用户名: 密码: 验证码:
饱和成层土中盾构掘进面稳定理论性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地铁建设中,由于受到复杂地质水文条件和施工综合因素影响,盾构隧道施工会造成地层变形。盾构开挖面失稳作为盾构施工造成地层变形重要原因之一被广泛关注。本文以地铁隧道土压平衡盾构施工为背景,采用上限分析法从机理上分析了饱和成层土地质条件下盾构开挖面稳定性分别得到无渗流作用和考虑渗流作用成层土中盾构开挖面稳定支护压力上限解,并与已有极限平衡解进行分析比较。主要研究内容如下:
     (1)基于摩尔库伦(Mohr-Coulomb)屈服准则和相关联流动法则(Associated flow rule),建立无渗流作用成层土中开挖面失稳土体三维机动场模型,通过上限分析法得到成层土体中开挖面稳定支护压力上限解。
     (2)采用无渗流作用成层土中开挖面支护压力上限解分别对均质地层和成层地层中开挖面稳定进行研究。均质地层中,成层土中支护压力上限解可以退化为均质土支护压力上限解(Leca解)。成层地层中,支护压力为支持穿越土层土体所需压力与支持覆土层所需压力之和,通过研究穿越土层和覆土层的土剪切强度参数(c',φ')变化对支护压力影响,分析了穿越土层和覆土层对盾构开挖面稳定性影响,当穿越土层剪切强度小于覆土层剪切强度情况下,开挖面稳定性主要受穿越土层强度变化影响,覆土层对开挖面稳定影响非常有限,当覆土层剪切强度小于穿越土层时,覆土层对开挖面稳定具有不可忽略的影响。
     (3)基于成层土中开挖面失稳土体三维机动场模型,考虑渗透力和开挖面渗流力对盾构开挖面失稳土体的作用,并将地下水渗流作用引入开挖面稳定上限分析中,得到渗流作用下成层土中开挖面支护压力上限解。
     (4)采用FLAC3D数值分析研究开挖面渗流力发现渗透性较大粉土或沙土成层地层中,地下水渗流在盾构掘进阶段达到稳态且开挖面渗流力和盾构轴线处静水压力比值稳定,与此同时穿越土层中地下水往开挖面渗流方向平行于盾构轴线,而覆土层中渗流方向竖直向下;利用半承压水渗流模型推导出成层土中渗流水力梯度分布公式,并计算失稳土体中渗透力。开挖面渗流力大于破坏土体中渗透力,并随着地下水位增加开挖面渗流力成为地下水渗流对开挖面稳定影响最主要因素。渗流作用下成层土中开挖面支护压力上限解中支护压力为支持破坏土体所需压力和抵抗地下水渗流压力之和,比较土体力学性质和地下水渗流对开挖面稳定影响发现,在埋深比和地下水位同时增加条件下,地下水渗流是造成开挖面失稳最主要因素。
In urban underground tunneling, the complicated hydro-geological conditons and execuation conditions somehow influence shield tunneling and make it difficult to control the soil deformation. The tunnel face instability which causes the catastrophical soil deformation and failure attracts broad attations. On the background of urban underground EPB shield tunneling, the tunnel face stability in saturated layered soil is investigated by using upper bound analysis and numerical simulation. The support pressure for the face stability without seepage application and that for the face stability under groundwater seepage application have been obtained respectively. The content of the research is divied into4parts as the following,
     (1) On the basis of Mohr-Coulomb constitution and associated flow rule, the3D kinemetically admissible mechanism for the failure range in the layered soil is proposed. Using the upper bound theorem, the formula of the support pressure for the face stability in the layer soil is obtained.
     (2) The upper bound solution presents the same support pressure as the Leca upper bound solution in the study of the face stability in the homogeneous soil. In the layerd soil, support pressure resists both of the crossed layer and cover layers. The influence of crossed layer and cover layers on the face stability is investigated. As the shear strength in cover soil is bigger than that in the crossed soil, the face stability is influenced mainly by the shear strenghth variation of the crossed soil, but as the shear strength in the cover soil is smaller than that in crossed soil, the face stability is influenced by both of the cover soil and crossed soil.
     (3) For the saturated layered soil, the seepage applied on the kinematically admissible mechanism is introduced into upper bound analysis. Consequently, the support presseure for the face stability under the groundwater seepage application is obtained.
