用户名: 密码: 验证码:
薄板结构焊接变形的预测与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄板焊接结构在生产实践中有着广泛的应用,例如汽车的车架、车身等重要部件,都是由薄板型材或冲压件经过不同焊接方法制造而成的。焊接过程中产生的变形对这些部件甚至整车的质量都有重要的影响,因此,研究薄板结构焊接过程中的变形规律及其控制方法,对于提高产品质量,增强产品的市场竞争力,具有重要的意义。
    本文首先对薄壁箱形梁CO_2 气体保护焊和薄板电阻点焊的焊接过程进行了有限元分析。在薄壁箱形梁的分析中,将断续焊接热输入简化为分段瞬时体热源,按照实际焊接顺序加载计算,得到了焊接过程中各时刻的温度分布。该温度场能够反映实际焊接过程的基本特征,可以作为焊接过程热弹塑性分析的依据。在薄板电阻点焊的分析中,采用热电耦合单元建立了二维轴对称有限元模型,将结合面和电极-工件界面的接触电阻简化为温度的函数,考虑随温度变化的材料热物理性能参数,分别对等厚度和不等厚度薄板点焊过程的瞬态温度场进行了分析。通过分析模拟了焊核的形成过程,并计算了焊核及热影响区的形状和尺寸。对不等厚度的薄板,首次通过仿真方法得到了因板厚不同造成焊核向厚板一侧偏移的结果,与实际的焊接过程相吻合。
    基于温度场分析的结果,对薄壁箱形梁和薄板电阻点焊的焊接过程进行了热弹塑性分析。在薄壁箱形梁的分析中,得到了构件的变形、应力和应变的分布及变化情况,并与实验结果进行了对比。对不同位置的焊缝中的残余塑性应变进行了详细分析,发现端部焊缝中的残余压缩塑性应变因受端部效应的影响,由端部向内部呈线性增加,根据该结果,可以对固有应变法的加载过程进行相应的修正。在薄板电阻点焊的分析中,得到了结合面和电极-工件界面上接触压力的分布和变化,以及点焊接头中的应力、应变和变形情况。对于等厚度薄板,由于结构是对称的,所以焊点局部的变形不会影响结构的整体变形。对于不等厚度的薄板,首次模拟了由于不对称造成结构向薄板一侧翘曲的结果,提出该翘曲变形是由不对称的残余塑性应变造成的,并详细分析了残余塑性应变的分布形式和产生原因,为采用固有应变法分析点焊变形奠定了基础。
    采用固有应变法对薄壁箱形梁和大型空间细长薄壁梁的焊接变形进行了分析。针对现有固有应变法的不足,提出了固有应变加载的温度载荷法,可以方便有效地实现分布式固有应变值的加载。利用单元坐标,实现了与整体坐标轴不平行的空间位置焊缝的固有应变加载。根据热弹塑性分析的结果,对端部焊缝中的固有应变值进行了修
Welding sheet structures are widely used in many industries; for example, some important components such as automobile frame and body are produced by various welding methods with profiled sheet materials and stamping parts. The welding induced deformation has great influences on the quality of the components and even the whole automobile. Therefore, it is of great significance to research the law of welding deformation and its control method, in order to improve the quality of productions and its market competition capability.
    In this dissertation the transient thermal process of a thin-wall beam produced by CO_2 Gas Metal Arc Welding (GMAW) and sheet structures joined by Resistance Spot welding (RSW) were analyzed by Finite Element Method (FEM). In the analysis of the thin-wall beam, the thermal input was simplified as transient section body heat sources and loaded as its actual sequence. The obtained transient temperature field can represent the basic characteristics of the real welding process and can be used as the foundation of thermal elastic-plastic analysis. In the analysis of the sheet RSW process, a 2D axisymmetric FEM model was developed using thermoelectric element. The contact electric resistance of the faying surface and workpiece-electrode interface was simplified as the function of temperature. Accounting for the temperature dependent material properties, the RSW processes of sheets with equal and unequal thickness were analyzed respectively. The growth of nugget was simulated and the geometry and size of the nugget and Heat Affected Zone (HAZ) were calculated. The simulation of the unequal thickness sheets showed that the nugget offset to the thicker sheet due to the different thickness, and the result was consistent with the actual RSW process.
