用户名: 密码: 验证码:
饱水—失水循环劣化作用下库岸高边坡岩石流变机理及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实施“西部大开发”的战略决策中,水电开发是其中的重要组成部分。西部建设的大型水电站大多地处崇山峻岭中的深山峡谷地区,地形地质条件复杂,因此,出现了大量的库岸高陡边坡。水库在运营过程中,将按计划周期性的蓄水和排水,库水位反复大幅升降对“消落带”的岩体来说是一种“疲劳损伤”和反复弱化作用,库水位涨落下,“消落带”岩体的饱水-失水循环劣化作用会加剧库岸边坡消落带岩体的流变性,甚至发生流变变形破坏。而坝址区的边坡由于离大坝较近,在水电站运行期库水位涨落影响下其长期稳定性对大坝的长期安全将有直接的影响。
     本论文结合国家自然科学基金项目“水位周期性大幅涨落下库岸高边坡软弱节理岩体流变机理与长期稳定性研究”(41172281),以国家重点工程龙滩水电站的坝址区库岸高边坡“消落带”砂岩、泥板岩为研究对象,考虑库岸边坡在水电站运营中经常遇到的库水位涨落情况,对“消落带”岩石试样在饱水-失水循环作用下劣化机理和效应进行研究,进行不同“饱水-失水”循环次数作用后的单轴、三轴抗压强度实验、抗拉实验以及三轴流变试验。对“消落带”砂岩、泥板岩饱水-失水循环作用后的损伤劣化规律进行了研究分析,在Hoek-Brown强度准则的基础上,引入饱水-失水循环作用后岩石累积损伤率,考虑了饱水-失水循环作用对岩石的损伤影响,改进了Hoek-Brown强度准则,并构建了改进的Hoek-Brown强度准则对应的“GSI量化取值表格”。在流变试验的基础上,提出了考虑岩石饱水-失水循环次数n损伤的“非线性黏弹塑性流变模型(DNBVP模型)”,使用VC++编程对该模型进行了基于FLAC3D软件的二次开发。选取龙滩水电站坝址区流变体B区域的典型剖面,进行饱水-失水循环劣化作用下的长期流变计算,采用"BP-PSO算法的边坡位移反分析方法”,反演获取考虑流变特性的数值计算模型中“岩体”相应的DNBVP模型最优流变参数,结合库水位涨落周期内坝区高边坡岩体现场监测成果,论证提出的流变本构模型,对库水位涨落下坝区高边坡长期稳定性进行了计算预测,并提出了相应的防治措施,为工程实践提供参考。在我国中西部众多水利水电工程先后竣工和蓄水运行的背景下,研究成果对揭示大量存在的库岸边坡岩体力学参数随库水位涨落的变化规律,并将此规律应用到库岸边坡岩土体的长期稳定性评价分析中,具有十分重要的理论和应用价值。
     取得了如下研究成果:
     (1)从室内单轴抗压、抗拉、三轴抗压、三轴流变试验以及三轴流变试验后岩样的宏、细观破坏形态分析发现“饱水-失水”循环对砂岩、泥板岩的物理力学性质具有明显的损伤劣化作用。
     (2)以试验为基础,揭示了砂岩、泥板岩在不同“饱水-失水”循环下抗压强度、弹性模量、抗拉强度、粘聚力、内摩擦角的损伤劣化规律。
     (3)在Hoek-Brown强度准则的基础上,引入饱水-失水循环作用后岩石累积损伤率,考虑了饱水-失水循环作用对岩石的损伤影响,改进了Hoek-Brown强度准则,为饱水-失水循环作用下现场岩体力学参数的获取,提供了理论依据和过渡的“桥梁”。
     (4)结合国内外研究成果,在E. Hoek提出的广义Hoek-Brown准则中GSI评分表格的基础上,对GSI评分系统进行量化取值,构建了包含岩体结构类型、岩体体积节理数JV、岩体完整性系数Kv、岩体结构等级SR、节理特征系数JC、结构面表面等级SCR的“新的GSI量化取值表格”,“新的GSI量化取值表格”解决了岩体节理体积系数JV通常不能合理确定的问题,并采用我国相关规范以岩体完整性系数KV替换岩块体积Jb来解决对岩体完整性合理的定量化取值问题,且采用定性化的结构面表面特征、结构面表面等级指标SCR、节理特征系数JC、岩石质量指标RQD四个指标,选择性对比验证岩体结构面特征的定量化取值。新的GSI量化取值表格采用了区间数理论,来表示地质强度指标GSI的不确定性,更为符合现场岩体力学参数取值的实际情况,且考虑了现场试验资料选择性获取的可操作性,并引入多指标联合确定GSI值的最终交集,确保了GSI定量化取值的合理性。为不同地质情况下定量地将岩石力学参数转换为岩体力学参数提供了新的依据。
     (5)以饱水状态(饱水-失水循环0次)的砂岩、泥板岩流变试验曲线为例,进行坝址区库岸高边坡“消落带”砂岩、泥板岩流变特征研究分析,发现:①砂岩、泥板岩的流变曲线均经历了瞬时弹性变形阶段、减速流变阶段、稳定流变阶段和加速流变阶段。在低轴向应力作用下,砂岩、泥板岩只出现前三种阶段,在轴向应力接近或达到临界破坏值时才依次出现上述四种流变阶段。②砂岩岩样在前四级轴向荷载作用下流变速率先减小后趋于零或稳定值;砂岩岩样在第五级轴向荷载作用下流变速率先减小后趋于零或稳定值,最后又加速直至岩样破坏。泥板岩岩样在前四级轴向荷载作用下流变速率先无规律的波动后总体上趋于零或稳定值,但局部仍有波动,这是因为泥板岩相对于砂岩有着更多的微裂隙、微缺陷或不均匀性更易受水的影响,在流变试验的长期作用下导致轴向应变不均匀波动;泥板岩岩样在第五级高轴向荷载应力作用下流变速率先减小后趋于零或稳定值,最后又加速直至岩样破坏。③砂岩、泥板岩的轴向应变和轴向应变速率曲线并不十分光滑,其局部应变曲线段和应变速率曲线段均发生了微小波动和突变现象,而泥板岩的这种微小波动和突变现象更为剧烈。造成这种现象的原因是由于流变试验过程中,砂岩、泥板岩内部结构存在非均质性,从而引起岩样的微观弱化和破裂,使得原有的应力平衡被打破,由于受到恒定轴向应力的长期连续作用,岩样内部的微缺陷发生损伤,经过较长时间的积累之后,岩石中强度较低的部位无法承受这些微缺陷的长期累积所引起的流变损伤,出现了非均匀的变形与破坏,从而造成岩石变形曲线产生了不规则波动和突变。在饱水状态下,泥板岩出现突变现象的次数明显高于砂岩,说明饱水状态下轴向应力对泥板岩的微观缺陷具有更明显的损伤效应,从而使泥板岩的轴向应变曲线多次出现突变现象。
     (6)针对线性流变体的元件组合模型构建的与岩石流变相关的本构模型将会与实际有所偏差的情况,在Burgers模型的基础上串联一个非线性黏性元件和塑性元件并联而成的非线性黏塑性体,进而提出了一种能同时描述岩石黏弹和塑性特性的非线性流变模型-NBVP模型,对NBVP模型的三维流变本构方程进行了推导。以饱水状态的砂岩、泥板岩流变试验曲线为例,分别采用三参量模型、Burgers模型、NBVP模型对试验实测数据进行拟合,对比分析后发现所建立的非线性黏弹塑性流变模型—NBVP模型曲线与砂岩、泥板岩的三轴流变试验结果较吻合,且NBVP模型可以较理想的描述岩石的加速流变阶段。
     (7)将损伤变量引入到NBVP模型中,建立了考虑岩石饱水-失水循环次数n损伤的非线性黏弹塑性流变模型—DNBVP模型,同时基于流变试验结果得到了相应的损伤变量表达式,并推导了DNBVP模型的三维流变本构方程,以试验数据为例进行分析可以看出DNBVP模型能够很好地描述饱水-失水循环后岩石流变的全过程曲线。
     (8)将非线性黏弹塑性流变模型(DNBVP模型)方程,进行详细推导,获得了其二次开发所需的应力增量三维中心差分格式,参照DNBVP流变模型的应力增量差分表达式,采用VC++编程,生成可调用的动态链接库(.d11),可以实现DNBVP流变模型在FLAC3D中的开发。以三轴岩样的数值模型试验计算结果分析发现二次开发的DNBVP模型是合理正确的;对不同饱水-失水循环次数n取值后,计算所得的岩样顶端轴向位移,进行分析可以看出,随着饱水-失水循环次数n的增大,轴向位移亦增大,既损伤亦增大,且其与试验数据较吻合,证明了所建立的DNBVP流变模型的正确性。
     (9)选取龙滩水电站坝址区流变体B区域典型剖面,进行饱水-失水循环劣化作用下的长期流变计算。将室内岩石流变试验与现场监测数据相结合,根据提出的“非线性黏弹塑性流变模型(DNBVP模型)”,采用"BP-PSO算法的边坡位移反分析方法”,反演得到了高边坡消落带“岩体”的DNBVP模型的最优流变参数,并将其应用于高边坡的长期流变计算中,再将监测点的反演计算位移值与现场实测位移值进行对比,发现,现场实测位移值与流变计算值的变化趋势基本相同,量值上也接近,表明了本文采用的通过“基于BP-PSO算法的边坡位移反分析法”和提出的“非线性黏弹塑性流变模型(DNBVP模型)”的正确性。最后对龙滩水电站坝址区左岸B流变体典型剖面高边坡模型进行了长期流变计算与预测分析,并提出了相应的防治措施,为工程实践提供参考。