     (4) The code FLAC3D is used to study the groundwater seepage. In the layered silty or sany soil, the seepage becomes steady-state easily in each excavation period and ratio of the seepage forces on the tunnel and hydrostatic pressure at the middle of the tunnel keeps stable. Meanwhile, the seepage in the crossed layer is horiztonal toward the tunnel face while the seepage in cover layer is vertically downward. The distribution of the seepage gradients in the layers is obtained by using the semi-aquifier model. The seepage forces on the tunnel face is bigger than the seepage forces in the failed soil, and the seepage forces becomes the key factor of the face stability as the groundwater level increases.
引文
[1]朱季.粉砂土地基盾构施工开挖面稳定性及环境影响研究[D].硕士学位论文,浙江大学,2010.
    [2]刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [3]张风祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004
    [4]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004
    [5]Construction Today. Police probe repeat Munich tunnel breach. Construction Today,1994,10:4-5.
    [6]Wallis, P. EPBM recovery reveals the unexpected. Tunnel Talk. http://www.tunneltalk.com/YorkSewer-Aug-09-TBM-recovery-reveals-the-unexp ected.php,2009
    [7]Seidenfub, T. Collapses in Tunnelling[D]. Master Thesis, Stuttgart University, 2006.
    [8]Jacobs J. D. Some tunnel failures and what they have taught. Hazards in Tunnelling and on Falsework, Institution of Civil Engineers, London,1975: 37-46.
    [9]Boos, R., Braun, M., Hangen, P., et al. Underground Transportation Systems, Chances and Risks from the Re-insurer's Point of View. Munich Re Group, Germany,2007:58-62.
    [10]Ground Engineering. Catalogue of disaster. Ground Engineering,2000,8:10-11.
    [11]竺维彬,鞠世建.复合地层中的盾构施工技术[M].北京:中国科学技术出版社,2006
    [12]竺维彬,鞠世建,史海鸥.广州地铁三号线盾构隧道工程施工技术研究[M]广州:暨南大学出版社,2007
    [13]竺维彬,鞠世建.地铁盾构施工风险源及典型事故的研究[M].广州:暨南大学出版社,2009
    [14]Fujita, K. Use of slurry and earth pressure balance shield in Japan[C]. Int. Congress on Tunneling, Tunnel 81, Dusseldorf,1990, Bd.1:383-406.
    [15]Nishitake, S. Advanced technology realize high- performance earth pressure balance shield[C]. Franchissments souterrains pour 1'Europe. Rotterdam, Balkema,1990:291-302.
    [16]Hashimoto, T., Kurihara, K., Ohstsuka, M., et al. Some aspect of round movement during shield tunneling in Japan[A]. In:Mair, Taylor, Geotechnical Aspects of Underground Construction in Soft Ground[M]. Balkema:Rotterdam, 1996:683-688.
    [17]Maidl, B., Herrenknetcht, M., Anheuser, L. Mechanised Shield Tunnelling[M]. Berlin:Ernst&Solm,Verlagr fur Architektur und techn,1996.
    [18]Atkinson, J., Potts, D.M. Stability of a shallow circular tunnel in cohesionless soil[J]. Geotechnique,1977,27(2):203-215.
    [19]Augarde, C.E., Lyamin, A.V., Sloan, S.W. Stability of an undrained plane strain heading revisited[J]. Computers and Geotechnics,2003,30(5):419-430.
    [20]Bjerrum, L. Embankment on soft ground, state of the art report[C]. Proceedings of the ASCE Specialty Conference on Performance of Earth and Earth-Supported Structures, Indiana,1972,2:1-54.
    [21]Chaffois, S., Lareal, P., Monnet, J., Chapeau, C. Study of tunnel face in a gravel site[C]. Proceedings of the Sixth International Conference on Numerical Methods in Geomechanics. Innsbruck, Austria,1988:1493-1498.
    [22]Gioda, G., Swoboda, G. Developments and applications of the numerical analysis of tunnels in continuous media[C]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:1393-1405.
    [23]Kanayasu, S., Kubota I., Shikibu N. Stability of face during shield tunneling-A survey on Japanese shield tunneling[A]. In Fujita, editor, Geotechnical Aspects of Underground Construction in Soft Ground[M]. Balkema, Rotterdam,1995: 337-343.