    Based on the temperature field, thermal elastic-plastic FEM analyses were performed on the thin-wall beam and the RSW sheet structure. In the analysis of the beam, the distribution and change of the welding deformation, stress and strain were obtained and compared with the experiment results. Detailed studies were conducted on the residual plastic strain of welding seams at different locations, and it was found that the value of the welding seam at the ends of beam was linear increased. According to this result, an improvement could be made on the inherent strain method. In the analysis of the sheet structure, the distribution and change of the contact pressure at the faying surface and workpiece-electrode interface as well as the deformation, stress and strain in the joint were obtained. For the sheets of equal thickness, the local displacement had little influence on the structure’s global deformation. However, for the sheets of unequal thickness, the simulation
    result revealed that the structure distort to the thinner side due to the unsymmetry. It was assumed that the distortion is induced by the unsymmetric distribution of the residual compress plastic strain, which was analyzed carefully. This assumption was the precondition of the possibility to introduce the inherent strain method into the analysis of RSW process. Using the inherent strain method, the welding deformation of the thin-wall beam and a large-scale spatial beam were calculated respectively. A temperature loading method was developed to load the variable inherent strain value expediently. The loading of inherent strain value on spatial welding seam that was unparallel to the global coordinate axis was achieved with the application of element coordinate system. According to the results of thermal elastic-plastic analysis, a modification was made on the inherent strain value of the welding seams at the beam ends. Comparison with the experiment results showed that this modification could improve the calculation precision effectively. The inherent strain method was firstly introduced into the deformation analysis of RSW structure. According to the residual compress plastic strain results of thermal elastic-plastic analysis, the 2D axisymmetric FEM model was extended to 3D model step by step. Using the 3D model, the deformation of a RSW structure with three weld points was calculated. The result showed that the global deformation of the structure is not the linear accumulation of the single point, whereas it was significantly amplified. Having the capacity of taking into account the production and assembly errors, the inherent strain method provided a new technique for the deformation analysis of RSW structure. An experimental study was conducted on the CO2 GMAW process of the thin-wall beam. The welding deformation was measured and taken as the comparison of the theoretical analysis. The creation of inherent strain during the welding process was investigated using one dimension model under elastic and plastic constrain conditions. A criterion of eliminating welding deformation by reverse deformation method was presented: the stress resluted from the reverse deformation should reach the elastic limit of the material at the welding seam. Based on the criterion a formulation was established to calculate the reverse deformation value of beam. According to the formulation, an experiment was performed on the large-scale spatial beam to control its welding deformation. The results showed that the formulation could be effectively used in adjusting the value of reverse deformation, and the welding deformation of some locations could be reduced near to the tolerance after one adjustment.
