用户名: 密码: 验证码:
渗流场及其与应力场的耦合分析和工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和渗流问题、堤防的渗透控制措施的优化以及渗流场和应力场的相互影响和耦合计算问题是岩土工程学科发展中很重要的一个方面。非饱和渗流是非饱和土力学重要研究内容之一,许多非饱和土问题都与流量边界条件下非饱和土体中的暂态渗流情况有关,对非饱和渗流进行系统的研究无论在理论上还是在工程应用中,都具有十分重要的意义;我国的河道堤防非常的多,其发生破坏的原因在很大程度上是由于渗流问题引起的,对堤防的渗流控制方案进行研究和优化是很有必要的;渗流场和应力场是岩土工程力学环境中的最重要组成部分之一,二者之间是相互联系、相互作用的,岩土介质的渗流场和应力场的相互影响体现了两场之间的耦合关系,把渗流场和应力场作为一个系统,研究和探讨渗流场和应力场的耦合问题,也是十分有必要的。
     本文在总结前人研究成果的基础上,主要研究和探讨了以下四个方面的内容:饱和非-—饱和、稳定—非稳定渗流计算的有限元分析;堤防渗控措施的比较和优化;土体湿化以及湿化变形的计算;土体渗流场和应力场的耦合计算问题。
     1.阐述了土体的土水势理论;对非饱和渗流的基本理论、土—水特性曲线和渗透系数的关系以及材料非饱和渗透参数的确定等进行了研究和探讨;
     2.从渗流基本理论出发,以压力水头为基本未知量推导多孔介质三维饱和—非饱和、稳定—非稳定渗流问题的微分方程以及方程的有限元格式;在饱和非饱和渗流场的有限元分析中,不仅考虑了饱和区的水体渗流情况,而且也考虑了非饱和区的水分运动情况,将饱和渗流场与非饱和渗流场统一起来进行研究,整个渗流场采用一个支配方程。
     3.利用三维饱和非饱和渗流有限元程序,对工程算例进行了计算,对水位发生上升和下降的变化时渗流场的变化情况进行了分析和探讨。可知:随着水位的上升,负压区的范围变小,饱和区域的孔隙水压力变大,部分土体由非饱和状态变为饱和状态,零孔压线的上升和水位的上升相比,存在着滞后的现象,孔压等值线的局部区域变陡,局部区域孔压变化梯度比较剧烈,水力坡降增大;而且在负压区局部区域,孔压等值线变得密集的现象比较显著;水位上升越快,土体的渗透系数越小,这种滞后的现象越明显;上游水位上升对坝体中靠近下游的区域的影响相对于其它的区域要小。上游水位下降,负压区的范围变大,正压区的范
    
    围和孔隙水压力变小,上游坝坡附近出现了顺坡向上游的渗流,水位下降越快,
    土体的渗透系数越小,顺坡渗流越明显,上游坝坡附近的水力坡降就越大,由此
    产生的顺坡向的渗流动水压力也越大,对坝体的渗流稳定的威胁也越严重。
     4.介绍了堤防渗透控制的主要内容、垂直防渗和水平防渗的措施;对堤防工
    程堤基的类型、堤防工程渗流的特点进行了分析,研究和探讨堤基渗透性能的各
    向异性和堤基表层的薄弱透水覆盖层厚度对渗流场的影响。堤基和堤身渗透性能
    的各向异性,造成渗流进出口水头等势线密度大,剩余水头比较大,渗流场中浸
    润线的位置升高,渗流出逸点的位置也相应地被抬高;随着弱透水覆盖层厚度的
    增加,背水侧堤脚的剩余水头和出逸比降变小,使得堤防容易达到安全状态的要
    求,有利于堤防的渗透稳定。
     5.分析了在堤基为上强下弱、堤基为深厚的强透水层等多种情况下,各种垂
    直防渗墙(全封闭式防渗墙、半封闭式防渗墙和悬挂式防渗墙)的适用条件和防渗方
    案的优化等,同时探讨了防渗墙的渗透系数对防渗效果的影响。
     结果表明:全封闭式防渗墙的防渗效果显著,但因其工程造价高,一般只能
    在堤基的强透水层不厚的情况下采用;
     透水堤基上设置悬挂式防渗墙时,防渗墙的影响范围有限,防渗作用不大,
    在实际的应用中,悬挂式防渗墙经常和其它的水平防渗措施相结合;
     半封闭式防渗墙必须与多元结构的堤基结合才能组成合理的防渗体系,适合
    于有弱透水夹层的深厚型强透水堤基,防渗依托层是评价半封闭式防渗墙技术可
    靠性的关键因素,防渗依托层应该是连续的、有足够的厚度和足够小的渗透性;
     防渗墙的防渗效果取决于防渗墙与土体渗透系数的比值。
     6.阐述了土体的湿化变形以及湿化变形产生的机理,对湿化变形的计算方法
    作了一些探讨;
     结合算例,采用非线性弹性模型,对土体的分级加荷、土体湿化所引起的应
    力场、位移场的变化等进行了分析。
     土体湿化以后,考虑土体的湿化变形作用,浸水区域的应力和应力水平明显降
    低,算例中湿化前后浸水区域底部最大的主应力的差别几乎达到50%,浸水区域湿
    化前后的应力水平的差异也比较显著;土体浸水以后,位移场也发生了变化,水平
    位移和竖直位移变大,水平位移和竖直位移最大值分别增加了20%和10%左右。
     7.以达西定律、质量守恒定律等为基础,推导出了考虑孔隙比变化的非稳定
    
