体极限主动土压力和极限被动土压力的计算问题,分析了隧道周边土体参数对盾构开挖面支护压力的影响,讨论了不同条件下支护压力作用点位置的变化情况,进一步探讨了盾构迎坡掘进对开挖面极限支护压力的影响。
     (2)采用数值模拟计算方法,结合现场实际工程施工情况,研究了大坡度条件下盾构隧道施工工作面及周边地层的位移和应力的变化规律,分析了隧道纵坡大小对隧道周边地层不同方向的位移、洞周收敛位移、开挖面附近主应力、塑性区等的影响,并进一步探讨了盾构土仓压力、盾尾注浆效果等对地层变形及受力状态的影响。
     (3)采用ANSYS和FLAC3D联合建模进行计算的方法,对小曲线半径条件下盾构隧道施工引起的周边地层的受力和变形规律进行了研究,分析了曲线半径、不对称推力,盾尾注浆效果等因素对小半径盾构隧道施工的影响,同时探讨了曲线隧道盾尾间隙的计算方法,并按照现场实际施工的统计数据确定盾构的不对称推力,保证了计算结果的可靠性。
     (4)采用地层—结构计算模式,对大坡度、小曲线半径条件下盾构隧道管片衬砌的受力特征进行了研究,进一步分析了曲线半径、注浆方式、纵坡大小等对管片受力状态的影响。
     (5)从曲线段盾构掘进机的组成和掘进施工的特点出发,探讨了小半径条件下盾构隧道的轴线控制技术,隧道施工整体向外侧倾斜的控制技术等,提出合理的推力和掘进速度是盾构隧道施工安全的重要保证,通过工程实例分析,验证了小曲线半径条件下盾构隧道施工是能够保证安全的。
ABSTRACT:To better meet the needs of network planning, project construction and operation, the liner motor traction transportation system is first adopted in Guangzhou City of China. Compared with the traditional traction transportation system, the linear motor-driven subway system has an excellent dynamic performance and grade ability, which means the greatest gradient of line can reach 80‰and the minimum radius can be reduced to 80m. Although the linear motor-driven subway system has a lot of advantages such as flexible election of line, reducing depth of tunnel, lowering project cost.etc, it also brought some new challenges and problems for its running tunnel construction, such as the stability of excavation face, the increasing gap of shield tail, and so on.
     This paper has a study and discussion on problems related with the Impact of Big gradient and curve in small radius on the stability of shield tunneling excavation face and the stress of segment through theoretical analysis, numerical calculation, on-site measure and comparative analysis, and so on, which takes Guangzhou Metro Line 4 and 5 with large gradient and curve in small radius shield tunnel project as background, aiming at distinct features of the linear motor-driven tunnel with large gradient and curve in small radius.
     (1) Based on the limit equilibrium theory, longitudinal gradient,and introducing the lagrange multipliers, the problem of soil pressure is described as calculus of variations view, which converts the functional extreme value problem of passive and active earth pressure into the extreme issues of general function through the limit equilibrium variation law and the geometric relations of solving problem. It makes a study of the calculation problems of the limit active earth pressure and limit passive earth pressure on the soil of the shield tunneling excavation face, analyzes the impact of soil parameters surrounding tunnels on the support pressure of the excavation face, discusses the position change of action point of support pressure under different conditions, and further explores the impact of the prop-setting grade construction method against to limit support pressure on excavation face.
     (2) By means of numerical simulation method, and in light of the actual on-site construction, the variation laws of stress and displacement of excavation face and surrounding stratums in shield tunneling under the condition of large gradient are studied in this paper, which analyzes the impact of the size of longitudinal slope on the displacement of surrounding stratums in different direction, convergence displacement, principle stress around excavation face, plastic zone,etc, and further explores the impact of pressure of the soil chamber and grouting effect in shield tail on the situation of stratums deformation and stress.
     (3) By ANSYS and FLAC3D joint modeling and calculating, this paper is to study the variation laws of stress and deformation of surrounding stratums induced by shield tunneling construction under the condition of curve in small radius, and to analyzes the impact of curve radius, asymmetrical thrust, grouting effect in shield tail on the construction of shield tunneling with small radius. At the same time, how to calculate the gap of shield tail in curve tunnel is discussed and the reliability of its result can be ensured by the asymmetrical thrust which is accordance with the construction site statistics.