引文
[1] 邓仕珍, 范淼海. 汽车车身制造工艺学. 北京: 北京理工大学出版社, 1997. 9(第1 版)
    [2] 杨握铨. 汽车装焊技术及夹具设计. 北京: 北京理工大学出版社, 1996. 6(第1 版)
    [3] 林忠钦, 胡敏, 陈关龙等. 轿车车体装配偏差研究方法综述. 机械设计与研究, 1999(3): 58~60
    [4] J. M. Blackburn, M. Kirk, P. C. Conrard, et al. An overview of some current research on welding residual stresses and distortion in the U. S. Navy, 1996. 9
    [5] 奥凯尔勃洛姆. 焊接变形与应力. 雷原译. 北京: 机械工业出版社, 1958(第1 版)
    [6] 奥凯尔勃洛姆. 焊接时金属结构变形的计算. 庄翠娣译. 北京: 机械工业出版社, 1959(第1 版)
    [7] 奥凯尔勃洛姆. 金属结构中的焊接应力. 许乃武译. 北京: 建筑工程出版社, 1956(第1 版)
    [8] C. A. 库兹米诺夫. 船体结构的焊接变形. 北京: 国防工业出版社, 1978. 12(第1 版)
    [9] Y. Ueda, H. Murakawa. Applications of computer and numerical analysis techniques in welding research. Transactions of JWRI, 1984, 13(2): 165~174
    [10] D. 拉达伊. 焊接热效应. 熊第京等译. 北京: 机械工业出版社, 1997. 7(第1 版)
    [11] I. C. Sheng, Y. Chen. Thermoelastic analysis for a semi-infinite plane subjected to a moving gaussian heat source. Journal of Thermal Stresses, 1991(14): 129~141
    [12] D. H. Kang, K. J. Son, Y. S. Yang. Analysis of laser weldment distortion in the EDFA LD pump packaging. Finite Element in Analysis and Design, 2001(37): 749~760
    [13] 莫春立, 钱百年, 国旭明. 焊接热源计算模式的研究进展. 焊接学报, 2001, 22(3): 93~96
    [14] N. Postacioglu, P. Kapadia, J. M. Dowden. Distortion generated by a moving weld pool of elliptical cross section in the welding of thin metal sheets. Journal of Physics, D: Appl. Phys, 2000(33): 1739~1746
    [15] K. S. Yeung, P. H. Thornton. Transient thermal analysis of spot welding electrodes. Welding Journal, 1999, 78(1): 1s~6s
    [16] L. Fu, L. Y. Duan. The coupled deformation and heat flow analysis by finite element method during friction welding. Welding Journal, 1998, 77(5): 202s~207s
    [17] 傅莉, 刘小文, 鄢君辉. 惯性摩擦焊接头热塑性变形参量场的数值分析. 机械科学与技术, 2000, 9(3): 439~441
    [18] H. S. CHO, Y. J. CHO. A study of the thermal behavior in resistance spot welds. Welding Journal, 1989, 68(6): 236s~244s
    [19] Z. Han, J. Orozco, J. E. Indacochea, et al. Resistance spot welding: A heat transfer study. Welding Journal, 1989, 68(9): 363s~371s
    [20] 汪建华, 戚新海, 钟小敏. 压缩机焊接变形的三维数值模拟. 机械工程学报, 1996, 32(1): 85~91
    [21] 吴丰顺, 张贵锋, 王士元. 直流电阻对焊过程的有限元分析. 机械工程学报, 1998, 34(6): 89~95
    [22] M. R. Frewin, D. A. Scott. Finite element method of pulsed laser welding. Welding Journal, 1999, 78(1): 15s~22s
    [23] 傅莉, 杜随更. 摩擦焊接过程数值模拟技术研究进展. 焊接学报, 2001, 22(5): 87~92
    [24] 林忠钦, 胡敏, 米新民. 轿车白车身点焊装配过程有限元分析. 焊接学报, 2001, 22(1): 36~40
    [25] H. A. Nied. The finite element modeling of the resistance spot welding process. Welding Journal, 1984, 63(4): 123s~132s
    [26] V. Ramamurti, S. Suresh, B. Raghuraman, et al. Residual stress analysis in weldments. Engineering Fracture Mechanics, 1991, 38(6): 385~391
    [27] Matthes, Alaluss, Chemnitz, et al. Determination and influencing of welding-induced residual stresses in armoured valves with the aid of the finite-element method. Welding and Cutting, 2001(11): E238~E242
    [28] S. B. Brown, H. Song. Implications of three-dimensional numerical simulation of welding of large structure. Welding Journal, 1992, 71(2): 55s~62s