    [24]Kasper, T., Meschke. A 3D finite element simulation model for TBM tunneling in soft ground[C]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:1441-1460.
    [25]Lunardi, P. Design and Construction of Tunnels:Analysis of Controlled Deformation in Rock and Soils (ADECO-RS)[M]. Heidelberg:Springer,2008.
    [26]尹旅超,朱振宏,李玉珍,等译,日本隧道盾构新技术[M].湖北:华中理工大学出版杜,1999
    [27]Guglielmetti, V., Grasso, P., Mahtab, A., et al. Mechanized Tunnlling in Urban Areas[M]. London:Taylor & Francis, Press,2007.
    [28]Atkinson, J.H., Potts, D.M., Schofield, A.N. Centrifugal model tests on shallow tunnels in sand[J]. Tunnels and Tunneling,1977:59-64.
    [29]Mair, R.J. Centrifugal Modelling of Tunnel Construction in Soft Clay[D]. Ph.D Thesis, University of Cambridge, Cambridge, U.K,1979.
    [30]Kimura, T., Mair, R.J. Centrifugal testing of model tunnels in soft soil[C]. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, A.A. Blakema,1981:319-322.
    [31]Chambon, P., Corte, J, F. Shallow Tunnels in Cohesionless Soil. Stability of Tunnel Face[J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165
    [32]Sharma, J,S., Boiton, M.D. A New Technique for Simulation of Collapse of a Tunnel in a Drum Centrifuge[R]. CUED/D-SoildTRZ86,1995.
    [33]Nomoto, T., Ueno, K,, Kusakabe, O., et al. Centrifuge modeling of construction processes of shield tunnel[A]. In:Mair, Taylor. Geotechnical Aspects of Underground Construction in Soft Ground[M]. Roterdam:Balkema,1996: 567-582.
    [34]Boiton, M.D., Lu, Y. C., Sharma, J.S. Centrifuge models of tunnel construction and compensation grouting[C]. International Symposium on Geotechnical Aspects of Underground Construction in Soft. Balkema,1996:471-477.
    [35]Brassinga, H.E., Bezuijen, A. Modeling the grouting process around a tunnel lining in a geotechnical centrifuge[A]. In:Proceeding 15th Intemation. Conference on Soil Mechanics and Foundation Engineering[C]. Tokyo:Balkema, 2001:1455-1458.
    [36]Bezuijen, A., Messemaeckers-van de Graaf, C.A. Stabiliteit van het graaffront bijvloeistofondersteuning[R]. Technical Report 33, Boren Tunnels en Leidingen, 1997.
    [37]Monnet. J, Chaffois. S, Chapeau. C, et al. Theoretical and experimental studies of a tunnel face in a gravel site[A]. In:Pietruszczak. S, Pande, G.N. Numerical Models in Geomechanics[M],1989:497-514.
    [38]Hisatake, M., Eto, T., Murakami, T..Stability and failure mechanisms of a tunnel face with a shallow depth[A]. In T. Fujii. Proceedings of the 8th Congress of theInternational Society for Rock Mechanics[C]. International Society for Rock Mechanics,1995:587-591.
    [39]Domon, T.,'Konda, T., Nishimura, K., et al. Model tests on face stability of tunnels in granular material[A]. In:Negro Jr., Ferreira. Tunnels and Metropolises[M]. Rotterdam:Balkema,1998:229-234.
    [40]Mair, R.J., Taylor, R.N. Theme lecture:Bored tunnelling in the urban environment[A].In:Publications Committee of XIV ICSMFE, editor, Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering[C], Rotterdam:Balkema,1997,2353-2385.
    [41]Kamata, H., Mashimo, H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunneling and Underground Space Technology,2003,18(2): 205-212.
    [42]Kirsch, A., Kolymbas, D. Theoretische Untersuchung zur Ortsbruststabilitat[J]. Bautechnik,2005,82(7):449-456 (in German).
    [43]Kirsch, A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica,2010,5:43-62.
    [44]Messerli, J., Pimentel, E., Anagnostou, G. Experimental study into tunnel face collapse in sand[A]. In:Springman, Laue, Seward (Eds.), Physical Modelling in Geotechnics[C],2010,1:575-580.
    [45]周小文,包承纲.隧洞拱冠砂土位移与破坏的离心模型试验研究[J].岩土力学,1999,20(2):32-36.