    渗流场的微分方程和有限元方程;
     探讨了渗流场和应力场的相互作用的藕合机理,针对应力场对土体孔隙率的
    影响、渗流场引起的应力场的变化等进行了量化的分析,探讨了考虑应力场变化
    影响的渗透系数的计算方法;
     考虑渗流场和应力场的相互作用,得到岩土介质渗流场和应力场祸合的数学
    ?
The unsaturated seepage problem, the optimization of seepage control measure to dykes and the interaction and coupling between seepage field and stress field are the importance problems in geotechnical engineering. The unsaturated seepage problem is one of the important studies of the unsaturated soil mechanics. Many unsaturated soil mechanics are related with the transient seepage of unsaturated soil under the flux-boundary. Considering the theory problem and engineering appliance, it is very significative for us to make a systematic study. Because there are many riverway-dyke projects, whose breakage reasons mostly ascribe to the seepage, it is necessary to research the seepage-control case and optimization. Seepage field and stress field are the most important composing-parts of geotechnical engineering mechanics. The interaction between seepage field and stress field of rock and soil medium embody the coupling relation between two fields. Considering two fields as a system, it is also essential to resear
    ch and discuss the coupling problem between seepage field and stress field.
    Being based upon summarizing the existing research, this thesis mostly covers the Finite-Element Modeling of the saturated-unsaturated and steady-unsteady seepage, the compare and optimization of dykes-seepage measure, soil slaking and its displacement-calculation, the interaction and coupling between seepage field and stress field.
    1. This thesis first introduces soil moisture potential theory, then research and discuss the basic unsaturated seepage theory, the relation of soil-water's characteristic curve and seepage coefficient and the confirmation of the material unsaturated seepage coefficient.
    2. Beginning basic seepage theory, thesis introduce the 3D saturated-unsaturated and steady-unsteady seepage differential equation of porous media and the FEM regarding pressure water head as basic unknown quantity. On the saturated-unsaturated seepage field FEM, both the seepage in the saturated area and the hydrodynamic effect in the unsaturated area are considered, unifying saturated-unsaturated seepage field and
    
    
    