    [29] L. Lindgren, L. Karlsson. Deformation and stresses in welding of shell structures. International Journal for Numerical Methods in Engineering, 1988, 25: 635~655
    [30] A. Samanta, M. Mukhopadhyay. Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elements in Analysis and Design, 1999, 33: 187~208
    [31] R. H. MacNeal. Perspective on finite elements for shell analysis. Finite Elements in Analysis and Design, 1998, 30: 175~186
    [32] M. A. Weaver. Determination of weld loads and throat requirements using finite element analysis with shell element models –a comparison with classical analysis. Welding Journal, 1999, 78(4): 116s~126s
    [33] X. Deng, W. Chen, G. Shi. Three-dimensional finite element analysis of the mechanical behavior of spot welds. Finite Elements in Analysis and Design, 2000, 35: 17~39
    [34] W. Chen, X. Deng. Performance of shell elements in modeling spot-welded joints. Finite Elements in Analysis and Design, 2000, 35: 41~57
    [35] 张铁山, 盛陈, 郑力军. 大型构件T 型焊接接头横向变形的研究. 焊接, 2001(8): 15~19
    [36] 邱振生. 大直径薄壁筒身内壁不锈钢堆焊变形规律的试验研究. 焊接技术, 2002, 31(2): 48~49
    [37] J. M. J. McDill, A. S. Oddy, J. A. Goldak, et al. Finite element analysis of weld distortion in carbon and stainless steels. Journal of Strain Analysis, 1990, 25(1): 51~53
    [38] X. K. Zhu, Y. J. Chao. Effects of temperature-dependent material properties on welding simulation. Computers and Structures, 2002, 80: 967~976
    [39] 徐军, 吴苏, 赵海燕. 基于简化模型采用有限元方法计算特大型梁结构的焊接变形. 焊接技术, 2001, 30(4): 47~48
    [40] A. Bachorski, M. J. Painter, A. J. Smailes, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 1999, 92-93: 405~409
    [41] L. E. Lindgren, B. L. Josefson. Welding residual stresses and distortions simulated by the use of simplified method. Recent Advances in Welding Simulation. IMechE Seminar Publication, 2000, 13: 1~19
    [42] J. M. J. McDill, A. S. Oddy. A nonconforming eight to 26-node hexahedron for three-dimensional thermal-elasto-plastic finite element analysis. Computers and Structures, 1995, 54(2): 183~189
    [43] W. L. Chuko, J. E. Gould. Development of appropriate resistance spot welding practice for transformation-hardened steels. Welding Journal, 2002, 81(1): 1s~7s
    [44] A. S. Oddy, J. M. J. McDill, J. A. Goldak. Consistent strain fields in 3D finite element analysis of welds. Journal of Pressure Vessel Technology, 1990, 112(August): 309~311
    [45] A. S. Oddy, J. A. Goldak, J. M. J. McDill. Numerical analysis of transformation plasticity in 3D finite element analysis of welds. Eur. J. Mech. , A/Solids, 1990, 9(3): 253~263
    [46] J. B. Leblond, G. Mottet, J. C. Devaux. A theoretical and numerical approach to the plastic behavior of steels during phase transformations -I. Derivation of general relation. J. Mech. Phys. Solids, 1986, 34(4): 395~409
    [47] 曹彪, 姜以宏, 王建一. 点焊过程热膨胀变形分析. 焊接学报, 1995, 16(2): 94~99
    [48] J. A. Khan, L. Xu, Y. J. Chao, et al. Numerical simulation of resistance spot welding process. Numerical Heat Transfer, Part A, 2000, 37: 425~446