    [46]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563.
    [47]程展林,吴忠明.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-55.
    [48]李昀,张子欣,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079.
    [49]陈仁朋,李君,陈云敏,孔令刚.干砂盾构开挖面稳定性模型试验研究[J].岩土工程学报,2011,33(1):117-122.
    [50]Chen, R. P., Li, J., Chen, Y. M., et al. Experimental study on face instability of shield tunnel in sand[J]. Tunneling and Underground Space Technology,2013, 33(1):12-21.
    [51]Broms, B. B., Benermark, H. Stability of clay at vertical openings[J]. ASCE Jounral of Soil Merchanical and Foundmion Engineering Division SMI,1967, (93):71-94.
    [52]Davis, E.H., Gunn, M.J., Mair, R.J., et al. The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397-416.
    [53]吕玺琳,王浩然,黄茂松.盾构隧道开挖面稳定极限理论研究[J].岩土工程学报,2011,33(1):57-62
    [54]宋春霞,黄茂松,吕玺琳.非均质地基中平面应变隧道开挖面稳定上限分析[J].岩土力学.2011,32(9):2645-2662.
    [55]吕玺琳,王浩然.软土盾构隧道开挖面支护压力极限上限解[J].土木建筑与环境工程,2011,33(2):65-69.
    [56]周维祥,黄茂松,吕玺琳.非均质地基中平面应变隧道开挖面的最小支护压力[J].岩土力学,2010,31(增2):418-421.
    [57]Leca, E., Dormieux, L. Upper and lower bound solutions for the stability of shallow circular tunnels in frictional material[J]. Geotechnique,1990,40(4): 581-606.
    [58]Hisatake, M., Eto, T., Murakami, T. Stability and failure mechanisms of a tunnel face wih a shallow depth[A]. In T. Fujii, editor, Proceedings of the 8th Congress of the International Society for Rock Mechanics[C], International Society for Rock Mechanics,1995:587-591.
    [59]Chen, R. P., Li, J., Chen, Y. M., et al. Experimental study on face instability of shield tunnel in sand[J]. Tunneling and Underground Space Technology,2013, 33(1):12-21.
    [60]Soubra, A, H. Three-dimensional face stability analysis of shallow circular tunnel[C]. International Conference on Geotechnical and Geological Engineering, Australia:Melbourne,2000.
    [61]Lee, I, M., Park., K. J., Nam, S. W. Analysis of an underwater tunnel with the consideration of seepage forces[C]. In:Proceedings of the Tunnel and Metropolises, Balkema, Rotterdam,1998:315-319.
    [62]Lee, I. M., Nam, S. W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunneling and Underground Space Technology,2001,16(1):.31-40.
    [63]Nam, S. W. Stability of tunnel face under seepage forces[D]. Ph.D. Thesis, Korea University, Korea,2002
    [64]Horn, N. Horizontaler Erddruck auf senkrechte Abschlussflachen von Tunnelrohren[C]. In Landeskonferenz der Ungarischen Tiefbauindustrie,1961: 7-16 (in German).
    [65]Janssen, H.A..Versuche uber Getreidedruck in Silozellen[J]. Zeitschrift des Vereins deutscher Ingenieure 35,1895:1045-1049 (in German).
    [66]Jancsecz, S., Steiner, W. Face support for a large mix-shield in heterogenous ground conditions[C]. In Tunneling'94. London,1994:531-550.
    [67]Terzaghi, K. Theoretical Soil Mechanics[M]. John Wiley & Sons,1951.
    [68]Huder, J. Stability of bentonite slurry trenches with some experiences in Swiss practice[C]. In Fifth ECSMFE, Madrid,1972,1:517-522.
    [69]Broere, W. Tunnel face stability & new CPT application[D]. PhD Thesis, Technical University of Delft,2001.
    [70]Broere, W. Face stability calculation for s slurry shield in heterogeneous soft soils[C]. Tunnels and Metropolises, Sao Paolo, Brazil,1998:215-218.
    [71]刘建航,候学渊.软土市政上程施工技术手册[M].上海:上海市市政工程管理局,1990.
    [72]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [73]徐东,周顺华,黄广军,等.上海粘土的成拱能力探讨[J].上海铁道大学学报,1999,20(6):49-55.