    applying uniform derivative governing equations in the wholly seepage field.
    3. Applying the 3D saturated-unsaturated FEM program and calculating one project instance, the change of the seepage when water head rises and descend also are researched and discussed. That shows that with the water head rising, negative pressure area reduces, pore water pressure in saturation area enlarges, partly soil changes from unsaturated status to saturated status and the area matric suction loses or minishs. During the water head rises, zero pore water pressure-line rises lagging hysteresis effect comparing to the rise of water head, pore water pressure isoline becomes abrupt on the local region, the grads of pore water pressure in local area are marked and waterpower slope-drop enlarges. Moreover, pore water pressure-isoline becomes evidently denseness in local negative pressure area. The more rapidly the water head rises and the smaller the seepage coefficient is, the more evident the lag is. The rise of the upriver water head has little effect on the midland close to backward position of the dam. Upriver dam has seepage along the slope. The more rapidly the water head descend and the smaller the seepage coefficient is, the more evidence the lag and seepage along the slope are, and the greater the waterpower slope-drop at the upriver dam slope is, correspond to which the greater the seepage hydrodynamic pressure along the dam slope and the more the seepage-steady in the dam is affected badly.
    4. Dyke seepage control, upright defence seepage and horizontal defence seepage are introduced. The style and the specialty of the dyke foundation are analyzed. The anisotropism of the penetrability in soil layer and the effect of the thickness of surface overcast low penetrability layer are researched. Anisotropism of the penetrability of dam and foundation material arouses that the density of the equipotential line of water head at entrance en
引文
[1] 黄俊,苏向明.土坝饱和—非饱和渗流数值分析方法研究,岩土工程学报, 1990(5)
    [2] 李信,高骇,汪自力.饱和—非饱和土的渗流三维计算,水利学报,1992(11)
    [3] 吴良骥,Bloomaburg GL.饱和非饱和区中流问题的数值模拟.水利水运科学研究,1985(6)
    [4] 雷光耀,张锁春.堤坝饱和非饱和渗流的数值模拟.岩土工程学报,1998(6)
    [5] 彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究,水动力学研究与进展A辑,2002(2)
    [6] 金生,耿艳芬,王志力 利用饱和.非饱和渗流模型计算坝体自由面渗流,大连理工大学学报,2004(1)
    [7] 张培文,刘德富,黄达海,宋玉普.饱和-非饱和非稳定渗流的数值模拟,岩土力学,2003(6)
    [8] 罗晓辉.深基坑开挖渗流与应力耦合分析,工程勘察,1996(6)
    [9] 朱京义,张丙印,张彦非饱和土水气两相不相容,不可压缩渗流有限元数值分析,武汉大学学报(工学版),2002(4)
    [10] 邵龙潭,王助贫 水流入渗气体驱替过程二维问题耦合求解,水科学进展, 2002(6)
    [11] 邓英尔.,刘慈群.,王允诚.考虑吸渗的双重介质中垂直裂缝井两相渗流, 重庆大学学报(自然科学版),2000(1)
    [12] 李培超,孔祥言,卢德唐饱和多孔介质流固耦合渗流的数学模型,水动力学研究与进展A辑,2003(4)
    [13] Braja M. Das. Principles of Geotechnical Engineering, Boston: PWS Publishers, 1985
    [14] 张吉园.特殊土湿化变形特性的有限元分析,武汉水利电力大学硕士论文, 1997.5
    [15] 吴子牛.计算流体力学基本原理,出版社,2001
    [16] 张廷方.流体力学,工大学出版社,1992
    [17] 刘祖德.膨胀土浸水三向变形研究,武汉水利电力大学学报,1994(6)
    [18] 刘祖德.土石坝变形计算的若干问题,岩土工程学报,1983(5)
    
    
    [19] Richards, L. A. Capillary conduction of liquids through porous medium. J. Physics., vol. 1931
    [20] 汪自力,李莉等,饱和—非饱和渗流模型在多层自由面渗流分析中的应用, 人民黄河,1997,01
    [21] 赤井浩一,大西有三,有限要素法对饱和—非饱和渗流问题的解析,土木学会论文报告集,NO.264
    [22] 葛祖立.砂砾管涌类型的判别和临界坡降计算.水力水电技术,1987(5)
    [23] 刘建军,耿万东.地下水渗流的固液耦合理论及数值方法.勘察科学技术, 2000(4)
    [24] 刘金砺.防洪堤加固构想.岩土工程学报,1998(5)
    [25] 王金生.垂直防渗墙技术在长江重要堤防隐蔽工程中的应用.中国水利, 2000(7)
    [26] 肖四喜,李银平.大堤管涌形成机理分析及治理方法.工程勘察,2000(3)
    [27] 朱伟,山村和也.堤防地基渗透破坏机制及其治理.水利水运科学研究, 1999(4)
    [28] 张建强.心墙土石坝湿化变形计算与分析,大连理工大学硕士论文,1996.4
    [29] 魏保义.用非饱和渗流理论研究降雨入渗的特性及对边坡稳定的影响,河海大学硕士论文,2001.3
    [30] 高海鹰 裂隙岩体渗流场与应力场耦合分析方法,云南农业大学学报, 1997(2)
    [31] 朱珍德 裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用,长江科学院院报,1999(5)
    [32] 杨明举地下水封裸洞储存LPG耦合问题的变分原理及应用,岩石力学与工程学报,2003(4)
    [33] 柴军瑞 龙滩碾压混凝土坝渗流场与应力场耦合分析,四川水力发电,2001(1)
    [34] 王媛.多孔介质渗流与应力的耦合计算方法.工程勘察,1995(2)
    [35] 柴军瑞,许彦卿.均质土坝渗流场与应力场耦合分析的数学模型.陕西水利发电,1997(3)
    [36] 宋惠珍.地下流体场与应力场耦合方程的有限单元法.石油勘探与开发, 1998(4)
    [37] 董哲仁.堤防除险加固实用技术.北京:中国水利水电出版社,1998
    [38] 毛昌熙.渗流计算分析与控制.北京:水利电力出版社,1990
    