Hydropower development is an important part in implementation of the strategy of "West China Development". Large-size hydropower stations constructed in the west regions are mostly located in high mountains and deep canyon areas with complex topographic and geological conditions; as a result, there are plenty of high and steep reservoir bank slopes. During operation of a reservoir, water is impounded and drained periodically as planned; the substantial rise of fall of reservoir water level has an effect of "fatigue damage" and repeated weakening on rock mass in the hydro-fluctuation belt. Under fluctuation of reservoir water level, the deterioration effect of water saturation-dehydration circulation of rock mass in the hydro-fluctuation belt will intensify the rheological behavior of rock mass in the hydro-fluctuation belt of reservoir bank slope, or even lead to rheological deformation failure. Moreover, since the slope in dam site area is relatively close to the dam, under the effect of fluctuation of reservoir water level during operation of the hydropower station, the long-term stability of the slope will directly affect the long-term safety of the dam.
     In combination with the program of the National Natural Science Foundation of China titled "Study on the Rheological Mechanism and Long-Term Stability of Soft Jointed Rock Mass of High Reservoir Bank Slope under Periodic Substantial Fluctuation of Water Level"(41172281), this paper takes sandstone and argillite in the "hydro-fluctuation belt" of high reservoir bank slope in the dam site area of Longtan Hydropower Station, a national key project, as the research object. With consideration to the fluctuation of reservoir water level with which the reservoir bank slope can frequently encounter during operation of the Hydropower Station, a study is conducted on the deterioration mechanism and effect of rock samples from the hydro-fluctuation belt under water saturation-dehydration circulation; uniaxial and triaxial compression tests, tensile test and triaxial rheological test are performed after different times of "water saturation-dehydration" circulation. The rule of damage and deterioration of sandstone and argillite in the "hydro-fluctuation belt" after water saturation-dehydration circulation is investigated and analyzed. Based on the Hoek-Brown strength criterion, the cumulative damage rate of rocks after water saturation-dehydration circulation is introduced; the damage effect of water saturation-dehydration circulation on rocks is considered; the Hoek-Brown strength criterion is improved; and the "quantitative GSI table" corresponding to the improved Hoek-Brown strength criterion is established. On the basis of the rheological test, a nonlinear visco-elasto-plastic rheological model (DNBVP model) considering the damage after n time(s) of water saturation-dehydration circulation of rocks is proposed; VC++programming is used for secondary development of this model based FLAC3D software. A typical section of the zone where rheological body B is located in the dam site area of Longtan Hydropower Station is chosen for numerical simulation calculation and analysis of the stability of the high reservoir bank slope in the dam site area under the deterioration effect of water saturation-dehydration circulation, the "method of slope displacement back analysis based on BP-PSO algorithm'" is adopted to obtain through inversion calculation the optimum rheological parameters of the DNBVP model corresponding to the "rock mass" in the numerical calculation model considering the rheological property. The validity of the rheological damage constitutive model proposed is demonstrated in combination with the findings from field monitoring of the rock mass of high slope in the dam area within the fluctuation cycle of reservoir water level; then, this model is used to calculate and predict the long-term stability of the high slope in the dam area under fluctuation of reservoir water level, and relevant prevention and control measures are put forward for reference in engineering practice. In the context that a number of water conservancy and hydropower projects have been completed and put into operation in succession in Midwest China, the research findings are of great theoretical and application value for revealing the rule that the mechanical parameters of rock masses of numerous reservoir bank slopes change with the fluctuation of reservoir water level, as well as for applying this rule in evaluation and analysis of the long-term stability of rock and soil masses of reservoir bank slopes.