    [49] O. P. Gupta, A. De. An improved numerical modeling for resistance spot welding process and its experimental verification. Journal of Manufacturing Science and Engineering, 1998, 120(May): 246~251
    [50] H. A. Nied. Finite element simulation of the upset welding process. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 1993, 115(January): 184~192
    [51] S. E. Chidiac, F. A. Mirza. Thermal stress analysis due to welding processes by the finite element method. Computers and Structures, 1993, 46(3): 407~412
    [52] B. L. Josefson. Stress redistribution during local annealing of a multi-pass butt-welded pipe. Journal of Pressure Vessel Technology, 1986, 108(May): 125~130
    [53] J. Wang, H. Lu, H. Murakawa. Mechanical behavior in local post weld heat treatment (Report I) –visco-elastic-plastic FEM analysis of local PWHT. Trans. JWRI, 1998, 27(1): 83~88
    [54] H. Murakawa, H. Lu, J. Wang. Mechanical behavior in local post weld heat treatment (Report II) –determination of critical heated band during local PWHT. Trans. JWRI, 1998, 27(1): 89~95
    [55] Y. Ueda, Y. C. Kim, M. G. Yuan. A predicting method of welding residual stress using source of residual stress (Report I) –characteristics of inherent strain (source of residual stress). Transactions of JWRI, 1989, 18(1): 135~141
    [56] Y. Ueda, M. G. Yuan. A predicting method of welding residual stress using source of residual stress (Report II) –determination of standard inherent strain. Transactions of JWRI, 1989, 18(1): 143~150
    [57] 汪建华, 陆皓. 预测焊接变形的残余塑性应变有限元方法. 上海交通大学学报, 1997, 31(4): 53~56
    [58] Y. Ueda, T. Yao, K. Nakacho, et al. Prediction of welding residual stress, deformation and ultimate strength of plate panels. Trans of JWRI, 1992, 21(2): 127~143
    [59] 汪建华, 魏良武. 焊接变形和残余应力预测理论的发展及应用前景(1). 焊接, 2001(9): 5~7
    [60] C. D. Jang, S. I. Seo. A simplified method to estimate longitudinal deformation of built-up beams due to welding and heating. Journal of Ship Research, 1995, 39(2): 176~183
    [61] J. Wang. Prediction of welding deformations by FEM based on inherent strains. Journal of Shanghai Jiaotong University, 2000, E-5(1)
    [62] J. Wang, H. Lu, H. Murakawa, et al. Prediction of welding deformation by FEM based on inherent strains. In: The Minerals, Metals and Material Society ed. Modeling of Casting, Welding and Advanced Solidification Processes VIII, 1998
    [63] 蔡志鹏, 陆安理, 史清宇. 相似理论在焊接温度场和应力及应变场中的应用. 焊接学报, 2000, 21(3): 79~82
    [64] 蔡志鹏, 赵海燕, 吴甦. 利用相似理论预测焊接变形的研究. 机械工程学报, 2002, 38(5): 141~144
    [65] 刘黎明, 梁国俐, 刘玉君. 基于人工神经网络的船舶高强钢焊接变形分析预测. 焊接学报, 2002, 23(1): 27~29, 33
    [66] 王国凡, 初福民, 陈鹭滨. 多节框架的焊接工艺及变形控制. 焊接技术, 2001, 30(4): 45~47
    [67] 曾平, 朱本芳. 宜昌大桥钢箱梁隔板焊接变形的控制技术. 焊接技术, 2001, 30(4): 51~52
    [68] 李辉, 陈卫. 集装箱平车中梁焊接变形的工艺分析. 焊接, 2002(4): 41~42
    [69] 朱宏光, 李家鲁, 韩军. 薄壁筒身插入式内坡口全焊透法兰焊接变形控制. 焊接, 2001(3): 30~32
    [70] A. Uelze. Welding deformations in the construction of railway carriage. Welding and Cutting, 1991(3): E42~E44