     (4) By the stratum--structural calculation mode, the mechanic characteristics of shield tunneling segment lining under the condition of curve in small radius are studied in this paper, as well as the impact of curve radius, grouting method, size of longitudinal slope,etc. on the stress state of segment.
     (5) Based on the components of shield tunneling machine used in curved segment and the characteristics of tunneling construction, this paper is to discuss the axis controlling technologies under the conditions of small radius and overall lateral tilt during tunnel construction, and it points out that the reasonable thrust and driving speed are important elements to guarantee construction safety in shield tunneling. Finally,it is tested and verified through case study that it is safe to carry on shield tunneling under the conditions of small radius.
引文
[1]彭立敏,刘小兵.地下铁道,中国铁道出版社,2006,10
    [2]裴洪军.城市隧道盾构法施工开挖面稳定性研究.河海大学硕士学位论文,2005,3
    [3]刘洪震,赵运臣.广州地铁“越—三”区间盾构工程地表沉降原因分析.隧道建设,2002,22(1):20-23
    [4]边金,陶连金,郭军.盾构隧道开挖引起的地表沉降规律.地下空间与工程学报2005,4(1)
    [5]沈征难.盾构掘进过程中隧道管片上浮原因分析及控制.现代隧道技术,2004,12,1(6):51-56
    [6]边金,陶连金,郭军.盾构隧道开挖引起的地表沉降规律.地下空间与工程学报2004,4,1(2):247-254
    [7]易宏伟,朱忠隆.盾构法施工中土体扰动的静力触探试验研究.武汉城市建设学院学报,1999,6,16(2):39~43.
    [8]张子新,邵华.盾构推进的损伤力学分析及现场试验研究.地下空间,2004,9,3:285-289
    [9]高俊强,胡灿.盾构推进和地表沉降的变化关系探讨.南京工业大学学报,2005,7,4(27)
    [10]Peck R B. Deep excavations and tunneling in soft ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City:[s. n.],1969:225~ 290.
    [11]侯学渊,廖少明.盾构隧道沉降预估.地下工程与隧道,1993,(4):24~32.
    [12]Attewell P B, Woodman J P. Predicting the dynamics of ground settlement ang its derivatives caused by tunneling in soil.Ground Engineering,1982,15(8)13:20~36.
    [13]尹旅超,朱振宏,李玉珍,袁少军等编译.日本隧道盾构新技术.武汉:华中理工大学出版社,1999:54-71.
    [14]Liu Baochen. Ground Surface Movements Due to Underground Excavation in P R China. Chap 29, Volume 4, Comprehensive Rock Engineering, Pergamon Press,1993,781~817.
    [15]刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社,1991:329~639.
    [16]施成华,彭立敏,刘宝琛.盾构法施工隧道纵向地层移动与变形预计工.岩土工程学报2003,9,1(25):585~589
    [17]Verruijt A, Booker J R. Surface Settlement due to Deformation of A Tunnel in An Elastic Half plane. Geotechnique,1996.46(4):753~756.
    [18]Loganathan N, Poulos H G Analytical Prediction for Tunneling-induced Ground Movements in Clays. Journal of Geo-technical and Geo-environmental Engineering, ASCE,1998,124(9): 124~129.
    [19]E.H.Danis,M.J.Gunn,R.J.Mair,and H.N.Seneviratne, "the stability of shallow tunnel sand under ground opening sincohesive material.". Journal of Geotechnical,1980,30(4):397~416
    [20]Pierre chambon chambon,"shallow tunnel sincohesionless soil:stablity of tunnel face,"Journal of Geotechnical Engieering,Vol.120,No.7,1994
    [21]程展林,吴忠明,徐言勇.砂浆中泥浆盾构法隧道施工开挖面稳定性试验研究.长江科学学报,Vol(18),No.5,2001
    [22]李围,何川,张志强.大型地下结构下修建盾构隧道模型试验.西南交通大学学报,2005,40(4):478-483.
    [23]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究.长江科学院院报,Vol(18),No.5,2001
    [24]安红刚,胡向东.交叠隧道施工地表变形的进化智能预测.同济大学学报(自然科学版)2004,12,32:1573~1577
    [25]刘洋,丁晓唐,孙树林.人工神经网络在地表变形预测中的应用.山西建筑,2005,11,31:88-89
    [26]Ghaboussi J, Ranken R E, Karshenas M. Analysis of subsidence over soft ground tunnels. Evaluation and Prediction of Subsidence,1978,182~196.