     The following research findings are achieved:
     (1) From the indoor uniaxial compression, tensile, triaxial compression and triaxial rheological tests, and the analysis of the macro-and micro-failure patterns of the rock samples after the triaxial rheological test, it is found that "water saturation-dehydration" circulation has an obvious damage and deterioration effect on the physical and mechanical properties of sandstone and argillite.
     (2) Based on the tests, the rule of damage and deterioration of sandstone and argillite under different times of "water saturation-dehydration" circulation is revealed in terms of compression strength, elasticity modulus, tensile strength, cohesion and internal friction angle.
     (3) On the basis of the Hoek-Brown strength criterion, the cumulative damage rate of rocks after water saturation-dehydration circulation is introduced; the damage effect of water saturation-dehydration circulation on rocks is considered; and the Hoek-Brown strength criterion is improved, which provides a theoretical basis for obtaining physical and mechanical parameters of field rock mass under water saturation-dehydration circulation, and also builds a "bridge" for parameter transformation.
     (4) In combination with the research findings at home and abroad, and based on the GS1scoring table in the generalized Hoek-Brown criterion put forward by E. Hoek, a "new quantitative GSI table", comprising structure type of rock mass, volumetric joint count of rock mass Jv, integrity coefficient of rock mass Kv, structure rating of rock mass SR, joint characteristic coefficient Jc, and surface condition rating SCR, is established. The new quantitative GSI table solves the problem that the volumetric joint count of rock mass JV usually cannot be reasonably determined; meanwhile, according relevant norms of China, the integrity coefficient of rock mass KV is used to replace the volume of rock mass Vb to solve the problem of reasonable quantitative determination of rock mass integrity, and four qualitative indices including surface characteristic, surface condition rating SCR, joint characteristic coefficient Jc and rock quality designation RQD are used to selectively verify the quantitatively determined value of surface characteristic of rock mass through comparison. The new quantitative GSI table, which utilizes the interval number theory to represent the uncertainty of GSI, is more aligned with the actual situation of value determination of mechanical parameters of field rock mass; it gives consideration to the operability of selective acquisition of field test data, and introduces multiple indices to jointly determine the final intersection of GSI, ensuring the accuracy of GSI quantitative determination. In the meantime, a new basis is provided for quantitative transformation of mechanical parameters of rocks to mechanical parameters of rock mass.
     (5) The rheological test curves of water-saturated (0time of water saturation-dehydration circulation) sandstone and argillite are taken as examples to investigate and analyze the rheological property of sandstone and argillite in the "hydro-fluctuation belt" of high reservoir bank slope in the dam site area. The findings are as follows:(a) The rheological curves of sandstone and argillite both undergo the instantaneous elastic deformation stage, the decelerated rheological stage, the stable rheological stage, and the accelerated rheological stage. Under low axial stress, sandstone and argillite only have the first three stages; the foresaid four rheological stages take place successively only when the axial stress is close to or reaches the critical failure value,(b) Under the first four levels of axial load, the rheological rate of the sandstone samples first decreases, and then becomes close to zero or reaches a stable value. Under the fifth level of axial load, the rheological rate of the sandstone samples first decreases, then becomes close to zero or reaches a stable value, and finally increases till failure of the samples. Under the first four levels of axial load, the rheological rate of the argillite samples first fluctuates irregularly, and then becomes close to zero or reaches a stable value on the whole; but local fluctuation still exists, because argillite is more sensitive to water than sandstone as it has more microfissures, microdefects or nonuniformity, and nonuniform fluctuation of axial strain is induced under the long-term effect of the rheological test. Under the fifth level of high axial load, the rheological rate of the argillite samples first decreases, then becomes close to zero or reaches a stable value, and finally increases till failure of the samples,(c) The axial strain and axial strain rate curves of sandstone and argillite are not quite smooth; the local strain curve segment and the strain rate curve segment are both subject to slight fluctuation and mutation, and this phenomenon is more violent in argillite. The cause of such phenomenon is as follows:the nonhomogeneity of the internal structures of sandstone and argillite leads to micro-weakening and fracture of the rock samples, upsetting the original stress equilibrium;under the long-term sustained effect of constant axial stress, the microdefect parts of internal materials of the rock samples gradually get damaged;after long-time accumulation, the positions in rock materials where the strength is relatively low exhibit inhomogeneous deformation failure at micro-parts due to incapability of bearing the rheological damage induced by the long-term accumulation effect of microdefects, further resulting in rock deformation which gives rise to irregular fluctuation and mutation. In water-saturated state, the mutation in argillite is more frequent than in sandstone, which indicates that in water-saturated state, the axial stress has more obvious damage effect on the microdefects of argillite, resulting in frequent mutation of the axial strain curve of argillite.
     (6) The constitutive model related to the rheological behavior of rocks established according to the element combination model of linear rheological body will deviate from the reality to some degree:a nonlinear viscoplastic body consisting of nonlinear viscous elements and plastic elements connected in parallel is connected with the Burgers model in series to further propose a nonlinear rheological model that can describe the viscous, elastic and plastic properties of rocks-NBVP model; the3D rheological constitutive equation of the NBVP model is derived. The rheological test curves of water-saturated sandstone and argillite are taken as examples, and the three-parameter model, the Burgers model and the NBVP model are respectively adopted for fitting of measured data. After comparative analysis, it is found that the established nonlinear visco-elasto-plastic rheological model-NBVP model is relatively consistent with the results of the triaxial rheological test of sandstone and argillite, and that the NBVP model can ideally describe the accelerated rheological stage of rocks.
     (7) The damage variable is introduced into the NBVP model to construct a nonlinear visco-elasto-plastic rheological model considering the damage after n time(s) of water saturation-dehydration circulation of rocks-DNBVP model:meanwhile, the corresponding damage variable expression is obtained based on the results of the rheological test, and the3D rheological constitutive equation of the DNBVP model is derived; from analysis of the test data, it can be seen that the DNBVP model can well describe the curve of the whole rheological process of rocks after water saturation-dehydration circulation.