    
    [39] 钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社, 1996
    [40] 孔祥和.高等渗流力学.合肥:中国科学技术大学出版社,1999
    [41] 毛昌熙等.渗流数值计算与程序应用.南京;河海大学出版社,1999
    [42] 吴梦喜,高莲士.饱和—非饱和土体非稳定渗流数值分析.水利学报,1999(12)
    [43] 周创兵 岩石节理非饱和渗流特性研究,水利学报,1998(3)
    [44] 耿克勤,吴水平.拱坝和坝肩岩体的力学和渗流的耦合分析实例,岩石力学与工程学报,1997(2).
    [45] 赖远明 等 寒区大坝温度场和渗流场耦合问题非线性数值模拟,水利学报, 2001(8)
    [46] 赖远明 等 寒区隧道温度场,渗流场和应力场耦合问题的非线性分析,岩土工程学报,1999(5)
    [47] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述,岩土力学,1998(2)
    [48] 祁庆和.水工律筑物.北京:水利电力出版社,1986
    [49] 吴梦喜.土体非饱和渗流与变形耦合分析方法及在心墙坝中的应用,清华大学博士论文,2000.3
    [50] 吴林高,俊发等.渗流力学,上海:上海科学技术文献出版社,1996
    [51] 仵彦卿.岩上体系统渗流场与应力场耦台的连续介质模型,酉安公路交通大学学报,1996(1)
    [52] 朱岳明.大坝渗流计算与渗控措施研究综述,河海科技进展,1993(4)
    [53] 刘川顺等.长江堤防地基类型与防渗方案,水文地质工程地质 2001(6)
    [54] 刘川顺等.冲积地基堤防垂直防渗方案研究,岩石力学与工程学报,2002(3)
    [55] 张家发.三维饱和非饱和稳定非稳定渗流场的有限元模拟,长江科学院院报, 1997(3)
    [56] 张家发.土坝饱和与非饱和稳定渗流场的有限元分析,长江科学院院报, 1994(3)
    [57] 许季军,张家发,程展林等.堤防半封闭式防渗墙防渗机理及设计参数研究, 人民长江,2001(5)
    [58] 张家发等.典型条件下堤身堤基渗流规律分析,长江科学院院报,2000(5)
    [59] 张家发等.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟,水利学报,2002(9)
    [60] 张家发等.堤防加固工程中防渗墙的防渗效果及应用条件研究,长江科学院院报,2001(5)
    
    
    [61] J.贝尔.多孔介质流体动力学,中国建筑出版社,1996
    [62] 彭华,陈胜宏.饱和非饱和非稳定渗流有限元加速技术,武汉大学学报(工学版),2001(6)
    [63] 朱军,刘光廷,陆述远.饱和非饱和三维多孔介质非稳定渗流分析,武汉大学学报(工学版),2001(6)
    [64] 刘洁,毛昌熙.堤坝饱和与非饱和渗流计算的有限单元法,水利水运科学研究,1997(9)
    [65] 李定方,李祖贻,陈平.土坝三向渗流什算,水利水运科学研究,1980(3)
    [66] 郭东屏.地下水动力学,陕西科学技术出版社,1994
    [67] 朱岳明,龚道勇等.三维饱和非饱和渗流场求解及其逸出面边界条件处理, 水科学进展,2003(1)
    [68] 朱岳明,黄文雄.碾压混凝土坝渗流场与应力场的非线性耦合作用研究,红水河,1997(3)
    [69] 陈慧远.土石坝有限元分析,南京:河海大学出版社,1988
    [70] 郭诚谦等.土石坝,北京:水利电力出版社,1992
    [71] 日本电力土木技术协会编,陈慧远等译.最新土石坝工程学,北京:水利电力出版社,1986
    [72] 龚道勇.三维非稳定饱和.非饱和渗流场的有限元分析及应用,河海大学硕士论文,2001.3
    [73] 孙钧,汪炳鉴编著.地下结构有限元法解析,上海:同济大学出版社,1988
    [74] 张智,屈智炯.粗粒土湿化特性的研究,成都科技大学学报,1990(5)
    [75] 李广信.堆石料的湿化试验和数学模型,岩土工程学报,1990(5)
    [76] 殷宗泽,张金富.小浪底土坝坝料土的湿化变形试验研究,河海科技进展,1993(4)
    [77] 李翠华,詹长久等.膨胀土湿化变形试验研究,武汉大学学报(工学版).2001(5)
    [78] 陈红,陈彤等.堤坝饱和-非饱和渗流数值模拟,水动力学研究与进展, 1997(9)
    [79] 张华,陈善雄,陈守义.非饱和土入渗的数值模拟,岩土力学,2003(5)
    [80] 陈庆中,张弥,冯星梅应力场,渗流场和流场耦合系统定边值定初值问题的变分原理,岩石力学与工程学报,1999(5)
    [81] 陈波,李宁,禚瑞花 多孔介质的变形场-渗流场-温度场耦合有限元分析,岩石力学与工程学报,2001(4)
    