    [27]Ito T, Histake M. Surface displacements caused by tunnel driving in anisotuopic viscoelastic ground.4th International Conference Rock Mechanics. [s.l.]:[s.n.],1979,1:677-684.
    [28]Ito T, Histake K.隧道掘进引起的三维地面沉陷分析.隧道译从,1985,(9):46~57.
    [29]Ghaboussi J, Hansmire W H, Parker H W. Finite element simulation of tunneling over subways. Journal of Geotechnical Engineering,1983,109(3):318~334.
    [30]Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformations due to tunneling in soft cohesive soils:part Ⅰ-method of analysis. Computers and Geotechnics, 1990,Vol 10:87~109.
    [31]Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformations due to tunneling in soft cohesive soils:part Ⅱ-results. Computers and Geotechnics,1990, Vol 10:111-138.
    [32]李桂花.盾构法施工引起的地面沉陷的估算方法.同济大学学报,1986,14(2):253~261.LI Gui-hua, Estimation methods of ground settlement caused by shield tunelling[J]. Journal of Tongji University,1986,14(2):253~261.
    [33]孙钧.城市工程活动引起土体沉降对环境公害的预测与控制.二十一世纪城乡建设中的关键科学问题.北京:[s.n.],1996.
    [34]阮林旺.软土盾构推进对相邻土层及桩体影响的三维有限元分析[硕士论文.上海:同济大学,1997.
    [35]易宏伟,朱忠隆.盾构法施工中土体扰动的静力触探试验研究.武汉城市建设学院学报1999,6,16(2):39~43
    [36]李园,孙群岭.盾构隧道施工过程的有限元分析.低温建筑技.2003,6:55~56
    [37]de Buhan B, Feard J, Gamier D, et al. Failure properties of fractured rock masses as anisotropic homogenized media [J]. J Engrg Mech, ASCE,2002,128(8):869~875
    [38]王敏强,陈宏胜.盾构推进隧道结构三维非线性有限元仿真.岩石力学及工程学报,Vo1.21,No.2,2002
    [39]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析.岩石力学与工程学报2002,21(3)’March:388~392
    [40]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析.岩石力学与工程学报,2003,22(8):1298-1301.
    [41]秦建设,尤爱菊.盾构隧道开挖面稳定数值模拟研究.矿山压力与顶板管理No1,2005:27-30
    [42]叶耀东,王如路等.盾构穿越运营地铁隧道施工技术探讨.施工技术,2005,12(34):67-68
    [43]谈小龙,朱伟,秦建设,杉本光隆.盾构法隧道施工中盾构控制滞后效应的研究.地下空间,2004,3,1(24):36~40
    [44]谈小龙盾构隧道施工行为控制的研究.南京:河海大学硕士学位论文,2002
    [45]陶龙光,刘波,丁城刚,卓发成,赵德刚,李志南.盾构过地铁站施工对地表沉降影响的数值模拟.中国矿业大学学报,2003,3,1(32):236-240
    [46]秦建设,尤爱菊.盾构隧道开挖面稳定数值模拟研究.矿山压力与顶板管理2005,1:27-31
    [47]董华珍,王仲林.城市轨道交通中小半径曲线问题探讨.四川建筑2005,6,3:41-42
    [48]凌宇峰,李章林.小曲线半径盾构轴线控制技术.上海建设科技2003(1):34
    [49]赵运臣.盾构隧道曲线段管片破损原因分析.西部探矿工程,2002,3
    [50]李强,曾德顺.盾构千斤顶推力变化对地面变形的影响.特种结构,2002,12:45-48
    [51]李强,曾顺德.盾构千斤顶推力变化对地面变形的影响.特种结构,2002,12
    [52]张凤祥,朱合华,傅德明等.盾构隧道,人民交通出版社,2004,9
    [53]张学军,地铁长大坡道设计相关问题的探讨,都市轨道交通,2005,10(5)
    [54]尹旅超,朱振宏.日本盾构隧道新技术,华中理工大学出版社,1999,7
    [55]刘波,韩彦辉.FLAC原理、实例与应用指南,人民交通出版社,2005,9
    [56]混凝土结构设计规范(GB 50010-2002)
    [57]Pobert M.C.NG, K.Y.LO et al.Analysis of field performance---the Thunder Bay tunnel. Canadian Geotechnical Journal,23:30-50
    [58]张凤祥,朱合华,傅德明等.盾构隧道,人民交通出版社,2004,9
    [59]GAnagnostou, K.kovarl.The Face Stability of Slurry-shield-driven Tunnels.[J] tunneling and underground space technology,1994,9(2):165~174
    [60]苏晓声,世界坡度最大的地铁,铁道知识,2005,6
    [61]Takehiro, Hideo kiya, Tetsuro Esaki and Yujing Jiang.Experimental study and numerical analysis on the stability of tunnel face in sandy ground.