    [74]刘洪洲,营运期隧道地压的评估与分析[J].岩土力学,1999,20(3):66-71.
    [75]张冬梅,黄宏伟.地铁盾构推进引起周围土体附加应力分析[J].地下空间,1999,19(5):379-382.
    [76]朱忠隆,张庆贺.盾构法施工对地层扰动的试验研究[J].岩土力学,2000,21(1):49-52.
    [77]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析[J].同济大学学报,2000,28(3):277-281.
    [78]张云,殷宗泽.埋管隧道竖向地层压力的研究明[J].岩土力学,2001,22(2):184-188.
    [79]张中安,罗富荣.土质地层浅埋地下结构设计中的土压力计算[J].铁道建筑,2001.3:10-12.
    [80]徐永福,孙钧,傅德明,王建华.外滩观光隧道盾构施工的扰动分析[J].土木工程学报,2002,135(12):70-73.
    [81]施成华,彭立敏,刘宝琛.盾构法施工隧道纵向地层移动与变形预计[J].岩土工程学报,2003,25(5):585-589.
    [82]蒋洪胜,侯学渊.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩石力学与工程学报,2003,22(9):1514-1520.
    [83]傅鹤林,韩汝才,朱汉华.破碎围岩中单拱隧道荷载计算的理论解[J].中南大学学报,2004,35(3):478-483.
    [84]颜建平,杨林德,彭敏.软土隧道荷载分项系数探讨[J].地下空间与工程学报,2005,1(2):219-222.
    [85]裴洪军,孙树林,吴绍明.隧道盾构法施工开挖面稳定性研究方法评析[J].地下空间与工程学报,2005,1(1):117-119.
    [86]魏纲,贺峰.砂性土中顶管开挖面最小支护压力的计算[J].地下空间与工程学报,2007,3(5):903-908.
    [87]宋玉香,贾晓云,朱永全.地铁隧道竖向土压力荷载的计算研究[J].岩土力学,2007,28(10):2240-2244.
    [88]Anagnostou, G., Kovari, K. The face stability of slurry-shield-driven tunnels[J]. Tunneling and Underground Space Technology,1994,9(2):165-174.
    [89]Anagnostou, G., Kovari, K. Face stability conditions earth-pressure-balanced shields[J]. Tunneling and Underground Space Technology,1996,11(2):165-173.
    [90]Anagnostou, G., Kovari, K. Face stability in slurry and EPB shield tunneling[C]. Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam,1996:453-458.
    [91]Broere, W., A. F. van Tol. Influence of infiltration and groundwater flow on tnnel face stability[C]. Geotechnical Aspects of Underground Construction in Soft Ground, Tokyo, Japan,2000:453-458.
    [92]Broere, W. Influence of excess pore pressures on the stability of the tunnel face[C]. Claiming the Underground Space, ITA, Amsterdam,2003:759-765.
    [93]Broere, W., A. F. van Tol. Time-dependent infiltration and groundwater flow in a face stability analysis[C]. Modern Tunneling Science and Technology, Kyoto, Japan,2001:629-634.
    [94]Verruijt, A. Theory of Groundwater Flow[M]. Macmillan, London,1970.
    [95]Strack, O. D. L. Groundwater Mechanics[M]. Prentice Hall,1989.
    [96]Bruggeman, G. A. Analytical Solution in Geo-hydrological Problem[M]. Elsevier,1999.
    [97]乔金丽.盾构隧道开挖面的稳定性分析[D].博士学位论文,天津大学,2009
    [98]乔金丽,张义同,高健.考虑渗流的多层土盾构隧道开挖面稳定性分析[J].岩土力学,2010,31(5):1497-1502.
    [99]张义同,高健,乔金丽等.隧道盾构掘进土力学[M].天津,天津大学出版社,2010.
    [100]高健,张义同.盾构掘进速度对开挖面水头分布的影响[J].天津大学学报,2010,43(4):287-292.
    [101]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [102]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [103]孙书伟,林杭,任连伟.FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011.
    [104]周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩土力学与工程学报,1996,15(3):193-200.
    [105]龚晓南.对岩土工程数值分析的几点思考[J].岩土力学,2011,32(2):321-325.