     (8) The equation of the nonlinear visco-elasto-plastic rheological model (DNBVP model) is deduced in detail to obtain the3D central difference scheme of stress increment required for secondary development of the model; referring to the difference expression of stress increment of "the nonlinear visco-elasto-plastic rheological model (DNBVP model) considering the damage after n time(s) of water saturation-dehydration circulation of rocks", and using VC++programming, a callable dynamic linking library (.dll) is generated, which can realize the development of the DNBVP rheological model in FLAC3D software. After analysis of the calculation results of the triaxial numerical model test of the rock samples, it is found that the DNBVP model after secondary development is rational and correct. After determining the number of times n of water saturation-dehydration circulation, the axial displacement at the top of the rock samples is calculated; from analysis of the axial displacement, it can be seen that as the number of times n of water saturation-dehydration circulation increases, the axial displacement also increases, which also means the damage is aggravated; this result is relatively consistent with the test data, proving the correctness of the proposed "nonlinear visco-elasto-plastic rheological model (DNBVP model) considering the damage after n time(s) of water saturation-dehydration circulation of rocks".
     (9) A typical section of the zone where rheological body B is located in the dam site area of Longtan Hydropower Station is chosen for calculation of the rheological property under the deterioration effect of water saturation-dehydration circulation. Combining the indoor rheological test of rocks with the field monitoring data, using the proposed "nonlinear visco-elasto-plastic rheological model (DNBVP model)", and adopting the "method of slope displacement back analysis based on BP-PSO algorithm", the optimum rheological parameters of the DNBVP model of the "rock mass" in the hydro-fluctuation belt of high slope are obtained through inversion calculation and are used in calculation of the long-term rheological property of high slope. Then, the displacement values of the monitoring points obtained through inversion calculation are compared with the field measured displacement values, and it is found that the change trends of the field measured displacement values and the rheological calculated values are basically the same, and that the magnitudes are also close to each other, indicating the correctness of the adopted "method of slope displacement back analysis based on BP-PSO algorithm" and the proposed "nonlinear visco-elasto-plastic rheological model (DNBVP model)" Last, the model is used for calculation and predictive analysis of the long-term rheological property of the high slope of the typical section of the zone where rheological body B is located at the left bank in the dam site area of Longtan Hydropower Station, and relevant prevention and control measures are put forward for reference in engineering practice.
引文
[1]李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,1994,P:128-129.
    [2]陈瑜.水-岩作用下裂隙岩体力学性质及应力场-渗流场耦合分析[D].长沙:中南大学,2010.
    [3]袁龙蔚.流变力学[M].北京:科学出版社,1986.
    [4]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [5]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [6]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [7]钟立勋.意大利瓦依昂水库滑坡事件的启示[J].中国地质灾害与防治学报,1991,5(4):77-84.
    [8]王思敬主编.中国岩石力学与工程世纪成就[C].河海大学出版社,2004.
    [9]Weber W,Ann. Physical Chemistry[J],Int.J.Rock.Min.Sci,1835,247(34):28-32.
    [10]Thomson W. properties of rock deformation [J],London:Proe. Roy. Soc.,1865,289,(14): 19-32.
    [11]Maxwell J C, Hysteretic fracturing end chronic theory for rock [J] London:phil.Trans. Roy. Soc,1867,157(49):32-36.
    [12]Boltzman L. Rock Deformation[M], Sitzgsber. Akad.Wiss.Wien,1884,275.
    [13]Bingham E C. Rheology of materials[M], U.S. Bur. of Standards Bull.,1916,309.
    [14]Griggs, D.T.,Creep of rocks[J],J. of Geol.,47,225-251,1939.
    [15]Ito H..Creep of rock based on long-term experiments[J].Proc. of 4th Cong, of ISRM,1983.
    [16]Ito H. and Sasajima S. A ten year creep experiment on small rock specimens[J].Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1987,24(2):113-121.
    [17]许东俊,罗红禧.葛洲坝工程基岩稳定性的试验研究[J].岩土力学,1983,4(1):7-9.
    [18]陶振宇.岩石流变试验与现场观测的比较分析[J].水利学报,1985,10:49-54.
    [19]葛修润.周期荷载作用下岩石大型三轴试验的变形和强度特性研究[J].岩土力学,1987,8(2):12-15.
    [20]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [21]陈卫忠.节理岩体损伤断裂时效机理及其工程应用[J].岩石力学与工程学报,1998,17(06):718.
    [22]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [23]赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报, 2001,20(4):478-480.
    [24]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(增2):5536-5542.
    [25]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [26]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698.
    [27]朱杰兵,汪斌,杨火平等.页岩卸荷流变力学特性的试验研究[J].岩石力学与工程学报,2007,26(增2):4552-4556.
    [28]王志俭,殷坤龙,简文星等.三峡库区万州红层砂岩流变特性试验研究[J].岩石力学与工程学报,2008,27(4):840-847.
    [29]赵延林,万文,王卫军等.类岩石裂纹压剪流变断裂与亚临界扩展及破坏机制[J].岩土工程学报,2012,34(6):1050-1059.
    [30]曹平,郑欣平,李娜等.深部斜长角闪岩流变试验及模型研究[J].岩石力学与工程学报,2012,31(增1):3015-3021.
    [31]汪亦显.含水及初始损伤岩体损伤断裂机理与实验研究[D].长沙:中南大学,2012.
    [32]张春阳,曹平,汪亦显等.自然与饱水状态下深部斜长角闪岩蠕变特性[J].中南大学学报(自然科学版),2013,44(4):1587-1595.
    [33]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226.
    [34]庞正江,胡建敏.结构面剪切流变及其长期强度试验研究[J].岩土力学,2006,27(增刊):1179-1182.
    [35]沈明荣,张清照.绿片岩软弱结构面的剪切蠕变特性研究[J].岩石力学与工程学报,2010,29(6):1149-1155.
    [36]LAJTAI E Z.Time-dependent behaviour of the rock mass[J].Geotechnical and Geological Engineering,1991,9(2):109-124.
    [37]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33.
    [38]候宏江,沈明荣.岩体结构面流变特性及长期强度的试验研究[J].岩土工程技术,2003,6:324-326.
    [39]朱珍德,李志敬,朱明礼等.岩体结构面剪切流变试验及模型参数反演分析[J].岩土力学,2009,30(1):99-104.
    [40]Asanov VA,Pan'kov IL (2004) Deformation of salt rock joints in time.J Min Sci 40:355-359.
    [41]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):895-902.
    [42]朱明礼,朱珍德,李志敬等.深埋长大隧洞围岩非定常剪切流变模型初探[J].岩石力学与工程学报,2008,27(7):1436-1441.
    [43]陈小婷,彭轩明,黄润秋.粉砂质泥岩剪切流变特性试验分析[J].三峡大学学报(自然科 学版),2008,30(4):43-46.
    [44]刘学增,苏京伟,王晓形.不同围岩级别凝灰熔岩剪切流变特性的试验研究[J].岩石力学与工程学报,2009,28(1):190-197.