    [71] L. Troive, M. Nasstrom, M. Jonsson. Experimental and numerical study of multi-pass welding process of pipe-flange joints. Journal of Pressure Vessel Technology, 1998, 120: 244~251
    [72] C. L. Tsai, S. C. Park, W. T. Cheng. Welding distortion of a thin-plate panel structure. Welding Journal, 1999, 78(5): 156s~165s
    [73] 江锋, 刘民. 客车车身焊接变形形式及其控制措施. 客车技术与研究, 2000, 22(3): 34~36
    [74] 姚小元, 陶祖纪, 沙荣利. 芜湖长江大桥锚箱焊接变形的控制技术. 焊接, 2001(1): 25~28
    [75] K. Y. Bae, S. J. Na. A study of the effect of pre-straining on angular distortion in one-pass fillet welding incorporating large deformation theory. Proc. Instn. Mech. Engrs. Part B: Journal of Engineering Manufacturing, 209: 401~409
    [76] 宗培, 文建成, 罗宇. 焊接结构反变形的有限元法计算. 船海工程, 2001(5): 5~7
    [77] 姚君山, 张彦华, 张崇显. 有源强化传热控制薄板焊接压曲变形的研究. 机械工程学报, 2000, 36(9): 55~60
    [78] Q. Guan, D. L. Guo, C. Q. Li, et al. Low stress non-distortion (LSND) welding —a new technique for thin materials. Welding in the World, 1994, 33(3): 160~167
    [79] Q. Guan, C. X. Zhang, D. L. Guo. Dynamic control of welding distortion by moving spot heat sink. Welding in the World, 1994, 33(4): 308~312
    [80] Q. Guan, et al. Method and apparatus for low stress and non-distortion welding of thin-walled structural elements. Chinese Patent No. 87100959, 28 Feb. 1987
    [81] P. Michaleris, X. Sun. Finite element analysis of thermal tensioning techniques mitigating weld buckling distortion. Welding Journal, 1997, 76(1): 451s~457s
    [82] 李铸国, 吴毅雄, 林涛. 复杂汽车零部件精度焊接成形质量保证系统. 焊接学报, 2001, 22(5): 65~68
    [83] D. Rosenthal. Mathematical theory of heat distribution during welding and cutting. Welding Journal, 1941, 20(5): 220~234
    [84] 雷卡林. 焊接热过程计算. 徐碧宇, 庄鸿寿译. 北京: 中国工业出版社, 1958. 11 (第1 版)
    [85] 陈楚, 张月嫦. 焊接热模拟技术. 北京: 机械工业出版社, 1985. 7(第1 版)
    [86] 陈楚. 数值分析在焊接中的应用. 上海: 上海交通大学出版社, 1985. 1(第1 版)
    [87] 汪建华. 焊接数值模拟技术及其应用. 上海: 上海交通大学出版社, 2003. 10(第1 版)
    [88] 马杭. 焊接瞬态温度场的边界元计算. 甘肃工业大学学报, 1994, 20(3): 13~15
    [89] 马杭. 焊接中的边界单元法. 上海: 上海大学出版社, 2001. 6(第1 版)
    [90] 李景湧. 有限元法. 北京: 北京邮电大学出版社, 1999. 2(第1 版)
    [91] 邹茉莲. 焊接理论及工艺基础. 北京: 北京航空航天大学出版社, 1994. 9(第1 版)
    [92] 陈伯蠡. 焊接冶金原理. 北京: 清华大学出版社, 1991. 1(第1 版)
    [93] 朱玉义. 焊工实用技术手册. 南京: 江苏科学技术出版社, 1999. 1(第1 版)
    [94] 杨世铭, 陶文铨. 传热学. 北京: 高等教育出版社, 1998. 12(第1 版)
    [95] C. L. Tsai, W. L. Dai, D. W. Dickinson, et al. Analysis and development of a real-time control methodology in resistance spot welding. Welding Journal, 1991, 70(12): 339s~351s
    [96] H. 霍夫特, H. G. 施奈德. 电接触. 北京: 机械工业出版社, 1988(第1 版)
    [97] 董俊慧. 管道环焊缝接头焊接应力应变的数值模拟: [博士学位论文]. 武汉: 华中科技大学图书馆学位论文全文数据库, 2003
    [98] 李国成. 土木工程的虚拟仿真研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 2002
    [99] Y. J. Chao. Ultimate Strength and Failure Mechanism of Resistance Spot Weld Subjected to Tensile, Shear, or Combined Tensile/Shear Loads. Journal of Engineering Materials and Technology, 2003, 125: 125~132
    [100] N. Pan, S. Sheppard. Spot welds fatigue life prediction with cyclic strain range. International Journal of Fatigue, 2002, 24: 519~528