    [62]Eisentein z and Ezzldine O The effects of tunneling technology on ground control—Tunneling andUndergroundSpaceTechnology,1992,7(3)273~279
    [63]M.Karakus,RJFowell effects of different tunnel face advance excavation on the settlement byFEM TUNNEL AND UNDERGROUND TECHNOLOG-2003,513-23
    [65]A. Fakhini, D Salehi, N.Moktabai.Numerrical back analysis for estimation of soil parameters in the ResalatTunnel projectTUNNELANDUNDERGROUNDTECHNOLOG-2004.57~67
    [66]Resendiz D, Romo M.P Settlement upon soft ground tnnneling Theoretical solutim 1981. 65-74
    [67]孙钧、侯学渊地下结构.北京:科学出版社,1988:631-638
    [68]张冬梅,黄宏伟,王箭明盾构推进引起地面沉降的粘弹性分析岩土力学.2001,9(31:311~314。
    [69]GutllerU, Stoffer U Investigation of the deformation and collaps behavior Of circular lined Tunnels in centrifuge model tests Centrifuge in Soil Mechanics Rottefdam:Balkema,1988: 183-186
    [70]Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Milo, et al Settlement through above a model shield observed in a centrifuge Centrifuge 98, Toky,1998,713-719
    [71]裴洪军孙树林隧道盾构法施工开挖面稳定性研究方法评析 地下空间与工程学报.2005,2
    [72]Yek F Chen Application of neural networks to automatic soil pressure balance control for shield tunneling Automation in Construction,1997,5(5):421-426
    [73]Shi Jinsheng, Ortigao J A B, Bai Junlli Modular neural networks for predicting settlements during tunneling. Journal of Geotechnical and Geoenvironmenlal Engineering,1998(5): 389-395
    [74]冯夏庭,张治强等位移反分析的进化神经网络方法研究 岩石力学与工程学报,1999(5):529-533
    [75]孙钧,袁金荣.盾构施工扰动与地层移动及其智能冲经网络预测.岩土工程学报,2001(3):2614267
    [76]尹旅超朱振宏.李玉珍.袁少军等编译.日本隧道盾构新技术.武汉:华中理工大学出版社.1999
    [77]阳军生,刘宝琛 挤压式盾构施工引起的地表移动及变形岩土力学·1998·19(3):10-13
    [78]沈培良,张海波,殷宗泽 上海地区地铁隧道盾构施工地面沉降分析河海大学学报(自然科学版),2003.31(5)556~559
    [79]刘洪震.赵运臣 广州地铁“越一三”区间盾构工程地表沉降原因分析.隧道建设,2002.22(1):20~23
    [81]王敏强,陈宏胜 盾构推进隧道结构三维非线陡有限元仿真 岩石力学及工程学报,2002,21(2)
    [82]张风祥,傅德明,杨国祥盾构隧道施工手册北京:人民交通出版社,2005
    [83]王树清,蔡胜华,蒋硕忠盾构法隧道施工同步注浆材料研究k江科学院院报1998,15(4)
    [84]周敏娟盾构隧道村砌结构的力学模型河北建筑工程学院学报,2005,23(1)
    [85]朱合华,陶履彬盾构隧道衬砌结构受力分析的粱一弹簧系统模型 岩土力学,1998,19(2):26~32
    [86]汤漩黄宏伟盾构隧道衬砌设计中几个问题的研究地下空间·2003t 23(2):210-215
    [87]胡如军朱伟季亚平盾构隧道管片设计参数的灵敏度分析地下空间,2003,23(1):28—32
    [88]赵国旭.何川 盾构隧道管片没计的主要影响因素分析铁道建筑,2003-12:25-29
    [90]孙振川 城市地铁盾构法隧道软土地段端头地层加固技术西部探矿工程,2003.10.31-33
    [91]日本神户市营地铁海岸线直线电机轨道交通系统现代城市轨道交通,2005,6
    [92]李娜.直线电机城市轨道交通系统的特点及应用,电力机车与城轨车辆,2005,5
    [93]彭金水,直线电机牵引方式在城轨交通选线中的优势,都市快轨交通,2006,2
    [94]刘洪震,赵运臣.广州地铁“越—三”区间盾构工程地表沉降原因分析.隧道建设,2002,22(1):20-23
    [95]苏晓声,世界坡度最大的地铁,铁道知识,2005,6
    [96]Attewell P B. Ground movements caused by tunneling in soil. Proceedings of First Conference on Large Ground Movements and Structures. Edited by Geddes J D, Cardiff,1978:812~948.