    [45]Yang S-Q,Cheng L (2011) Non-stationary and nonlinear visco-elastic shear creep model for shale. Int J Rock Mech Min Sci 48:1011-1020.
    [46]VUTUKURI V S,LAMA R D,SALUJIA S S. Hand book on mechanics properties of rocks(Vol.1)[M].[S.1.]:[s.n.],1974.
    [47]徐平,夏熙伦.三峡枢纽岩石体结构面蠕变模型初步研究[J].长江科学院院报,1992,9(1):42-46.
    [48]段文军,钟时猷.岩石流变试验新设备—GFQ-1型单轴压缩流变仪[J].分析测试仪器通讯,1994,4(1):45-46.
    [49]张向东,郑雨天,肖裕行.第三系软弱岩体蠕变理论[J].东北大学学报(自然科学版),1997,18(1):31-35.
    [50]沈明荣,何之民.岩石双轴流变试验机及其应用[J].试验技术与试验机,2002,42(1):5-9.
    [51]张金铸,林天健.岩石三轴试验中应力状态和破坏性质的转化[J].力学学报,1979,15(2):3-10.
    [52]陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-172.
    [53]扬正,杨克修.DMS100-800大型真三轴自动伺服控制模型试验设备的设计[J].岩土力学,1994,15(1):74-79.
    [54]Remvik F. Shale-fluid interaction and its effect on creep,Proc. of 8th of Int. Cong, on Rock Mechanics[J].Japan,1995,vol.1:307-309.
    [55]Davidson B,Lemieux B,Hirst D,Fooks J,Dusseault M.Spherical Hydrostatic Compaction-creep Testing Equipment[J].Int. J.Rock Mech. Min. Sci.,1998,35(4-5):617-617.
    [56]周火明,郝庆泽,钟作武等.RLW-2000岩石三轴流变试验系统研制[J].矿山压力与顶板管理,2005,22(3):55-57.
    [57]孙晓明,何满潮,刘成禹等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870-2874.
    [58]崔希海,高延法,李进兰.岩石扰动蠕变试验系统的研发[J].山东科技大学学报(自然科学版),2006,25(3):36-38.
    [59]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537-1543.
    [60]张世银,田建利.压力试验机改装成岩石三轴试验机的研制[J].工程与试验,2011,51(2):66-68.
    [61]崔希海,高延法,李进兰.岩石扰动蠕变试验系统的研发[J].山东科技大学学报(自然科学版),2006,25(3):36-38.
    [62]许东俊,幸志坚,李小春.RT3型岩石高压真三轴仪的研制[J]岩士力学,1990,11(2):1-14.
    [63]邬爱清,周火明,胡建敏.高围压岩石三轴流变试验仪研制[J].长江科学院院报,2006,23(4):28-31.
    [64]李维树,周火明,钟作武等.岩体真三轴现场蠕变试验系统研制与应用[J].岩石力学与工程学报,2012,31(8):1636-1641.
    [65]任爱华.新研制的800 t高温高压伺服三轴流变仪[J].地球物理学报,1988,31(2):9.
    [66]PATERSON M S. A high-temperature,high-pressure apparatus for rock deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1970,7(5):517-526.
    [67]HEARD H C. Mechanical,thermal and fluid transport properties of rock at depth[C]// Proceedings of the 23rd Rock Mechanics Symposium. [S.1]:[s.n.],1982:42-47.
    [68]Tan Tjongkie,et al. Dilatancy creep and relaxation of brittle rocks measure with the 8000kN multipurpose triaxial apparatus,Physics of the Earth and Planetary Interiors[J].1989, 55:335-352.
    [69]石泽全,周枚青.800MPa高温高压三轴室设计研究[J].地球物理学报,1990,33(2):202-207.
    [70]邓金根,黄荣樽200MPa,200℃高温高压三轴岩石蠕变仪的研制[J].岩石力学与工程学报,1993,12(1):63-69.
    [71]ZHANG S,NAKANO H,XIONG Y L,et al.Temperature-controlled triaxial compression/creep test device for thermodynamic properties of soft sedimentary rock and corresponding theoretical prediction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):255-261.
    [72]赵阳升,郤保平,万志军等.高温高压下花岗岩中钻孔变形失稳临界条件[J].岩石力学与工程学报,2009,28(5):865-874.
    [73]崔少东,刘保国,刘开云.基于新型蠕变仪下的泥岩力学参数时效性研究[J].工程地质学报,2010,18(2):216-221.
    [74]刘保国,张清,杨英杰.混合片麻岩在一定温度下的蠕变试验研究[J].铁道学报,1999,21(4):77-79.
    [75]De Meer, A., and C. J. Spiers, Creep of wet gypsum aggregates under hydrostatic loading conditions[J].Tectonophysics,1995,245:171-183.
    [76]Groshong, R. H. Low-temperature deformation mechanisms and their interpretation,Geol. Soc.Am.Bull.,1988,100:1329-1360.
    [77]Lockner,D. A.. Room temperature creep in saturated granite, J. Geophys. Res.,1993, 98:475-487.
    [78]Rutter, E. H., and D. H. Mainprice. The effect of water on the stress relaxation of faulted and unfaulted sandstone[J].Pure Appl. Geophys.,1978,116:634-654.
    [79]Bryne T. Ngweya, Ian G Main, Stephen C. Elphick, etal. A constitutive law for low-temperature creep of water-saturated sandstones[J]. Journal of Geophysical Research, 2001,106(B10):21811-21826.
    [80]Wu F. T., Thomsen L., Microfracturing and deformation of Westerly granite under creep conditions[J].Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1975,12:167-173.
    [81]Kranz R. L., Crack growth and development during creep of Barre granite[J].Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1979,16:23-35.
    [82]Ohnaka M., Acoustic emission during creep of brittle rock[J].Int. J. Rock Mech. Min. Sci.,1983,20:121-134.
    [83]Duk-Won Park, Joon-Oh Jung, Application of Holographic Interferometry to the study of time-dependent behavior of rock and coal[J].Rock Mech. Rock Engng.,1988,21:259-270.
    [84]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    [85]Baud P., Meredith P. G., Damage Accumulation During Triaxial Creep of Darley Dale Sandstone from Pore Volumometry and Acoustic Emission[J].Int. J. Rock Mech. Min. Sci.,1997,34 (3-4):371.
    [86]H. Kawakata, A. Cho, T. Yanagidani, M. Shimada, The Observations of Faulting in Westerly Granite under Triaxial Compression by X-ray CT Scan[J].Int. J. Rock Mech. Min. Sci.,1997,34(3-4):375.
    [87]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,1(1):10-15.