    [106]周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005
    [107]丁皓江,何福宝等.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1989
    [108]朱伯芳.有限单元法原理和应用[M],第二版.北京:中国水利电力出版社,1998
    [109]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [110]曾攀.有限元分析及应用[M].北京:清华大学出版社,2008
    [111]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [112]Gilbert, S., George, F. An Analysis of The Finite Element Method[M]. Prentice Hall Press,1973.
    [113]Bathe, K.J., Wilson, E.L. Numerical Methods in Finite Element Analysis[M]. Englewood Cliffs:PrenticeHall Press,1976.
    [114]Thomas, J. R. The Finite Element Method:linear static and dynamic finite element analysis[M]. Englewood Cliffs:Prentice-Hall, Inc.,1987
    [115]Zienkiewicz, O.Z., Taylor, R.L. The finite element method[M].4th edn, McGraw-Hill,1994.
    [116]Potts, D.M., Mair, R.J. Finite Element Analysis in Geotechnical Engineering: application[M]. London:Thomas Telford,2001.
    [117]Cundall, P.A. A computer model for simulating progressive large scale movement in block rock system[C]. Symposium ISRM,1971,2:129-136.
    [118]Crank, J. The Mathematics of Diffusion[M].2edn, Clarendon Press, Oxford, 1975.
    [119]李荣华,陈仲英.微分方程广义差分法[M].长春:吉林大学出版社,1994.
    [120]ltasca Consulting Group, Inc. Fast Laffangain Analysis of Continua in 3 Dimensions--Theory and Background, Minnesota,2002.
    [121]张文生.科学计算中的有限差分方法[M].北京:科学出版社,2005
    [123]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [124]Morton, K.W., Mayers, D.M. Numerical Solution of Partial Differential Equations, An Introduction[M]. Cambridge University Press,2005.
    [125]Randall, J., LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:steady-state and time-dependent problems[M]. Society for Industrial and Applied Mathematics Press,2007.
    [126]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991
    [127]Kuhn, M.R. Structured deformation in granular materials[J]. Mechanics of Materials,1999,31(6):407-429.
    [128]Dowding, C.H., Dmytryshyn, O., Belytschko, T.B. Parallel processing for a discrete element program[J]. Computer and Geotechnics,1999,25(4):281-285.
    [129]Cleary, P.W., Sawley, M.L. DEM modelling of industrial granular flows:3D case studies and the effect of particle shape on hopper discharge[J]. Applied Mathematical Modelling,2002,26:89-111.
    [130]徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [131]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [132]Baumann, T., Sternath, R., Schwarz, J. Face Stability of Tunnels in Soft Rock-Possiblities for the Computational Analysis[A]. Proc.14th Int. Conf. Soil Mech. Found. Engng, Hamburg[C], Rotterdam, Balkema,1997,3:1389-1392.
    [133]Swoboda. G., Mansour, M. Three dimension numerical modelling of slurry shield tunnelling[A]. In Wanger, H., Schulter, A. Tunnel Boring Machines[M]. Roterdam:Balkema,1996:27-41.
    [134]Bernat, S., Cambou, B., Dubois, P. Assessing a soft soil tunneling numerical model using field[J]. Geotechnique,1999(4):427-452
    [135]Vermeer, P.A., Van Langen, H. Soil collapse computations with finite elements[C]. In:Ingenieur-Archiv 59,1998:221-236.
    [136]Vermeer, P.A., Vogler, U. On the stability of unlined tunnels[C]. In:Barends, F.(Hrsg)., Steijger, P.(Hrsg):Learned and applied Soil Mechanics out of Delft[M]. Rotterdam:Balkema Verlag,2001:127-134.
    [137]Vermeer, P.A., Ruse, N., Marcher, T. Tunnel heading stability in drained ground[C]. In:Felsbau,2002,6:8-18.
    [138]Trckova, J., Prochazka, P. Expertmental and numerical modelling of the tunnel face stability[J]. Technology Roadmap for Rock Mechanics,2003,5: 1247-1250.
    [139]Konishi, S. Evaluation of tunnel face stability by rigid plasticity finite element method[J]. Railway Technology Advantage,2004,5:29-29.
    [140]Sterpi, D., Cividini, A. A physical and numerical investigation on the stability of shallow tunnels in strain softening media[J]. Rock Mechanics and Rock Engineering,2004,37(4):277-298.