    [101] H. Kang, M. E. Barkey, Y. Lee. Evaluation of multiaxial spot weld fatigue parameters for proportional loading. International Journal of Fatigue, 2000, 22: 691~702
    [102] 陈传尧. 疲劳与断裂. 武汉: 华中科技大学出版社, 2002(第1 版)
    [103] Li Chunzhi, Wang Yuanhan. The effect of the sheet rigidity on strength of the spot weld tension shear joint. Acta Mechanica Solida Sinica (English Edition), 1990, 3(4): 403~416
    [104] 戴瑞玲, 王玮, 李春植. 粘接点焊技术及最佳工艺参数的研究. 机械强度, 1996, 18(3): 64~67
    [105] 李春植, 戴瑞玲, 王玮. 粘接点焊单搭接头的静力分析. 机械强度, 1997, 19(2): 21~24
    [106] 李春植, 李建兵. 汽车薄钢板箱式结构的力学模型及新接合技术的应用研究. 上 海力学, 1997, 18: 518~522
    [107] 李春植, 李建兵. 薄钢板粘接点焊结构的强度分析. 粘接, 1997, 18(6): 20~23
    [108] 王玮, 戴瑞玲, 朱汉兴. 粘接单搭接头强度分析的概况. 机械强度, 1995, 17(4): 62~67
    [109] 胡敏. 车身点焊装配偏差分析的建模方法研究: [博士学位论文]. 上海: 上海交通大学图书馆, 2000
    [110] 汪建华, 陆皓. 焊接残余应力形成机制与消除原理若干问题的讨论. 焊接学报, 2002, 23(2): 76~78
    [111] 汪建华, 陈楚. 不同形状接头下的焊接传热计算机系统. 焊接学报, 1990, 11(5): 57~64
    [112] 陈俊梅. 预测焊接变形的简单方法研究: [博士后研究报告]. 武汉: 华中科技大学图书馆学位论文全文数据库, 2003
    [113] R. J. Bowers, E. F. Nippes. Weld Heat-affected zone response to elevated-temperature deformation. Welding Journal, 1996, 75(11): 356s~365s
    [114] Y. Yamamoto, T. Okuda. A study of spot welding of heavy gauge mild steel. Welding in the World, 1971, 9(7-8): 234~255
    [115] J. E. Gould. An examination of nugget development during spot welding, using both experimental and analytical techniques. Welding Journal, 1987, 66(1): 1s~10s
    [116] D. J. Browne, H. W. Chandler, J. T. Evans, et al. Computer simulation of resistance spot welding in aluminum: part I. Welding Journal, 1995, 74(10): 339s~344s
    [117] K. Nishiguchi, K. Matsuyama. Influence of current wave form on nugget formation phenomena when spot welding thin steel sheet. Welding in the World, 1987, 25(11/12): 222~244
    [118] S. Zhang. Approximate stress intensity factors and notch stresses for common spot-welded specimens. Welding Journal, 1999, 78(5): 173s~179s
    [119] Y. Zhang, D. Taylor. Optimization of spot-welded structures. Finite Element in Analysis and Design, 2001, 37: 1013~1022
    [120] S. Satonaka, K. I. Hatta, H. Kiyota, et al. Tensile shear strength of spot welded structures prediction of strength and effect of weld position. Welding in the World, 2001, 45(9/10): 3~8
    [121] S. Zhang. Approximate stress formulas for a multiaxial spot weld specimens. Welding Journal, 2001, 80(8): 201s~203s
    [122] S. Brown, H. Song. Finite element simulation of welding of large structures. Journal of Engineering for Industry, 1992, 114(November): 441~451
    [123] P. Michaleris, A. Debiccari. Prediction of welding distortion. Welding Journal, 1997, 76(4): 172s~181s
    [124] J. N. Karadelis, M. Omair. Elasto-plastic analysis with large deformation effects of a T-end plate connection to square hollow section. Finite Elements in Analysis and Design, 2001, 38: 65~77
    [125] 孙凌玉, 谢军, 于春生. 汽车车身结构动力学建模方法研究. 机械工程学报, 1999, 35(5): 72~74
    [126] S. Satonaka, K. Matsuyama. Review on inspection techniques for spot welds. Welding in the World, 2000, 44(3): 29~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700