    [88]葛修润等.岩土损伤力学的宏细观试验研究[J].科学出版社,2004.
    [89]张强勇,杨文东,陈芳等.硬脆性岩石的流变长期强度及细观破裂机制分析研究[J].岩土工程学报,2011(12):1910-1918.
    [90]沈照理,王焰新.水-岩相互作用研究的回顾与展望[J].地球科学:中国地质大学学报,2002,27(2):127-133.
    [91]康文法.多功能岩石三轴流变仪及其在岩石力学中的应用[J].岩石力学与工程学报,1989,8(1):37-51.
    [92]Vandamme M, ROegiers J C, Poroelasticity in hydraulic fracturing simulators [J].JPT,1990:1199-1203.
    [93]Douranary E, Melennan. Poroelastic concepts explain some of the hydraulic fracturing mechanism[J].SpE,1990:52-162.
    [94]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [95]王泳嘉,王来贵.岩体浸水后的流变失稳理论及应用[J].中国矿业,1994,3(1):36-40.
    [96]徐平,甘军,丁秀丽.三峡工程船闸高边坡岩体长期变形及稳定性有限元分析[J].长江科学院院报,1999,16(2):31-34.
    [97]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [98]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变形研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [99]李铀,朱维申,白世伟.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677.
    [100]韦立德,徐卫亚,杨松林等.考虑裂纹内水压的节理岩体蠕变柔量分析[J].河海大学学报(自然科学版),2003,31(5):564-568.
    [101]CONIL N, DJERAN-Maigre I, CABRILLAC R, et al. Poroplastic damage model for claystones [J]. Applied Clay Science,2004,26:473-487.
    [102]周翠英,邓毅梅,谭祥韶等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38.
    [103]Xie S Y, Shao J F. Elastoplastic deformation of a porous rock and water interaction[J]. International Journal of Plasticity,2006,22:2195-2225.
    [104]王芝银,郭书太,李云鹏.等效连续岩体流固耦合流变分析模型[J].岩土力学,2006,27(12):2122-2126.
    [105]叶源新.砂砾岩渗流三维应力耦合特性及双场仿真分析研究[博士学位论文D].北京:清华大学,2006.
    [106]杨圣奇,徐卫亚,谢守益等.饱和状态下硬岩三轴流变变形与破裂机制研究[J]岩土工程学报,2006,28(8):962-969.
    [107]杨彩红,王永岩,李剑光等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699.
    [108]Okubo S, Fukui K, Gao X. Rheological behaviour and model for porous rocks under air-dried and water-saturated conditions [J].The Open Civil Engineering Journal,2008,2: 88-98.
    [109]Okubo S, Fukui K, Hashiba K. Long-term creep of water-saturated tuff under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47: 839-844.
    [110]高俊丽.饱水节理岩体蠕变特性研究[J].西部探矿工程,2008,10:147-149.
    [111]黄小兰,杨春和,刘建军.不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J].岩石力学与工程学报,2008,27(Suppl.2):3477-3482.
    [112]李鹏,刘建,朱杰兵等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(7):1865-1871.
    [113]徐辉,胡斌,唐辉明等.饱水砂岩的剪切流变特性试验及模型研究[J].岩石力学与工程学报,2010,29(1):2775-2781.
    [114]胡斌,蒋海飞,胡新丽等.紫红色泥岩剪切流变力学特性分析[J].岩石力学与工程学报,2012,31(supp 1):2796-2801.
    [115]张春阳,曹平,汪亦显等.自然与饱水状态下深部斜长角闪岩蠕变特性[J].中南大学学报(自然科学版),2013,44(4):1587-1595.
    [116]李江腾,郭群,曹平等.低应力条件下水对斜长岩蠕变性能的影响[J].中南大学学报,2011,42(9):2797-2801.
    [117]阎岩,王恩至,王思敬等.岩石渗流-流变耦合的试验研究[J].岩土力学,2010,31(7):2095-2103.
    [118]阎岩,王恩志,王思敬.渗流场中岩石流变特性的数值模拟[J].岩土力学,2010,31(6): 1943-1949.
    [119]贾善坡,陈卫忠,于洪丹等.泥岩渗流-应力耦合蠕变损伤模型研究(Ⅰ):理论模型[J].岩土力学,2011,32(9):2596-2601.
    [120]黄书岭,冯夏庭,周辉等.水压和应力耦合下脆性岩石蠕变与破坏时效机制研究[J].岩石力学与工程学报,2011,31(11):3341-3347.
    [121]涛影,曹平,范祥等.高渗压条件下裂隙岩体的劈裂破坏特性[J].中南大学学报,2012,43(6):2281-2287.
    [122]俞缙,李宏,陈旭等.渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J].岩石力学与工程学报,2013,32(6):1203-1213.
    [123]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆:重庆大学,2010.
    [124]杨文东.复杂高坝坝区边坡岩体的非线性损伤流变力学模型及其工程应用[D].济南:山东大学,2011.
    [125]Okubo S, Nishimastu Y, Fukui K. Complete creep curves under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences and Geomechanics Abstracts. 1991,28(1):77-82.
    [126]金丰年.岩体的非线性流变[M].南京:河海大学出版社,1998.
    [127]Cruden D M, Leung K, Masoumzadeh S.A Technique for estimating the complete creep curve of a subobltuminous coal under uniaxial compression [J]. Iniernational journal of rock mechanics and mining sciences & Geomeehanies Abstracts.1987,24(4):265-269.
    [128]苗勇勤,徐小荷,马新民等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报.1999,20(06):612-614.
    [129]吴立新.王金庄孟胜利煤岩流变模型与地表二次沉陷研究[J].地质力学学报报,1997,3(3):29-35.
    [130]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(s):99-103.
    [131]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,28(9)1735-1744.
    [132]Vyalov S S.Rheological Fundamentals of Soil Mechanics.London:Elsevier Applied Science Publishingers,1986:231-232.
    [133]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报(自然科学版),1991,19(4):395-401.
    [134]金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335-361.
    [135]邓荣贵,周德培,张悼元等.一种新的岩石流变模型[J].岩石力学与工程学2001,20(6):780-784.
    [136]韦立德,徐卫亚,朱珍德等岩石粘弹塑性模型的研究[J].岩土力学.2002,23(5):583-586.
    [137]曹树刚,边金,李鹏.岩石蠕变本构关系及其改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [138]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报.2002,25(7):96-98.
    [139]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [140]陈沅江,潘长良,曹平等.一种软岩流变模型[J].中南工业大学学报(自然科学版),2003,34(1):16-20.
    [141]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642.
    [142]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报.2006,25(3):433-447.