    [141]Kim, S., Tonon, F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case[J]. Tunneling and Underground Space Technology,2010,25(5):526-542.
    [142]Melis-Maynar, M.J., Medina-Rodriguez, L.E. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1234-1242.
    [143]Wu, L., Qu, F.Z. Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling[J]. Journal of Central South University of Technology,2009,16(6):1028-1033.
    [144]Shen, J.Q, Jin, X.L., Li, Y, et al. Numerical simulation of cutterhead and soil interaction in slurry shield tunneling[J]. Engineering Computations,2009,26(8): 985-1005.
    [145]Chen, R.P., Tang, L.J., Ling, D.S., Chen, Y.M. Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J].Computers and Geotechnics,2011,38 (2):187-195.
    [146]Zhang, Z.X., Hu, X.Y., Scott, K.D. A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics,2011,38 (1):94-104.
    [147]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902.
    [148]黄正荣,朱伟,梁精华等.浅埋砂土中盾构法隧道开挖面极限支护力压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [149]黄正荣,朱伟,梁精华等.盾构法隧道开挖面极限支护力压力研究[J].土木工程学报,2006,39(10):112-116.
    [150]Buhan, P.D., Culvillier, L., Dormieux, L., et al. Face stability of shallow circular tunnels driven under the water table:a numerical analysis[J]. International Journal for Numerical and Analysis Methods in Geomechinics, 1999,23(1):79-95.
    [151]Lee, I.M., Nam, S.W. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face[J]. Tunneling and Underground Space Technology, 2003,19:273-281.
    [152]Lee, I.M., Lee, J.S., Nam, S.W. Effect of seepage force on tunnel face stability reinfoeced with multi-step pipe grouting[J]. Tunneling and Underground Space Technology,2004,19:551-565.
    [153]Yoo, C., Kim, S.B. Stability analysis of an urban tunneling in difficult ground condition[J]. Tunneling and Underground Space Technology,2006,21:351-352.
    [154]Yoo, C. Interaction between tunneling and groundwater numerical investigation using three dimensional stress-pore pressure couple analysis[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE,2005,131(2):240-250.
    [155]Yoo, C., Kim, S.B. A study on ground surface settlement due to groundwater drawndown during tunneling[J]. Korean Journal of Geotechnical Engineering, KGS,2007,9(4):1-15.
    [156]Yoo, C., Kim, S.B. Three-dimensional numerical investigation of multifaced tunneling in water bearing soft ground[J]. Canadian Geotechnical Journal,2008, 45(10):1467-1486.
    [157]Yoo, C., Lee, Y.J., Kim, S.H, et al. Tunneling-induced ground settlements in a groundwater drawdown environment-A case history[J]. Tunneling and Underground Space Technology,2012,29:69-11.
    [158]郑颖人,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,1989.
    [159]张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [160]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997.
    [161]Drucker, D.C., Prager, W. Soil mechanics and plastic analysis or limit design[J]. Journal of Applied Mathematics,1952,10:157-165.
    [162]Drucker, D.C. Limit of analysis of two and three dimensional soil mechanics problems[J]. Journal of the Mechanics and Physics of Solids,1953,1:217-226.
    [163]Prager, W., Hodge, P.G. Theory of Perfectly Plastic Solids[M]. New York: Wiley,1950.
    [164]Drucker, D.C., Gibson, R.E., Henkel, D.J. Soil mechanics and work harding theories of plasticity[C]. Proc. ASCE Tran P122,1957:338.
    [165]Mitchell, J.K.. Fundamentals of Soil Behavior[M]. New York:John Wiley & Sons,1976.
    [166]Wood, D.M. Soil Behaviour and Critical State Soil Mechanics[M]. Cambridge: Cambridge University Press,1990.
    [167]Davis, R.O., Selvadurai, A.P.S. Plasticity and Geomechanics[M]. Cambridge: Cambridge University Press,2002.
    [168]Wroth, C.P. The interpretation of situ soil tests[J]. Geotechnique,1984, 34(4):449.
    [169]Schofield, A.N., Wroth, C.P. Critical State Soil Mechanics[M]. McGraw Hill, 1968.
    [170]Muelhaus, H. B. Lower bound solutions for circular tunnels in two or three dimensions[J]. Rock Mechanics and Rock Engineering,1985,18(1),37-52.