    
    [82] 平扬,白世伟,徐燕平深基坑工程渗流渗流—应力耦合分析数值模拟研究, 岩土力学,2001(3)
    [83] 杨志锡,叶为民,杨林德各向异性饱和土体的渗流耦合分析和数值模拟, 岩石力学与工程学报,2002(10)
    [84] 柴军瑞 大坝及其周围地质体中渗流场与应力场耦合分析,岩石力学与工程学报,2000(6)
    [85] 黄涛,杨立中.渗流应力 温度耦合下裂隙围岩隧道涌水量的预测,西南交通大学学报(自然科学版),1999(5)
    [86] 徐则民 基于水-力耦合理论超深隧道围岩渗透性预测,成都理工学院学报, 2001(2)
    [87] 沈振中 三峡大坝坝基粘弹性应力场与渗流场耦合分析,工程力学,2000(1)
    [88] 王媛 裂隙岩体渗流与应力耦合分析的四自由度全耦合法,水利学报, 1998(7)
    [89] 张玉卓,张金才 裂隙岩体渗流与应力耦合的试验研究,岩土力学,1997(4)
    [90] 杨延毅,周维垣 裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究, 工程力学,1994(2)
    [91] 陈平,张有天裂隙岩体渗流与应力耦合分析,岩石力学与工程学报, 1994(4)
    [92] Rubin, J. Theoretical analysis of two-dimensional transient flow of water in unsaturated andpartly unsaturated soils. Pros. Soil Sci. Soc. Amer., 1968, vol. 32
    [93] Van Genuchten, M. T. A closed form equation for prediction the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am., J. 44, 1980
    [94] Forsyth P.A. Comparison of the single-phase and two-phase numerical model formulation for saturated-unsaturated groundwater flow. Computer Methods Appl. Mec-h. Engrg. 1988,
    [95] Braja M. Das. Principles of Geotechnical Engineering, Boston: PWS Publishers, 1985
    [96] Noorishad J. A finite element method for coupled stress and flow analysis In fractured rock mass. Int. J Rock Mech. Min. Set. Geomech. Abstr. 1982
    [97] Noorlshad J. Coupled thermal-hydraulic-mechancal phenomena In saturated fractured porous. Numberical approach. J. Geoph.. Res. 1989(B12)
    [98] Oda. M. Permeability tensor for discontinuous rock masses. Geotechnique. 1985(4)
    