    [143]汪仁和,李栋伟,王秀喜.改进的西原模型及其在ADINA程序中的实现[J].岩土力学.2006,27(11):1954-1958.
    [144]周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报.2006,37(7):827-830.
    [145]张贵科,徐卫亚.适用于节理岩体的新型黏弹塑性模型研究[J].岩石力学与工程学报,2006,25(增1):2894-2901.
    [146]罗润林,阮怀宁,孙运强等一种非定常参数的岩石蠕变本构模型[J].桂林工学院学报.2007,27(2):200-203.
    [147]杨圣奇.岩石流变力学特性的研究及其工程应用[D].南京:河海大学,2006.
    [148]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩石力学与工程学报,2007,26(3):601-607.
    [149]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报.2007,26(2):391-396.
    [150]范庆忠,高延法,崔希海等.软岩非线性蠕变模型研究[J].岩土工程学报.2007,29(4):505-509.
    [151]高延法,范庆忠,崔希海等.岩石流变及其扰动效应试验研究[M].北京:科学出版社,2007.
    [152]蒋昱州,徐卫亚,王瑞红等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学.2008,29(51):52-58.
    [153]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839.
    [154]赵延林,曹平,文有道等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486.
    [155]李良权,徐卫亚,王伟.基于西原模型的非线性豁弹塑性流变模型[J].力学学报.2009,41(5):671-680.
    [156]熊良宵,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版).2010,41(2):679-684.
    [157]STEIPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering,2009,42(2):319-339.
    [158]GAO Y N, GAO F, ZHANG Z Z, et al.Visco-elastic-plastic model of deep underground rock affected by temperature and humidity[J]. Mining Science and Technology,2010, 20(2):183-187.
    [159]曹平,刘业科,蒲成志等.一种改进的岩石黏弹塑性加速蠕变力学模型[J].中南大学学报:自然科学版,2011,42(1):142-146.
    [160]Costin L S. Time-dependent damage and creep of brittle rock[A]. Damage Mechanics and Continuum Modeling [C]. ASCE, NewYork,1985:25-38.
    [161]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81-90.
    [162]邓广哲,朱维申等.裂隙岩体卸荷过程及裂隙蠕滑机制模拟研究[R].武汉:中国科学院武汉岩土力学研究所研究报告,1996.
    [163]陈卫忠,朱维申,李术才.节理岩体断裂损伤祸合的流变模型及其应用[J].水利学报,1999(12):33-37.
    [164]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,33(4):450-454.
    [165]杨松林.不连续岩体弹粘性力学研究[博士后研究报告][R].南京:河海大学2003,6.
    [166]杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427.
    [167]徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295-298.
    [168]徐卫亚,杨松林.断续结构岩体流变力学分析[A].首届全球华人岩土工程论坛论文集[C].上海,2003:71-82.
    [169]Valanis K C.A theory of viseoplastieity without a yield surfaee[J]. Alehives of Meehanics. 1971,23(5):517-551.
    [170]陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):735-742.
    [171]Krajcinovic D. A Mesomechanics model for brittle dedomation processes [J]. ASCE J Applemech,1958,88(1):350-356.
    [172]Krajcinovic D, Silva M A G Statistical aspects of the continuous damage theory [J]. International Journal of Solids and Structures,1982,18(7):551-562.
    [173]Aubertin M, Gill D E, Ladayi B. An internal variable model for the creep of rock salt[J]. Rock Mech. and Rock Engin,1991,24:81-97.
    [174]Aubertin M, Sgaoula J, Gill D E, A viscoplastic-damage model for solf rocks with lowporosity[A]. In:Proc. of 8th Int. Cong. On Rock Mechanics[C].1995,1:283-289.
    [175]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2):141-146.
    [176]Chna K S, Bodner S R, Fossum A F, etal. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression[J]. Mech Of Math,1992, (14):1-14.
    [177]Chna K S, Brodsky N S, Fossum A F, etal. Damage-induced nonassociated inelastic flow in rook salt[J]. Int.J.Plasticity,1994(10):623-642.
    [178]Fossum A F, Brodsky N S, Chan K S, etal. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J]. Int.J.Rock Mech. Min.Sci.&Geom.Abst,1993,30:1341-1344.
    [179]Chan K S, Munson D E, Fossum A F, etal. Inelastic flow behavior of argillaceous salt[J]. Int.J. of Damage Mechanics,1996, (5):293-314.
    [180]Chan K S, Fossum A F, Munson D E. A damage mechanics treatment of creep failure in rock salt[J]. International Journal of Damage Mechanics,1997,6(2):121-151.
    [181]陈智纯,缪协兴,茅献彪.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术,1994,22(8):34-36.
    [182]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [183]李新平,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报.1995,14(3):236-245.
    [184]朱维申,邱祥波,李术才等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报.1997,16(05):431-436.
    [185]Lux K H, Hou Z. New developments in mechanical safety analysis of repositories in rock salt[A].Pro.Int.Conf. on Radioactive waste, Disposal, Disposal Technologies & Concepts [C]. Berlin:Springer verlag,2000,281-286.
    [186]Yahya, O.M.L. Aubertin, M. Julien, M.R. A unified representation of the plasticity, creep and relaxation behavior of rock salt[J].International Journal of Rock Mechanics and Mining Sciences,2000,37 (5):787-800.
    [187]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报,1999,18(5):497-502.
    [188]肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,33(6):94-95.
    [189]SUN Jun, WANG Si-jing. Rock mechanizes and rock engineering in China:Developments and current state-of-the-art[J]. International Journal of Rock Mechanics and Mining Sciences,2000, (37):447-465.
    [190]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [191]李术才,王刚,王书刚等.加锚断续节理岩体断裂损伤模型在铜室开挖与支护中的应用[J].岩石力学与工程学报.2006,25(s):1552-1590.
    [192]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学,2006,1(3):1-5.
    [193]GERALDINE Fabre, FREDERIC Pellet. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:950-960.
    [194]SHAO J F, CHAU K T, FENG X T. Modeling of anisotropic damage and creep deformation in brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006, 43(4):582-592.
    [195]朱昌星,阮怀宁,朱珍德等.岩石非线性蠕变损伤模型的研究闭.岩土工程学报.2008,30(10):1510-1513.
    [196]任中俊,彭向和,万玲等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报.2008,25(2):212-217.
    [197]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报.2009,28(10):2006-2011.
    [198]张强勇,杨文东,张建国等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2009,28(4):732-739.
    [199]石崇,蒋新兴,朱珍德等基于Hoek-Brown准则的岩石损伤本构模型研究及参数探讨[J].岩石力学与工程学报,2011,30(1):2647-2652.