    [171]Salencon, J. An introduction to the yield design theory and its application to soil mechanics[J]. European Journal of Mechanics-A/solids,1990,5:477-500.
    [172]Chen, W.F., Liu, X.L. Limit Analysis in Soil Mechanics[M]. New York: Elsevier,1990.
    [173]Powrie.W. Soil Mechanics Concept & Application[M].2rd.edn, Taylor & Francis,2002.
    [174]Coetzee, MaRhys, J, Hart,et al. Flac Basic-An introduction to FLAC and a guide to its practical application in geotechnical engineering[R]. America: Itasca Consulting Group, Inc.,1998.
    [175]Itasca Consulting Group, Inc., Fast language analysis continua in 3 dimensions, version 3.0, user's manual. Itasca Consulting Group, Inc.,2005.
    [176]Itasca Consulting Group, Inc., Fast language analysis continua in 2 dimensions, version 5.0, user's manual. Itasca Consulting Group, Inc.,2005.
    [177]Http://www.herrenknecht. com,2013.
    [178]秦建设.盾构施工开挖面变形与破坏机理研究[D].博士学位论文,河海大学,2005.
    [179]Http://www.Komastu.com,2013
    [180]《数学手册》编写组.数学手册[M].高等教育出版社,1998.
    [181]Steiner, W. Experience with an 11.6 m diameter Mix-Shield:The importance of the ground machine interface[C]. Proceedings of Rapid Excavation & Tunneling Conference, Boston,1993:759-779.
    [182]Mori, A., Kurihara, K., Mori, H. A study on face stability during slurry-type shield tunneling[C]. Underground Construction in Soft Ground.1995:261-264.
    [183]Li, Y., Emeriault, F., Kastner, R., Zhang, Z.X. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology,2008,24(4):472-481.
    [184]Gabarro, X., Frech, R., Maidl, B., Della Valle., N. Metro Barcelona Linea 9-Europe's greatest metro project with shield tunnel boring machines of large diameters[C]. Proceedings of Claiming the Underground Space,2003:637-643.
    [185]Fernandez, E. The Madrid renewal inner ring Calle 30 with the largest EPB machines-planning and result[C]. Proceedings of Rapid Excavation and Tunneling Conference,2007:769-782.
    [186]Russo, G. Evaluating the required face-support pressure in EPBS advance mode[C]. Gallerie e Grandi Opere Sotterranee 71,2003:27-32.
    [187]Maidl, U., Cordes, H. Active earth pressure control with foam[C]. World Tunnel Congress 2003, Amsterdam,2003:791-797.
    [188]Hoek, E. Big tunnels in bad rock[J]. Journal of Geotechnical and Geoenviormental Engineering,2001,127(9):726-740.
    [189]楼葭菲.大直径盾构上穿地铁2号线区间的数值模拟[J].中国市政工程,2010,149(增2):126-127.
    [190]索晓明,张继清,杨毅秋.北京地下直径线大直径盾构随动技术研究[J].工程科学,2008,12(12):11-17.
    [191]靳世鹤.超大直径泥水盾构隧道开挖系统的设计[J].土建技术,2008,21(6):55-57.
    [192]张文正.北京地铁14号线大直径盾构隧道下穿机场线桥桩结构变形及其控制研究[D].硕士学位论文,北京交通大学,2012.
    [193]严辉.盾构隧道施工中刀盘泥饼的形成机理和防治措施[J].现代隧道技术,2007,4(12):14-16.
    [194]竺维彬,鞠世建.盾构施工泥饼(次生岩块)的成因及对策[J].地下工程与隧道,2003,2:25-29.
    [195]魏康林.土压平衡式盾构施工中喷涌问题的发生机理及其防治措施研究[D].硕士学位论文,河南大学,2003.
    [196]张明晶.土压平衡式盾构施工中闭塞问题的发生机理及其防治措施研究[D].硕士学位论文,河南大学,2004.
    [197]顾慰慈.渗流计算原理及应用[M].北京:中国建材工业出版社,2000.
    [198]龚晓南.土力学[M].北京:中国建筑工业出版社,2002.
    [199]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996
    [200]高大钊.土力学与基础工程[M].北京:中国建筑业出版社,1998.
    [201]秦建设.盾构隧道施工中开挖面失稳事故分析[J].浙江建筑,2005,22(增1):48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700