    
    [99] Ng, C. W.wand Shi, Q. A numerical investigation of the stability of unsaturated soil slopessubjected to transient seepage. Computer and Geotechnics, Vol. 22, no. 1, 1998
    [100] Wu Yan-Qing, Zhang Zhuo-Yuan. Research on Lumped Parameter model of coupled seepage and stress field in fractured rock mass. Proc. Seventh international Congress International Association of Engineering Geology. Sept, 1999, LISBOA. PORTUGAL.
    [101] Sammori, T. and Tsuboyama, Parametric study on slope stability with numerical sim ulation in consideration of seepage process. Int. Symp. on Landslide.Bell(ed.} Rotterdam: Balkema, 1991.
    [102] Oda. M. An equivalent continuum model for coupled stress fluid analysis in jointed rock masses, Water Resources Research. 1986(13)
    [103] Witherspoon. A. etal.: New approaches to problems of fluid in fractured rock masses. Proc. U. S. Symp. Rock. Mech. 22nd, 1981
    [104] Fredlund D G & Xing. A. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal. 1994.31
    [105] Fredlund D G, Xing A and Huang S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994. 31
    [106] Fredlund D G, Xing A, Fredlund M O, and Barbour S L. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Can. Geotech. J. 1996.33
    [107] Fredlund, D. G. and Hansan, J. U. One-dimensional consolidation theory: unsaturated soils.Can. Geot. Jour., vol. 16, no. 3, 1979
    [108] Fredlund, D. G. and Rahardjo, H. Soil mechanics for unsaturated soils. New York: Wiley. 1993.
    [109] Fredlund, D. G., et al. The shear strength of unsaturated soils. Can. Geotech. J., 1978, 15(3)
    [110] 111. Frediuun M. D. Wilson, G.W. and Fredlund, D. G. Prediction of the Soil-Water Characteristic Curve from the Grain-Size Distribution Curve. Proceedings of the 3rd Symposium on Unsaturated Soil, Rio de Janeiro, Brazil, April 20, 1997.
    [111] Freeze, R. A. Three-dimensional transient saturated-unsaturated flow in a
    
    groundwater basin. Water Resources Res. 1971.7.
    [112] Lam, . L. and Fredlund D. G. Satured—unsatured transient finite element seepage model for geotechnical engineering. Adv. Water Resources, vol. 7 1984.
    [113] Shlomo p.Neuman, "Saturated—Unsaturated Seepage by Finited Elements" Journal of the Hydraulics Division, ASCE, Dec. 1973
    [114] Neuman S.P., Galerkin approach to saturated-unsaturated flow in porous media. Finite elements in fluids. Viscous Flow and Hydrodynamical, 1974
    [115] Freeze R.A. and Cherry J.A., Groundwater englewood cliff. NJ: Prentice-Hall, 1979
    [116] Papagiannakis, A. T and Fredlund, D. G. A steady state model for flow in satured-unsatured soils. Can. Geotech. J., vol. 21, no. 13, 19
    [117] Remson, I, Hornberger, G. M. and Molz, F. J. Numerical methods in sub surface hydrology. Wiley-Interscience, 1971.
    [118] S. P. Neuman, T. N. Narasimhan and P. A. WitherspoonA pplication of Mixed Explicit-Implicit Fi nite Element Method to Nonliner ifusion-Type Problems, Finite Elements in Water Resources, Pe ntechPress, London, Plymouth, 1977
    [119] Lam, . L.etal. Transient seepage model for satured-unsatured soil system: a geotechnical engineering approach. Can Geotech J. 1987.24
    [120] Brooks RH.Corey AT., Hydraulic Propertics of Porous Media, Hudrol.Pap., 3pp, Colo.State Univ. Fort Collins. 1964;
    [121] Davidson M R. A Green-Ampt model of infiltration in a cracked soil. Water Rosour. Res., 1984.20
    [122] Irmay, S. On the hydraulic conductivity of unsaturated soils. Trans. Am. Geophys. Union, vol.35 1954
    [123] Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data Soil Sci. 117, 1974
    [124] Yuster, S. T. Theoretical considerations of multiphase flow in idealized capillary systems. Proc. World Pet. Congress.2, 1951
    [125] Gardner, W. R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85, 1958
    [126] Averjanov, S. F. About permeability of subsurface soils in case of incomplete saturation. In Engineering Collect., vol. 7 1950
    [127] Mualem. A new model for prediction the hydraulic conductivity of unsaturated
    
    porous media. Water Resources Res. 12, 197
    [128] Davidson M R. Nurperical calculation of saturated-unsaturated infiltration in cracked soil. Water Resource. Res. 1985
    [129] Dershowitz W S. A new three dimensional model for flow in fracture rock. Int. Assoc.Hydrogeol. 17. 1985
    [130] Desai. Finite Element Methods for Flow in Porous Media in Fluids.New Youk: Wiley, 1975
    [131] Maini. Approaches to problems of fluid in fractured rock masses. Int. Assoc.Hydrogeol. 17. 1985
    [132] [加]F.A.L.Dullien著.杨富良,黎用启译.多孔介质—流体渗流与孔隙结构, 北京:石油工业出版社,1989.
    [133] 罗元华,孙雄.不同应力状态下地层渗透系数的变化及其对流体运移影响的数值模拟研究,地球学报:中国地质科学院院报,1998(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700