    [97]Attewell P B. An overview of site inverstigation and long-term tunneling-induced settlement in soil. Geological Society Engineering Geology Special Publication,1988, vol 5:55~61.
    [98]Attewell P B, Selby A R. Tunneling in compressible soils:large ground movements and structural implications. Tunneling and Underground Space Technology,1989,4(4):481~489.
    [99]Mair R J, Taylor R N, O'Reilly M P. Ground Movements Around Shallow Tunnels in Soft Clay, 12th ICSMFE, Brazil,1989.
    [100]Sagaseta C. Analysis of Undrained Soil Deformation Due to Ground loss. Geotechnique.1987, (37):329~333.
    [101]Mair R J, Philips R, Schofield A N and Taylor R N.1984.Application of centrifuge modeling to the design of tunnels and excavations in soft clay. Proceeding of Symposium on the Application of centrifuge Modelling to Geotechnical Design, Manchester (Balkema):357~ 380.
    [102]Gutter U, Stoffers U. Investigation of the deformation and collapse behavior of circular lined tunnels in centrifuge model tests. Centrifuges in Soil Mechanics. Rotterdam:Balkema,1998: 183~186.
    [103]Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Mito,-et al. Settlement trough above a model shield observed in a centrifuge. Centrifuge 98.Tokyo,1998,713~719.
    [104]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究.岩土力学,2002,23(5),559-563.
    [105]Lo K Y, Rowe R K. Predicting Settlement due to Tunneling in Clays. Proc Tunneling in Soil and Rock, Resto,1984:48-76.
    [106]Eisenstein Z, Ezzeldine O. The Effect of tunneling technology on ground control, Tunneling and Underground Space Technology,1992,7(3):3~279.
    [107]Resendiz D, Romo M P. Settlement upon soft ground, tunneling, theoretical solution.1981:65-74.
    [108]Ono K Y, Yamata M O. A study of arching effects of sand around a tunnel[A]. in:Proceeding of JSCE.1983(1Ⅰ):Ⅰ37-46
    [109]Schmidt B. Discussion on'Earth pressure at rest related to Stress History'[J]. Canadian Geotechnical Journal,1996,3(4):239-242
    [110]张云,殷宗泽埋管隧道竖向地层压力的研究岩土力学[J].岩土力学,2001,22(2):183-188.
    [111]Tenaghi K. Theoretical Soil Mechanics[M]. New York:John Wiley&Sons, Inc,1943
    [112]Katzenbach, Breth H. Nonliner 3-D Analysis for NATM In Frankfurt Clay[A]. In:Proceedings ofthe 10th International Conference on Soil Mechanics and Foundation Engineering[C]. Stockholm,1981:315-318.
    [113]魏康林.土压平衡式盾构施工中喷涌问题的发生机理及其防治措施研究[D].南京:河海人学,2004.
    [114]Nomoto T, Imamura S,Hagiwara T, et al.Geotechnics and Geoenivennent Engineering,Shield tunnel construction in centrifuge[J]. Journal 1999(125):289-300
    [115]ltasca Consulting Group, Inc. Fast Analysis of Continua in 3 Dimensions-Theory and Background. Minnesota,2002.
    [116]Coetzee, Matthys J, Hart, et al. Flac Basic-An introduction to FLAC and a guide to its practical application in geotechnical engineering[R]. America:Itasca Consulting Group, Inc.,1998.
    [117]Itasca Consulting Group, Inc.Flac3.4 version Background—The explicit finite difference method[Z].Minnesota,2000.
    [118]寇晓东,周维垣,杨若琼,等.应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J].土木工程学报.2002,35(1):68-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700