    [200]贾善坡,陈卫忠,于洪丹等.泥岩渗流-应力耦合蠕变损伤模型研究(Ⅰ):理论模型[J].岩土力学,2011,32(9):2596-2601.
    [201]杨圣奇,倪红梅.泥岩黏弹性剪切蠕变模型及参数辨识[J].中国矿业大学学报,2012,41(4):551-557.
    [202]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报.1996,24(5):448-503.
    [203]张学忠,王龙等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报.1999,22(5)99-103.
    [204]杨志法等.有限元图谱[M].北京:科学出版社,1988.
    [205]马莉英,齐伟.黄土状土的蠕变方程及其蠕变特性[J].长春科技大学.1997,37(1,2):41-43.
    [206]朱元林,何平等.冻土在振动荷载作用下的三轴蠕变模型[J].自然科学进展.1998,8(1):60-62.
    [207]余斌,赵惠林.粘性泥石流运动模型的实验研究[J].自然灾害学报.1999,8(2),81-87.
    [208]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564.
    [209]王红伟,王希良.软岩巷道围岩流变特性试验研究[J].地下空间.2001,21(5):361-365.
    [210]曹树刚,边金.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报.2002,25(7):96-98.
    [211]G. N. Boukharov, M. W. Chanda and N. G.Boukharov. The three processes of brittle crystalline rock creep[J].Int. J. Rock Mech. Min. Sci & Geomech. Abstr. 1995,32(4):325-335.
    [212]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28[4]:488-498.
    [213]Sakurai S., Takeuchi K., Back analysis of measured displacement of tunnel[J].Rock Mech. Rock Engng.,1983,16(3):173-180.
    [214]Yang L., Zhang C., Wang Y., Back analysis of initial rock stresses and time-dependent parameters[J].Int. J. Rock Mech. Min. Sci.1996,33(6):641-645.
    [215]Sakrrai S., deeswasmongkol N., Shinji M., Back analysis for determining material characteristics in cut slopes[J].Proc. of the Int. Sym. On Eng. In Complex Rock Formations,Beijing:Science Press,1986,pp.770-776.
    [216]Wang Zhiyin, Li Yunpeng, Back analysis of viscoparameters and strata stress in underground openings[J].In:Proc. Int. Symp. on Underground Eng. New Delhi,1988,181-186.
    [217]Wang Sijing,Yang Zhifa,The back analysis method form displacements for viscoelastic rock mass[J].In:Proc.2nd Int. Symp. on FMGM,1987,1059-1068.
    [218]Li Yunpeng,Wang Zhiyin,Three dimensional back analysis of viscoelastic creep displacements[J].In:Proc.3rd Int. Conf. On Underground Space and Earth Sheltered Buildings,Shanghai:Tongji Press,1988,pp.383-387.
    [219]徐平.三峡枢纽试验洞围岩变形粘弹性反分析[J].人民长江,1992,23(6):48-52.
    [220]王芝银,李云鹏.地下工程位移反分析法及程序[J].西安:陕西科学技术出版社,1993.
    [221]肖洪天,杨若琼,杜广林.三峡船闸高边坡反分析及变形趋势预测[J].岩石力学与工程学报,1998,17:863-867.
    [222]沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998,6:1-6.
    [223]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学.1999,16(1):18-25.
    [224]高玮,郑颖人.岩体参数的进化反演[J].水利学报.2000(8):1-5.
    [225]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报.2001,23(1):120-122.
    [226]苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报.2005,24(17):3029-3034.
    [227]杜好.基于微粒群算法的堆石坝坝料参数反演分析[D].大连:大连理工大学土木工程学院,2006:21-26.
    [228]Feng X,Chen B.Yang C,et al.Identification of viseo-elastic models for rocks using genetic programming coupled with the modified partiele swarm optimization algorithm[J]. International Journal of Roek Meehanies and Mining Seienees.2006,43(5):789-801.
    [229]王伟.改进粒子群优化算法在边坡工程力学参数反演中的应用[D].南京:河海大学岩土工程研究所,2007:17-21.
    [230]陈炳瑞,冯夏庭,黄书岭等.基于快速拉格朗日分析-并行粒子群算法的勃弹塑性参数反演及其应用[J].岩石力学与工程学报.2007,26(12):2517-2525.
    [231]杨成祥,冯夏庭,陈炳瑞.基于扩展卡尔曼滤波的岩石流变模型参数识别[J].岩石力学与工程学报.2007,26(04):754-761.
    [232]李志敬,朱珍德,周伟华.基于CPSO算法的岩石蠕变模型非定常参数反演分析[J].河海大学学报:自然科学版,2008,36(3):346-349.
    [233]罗润林,阮怀宁,朱昌星.基于粒子群-最小二乘法的岩石流变模型参数反演[J].辽宁工程技术大学学报(自然科学版).2009,25(5):750-753.
    [234]刘文彬,刘保国,刘中战等.基于改进PSO算法的岩石蠕变模型参数辨识[J].北京交通 大学学报,2009,33(4):140-143.
    [235]马刚,常晓林,周伟等.高堆石坝瞬变-流变参数三维全过程联合反演方法及变形预测[J].岩土力学,2012,33(6):1889-1895.
    [236]李东,张强,孟永东等.溪洛渡左岸谷肩堆积体滑带流变模型参数反演及长期变形分析[J].三峡大学学报(自然科学版),2013,35(5):11-16.
    [237]杨文东,张强勇,张建国等.刚性承压板下深部岩体压缩蠕变参数反演[J].岩土力学,2009,30(3):762-768.
    [238]杨文东,张强勇,李术才等.粒子群算法在时效变形参数反演中的应用[J].中南大学学报(自然科学版),2013,44(1):282-288.
    [239]D.F.Malan. Time-dependent behavior of deep level tabular excavations in hard rock. Rock Mechanics and Rock Engineering,1999,32(2):123-155.
    [240]BoidyE, BouvandA, Pellet F. Back analysis of time-dependent behavior of a test gallery in elaystone. Tunneling and Underground Space Technology,2002,17(4):415-424.
    [241]Dragan Grgic, Francoise Homand, Dashnor Hoxha. A short-and long-term rheological modelto understand the collapses of iron mines in Lorraine,France. Computers and Geotechnics,2003,30(7):557-570.
    [242]王贵君.盐岩层中天然气存储洞室围岩长期变形特征.岩土工程学报[J].2003,25(4):431-435.
    [243]徐平,李云鹏,丁秀丽等FLAC3D粘弹性模型的二次开发及其应用.长江科学院院报[J].2004,21(2):10-13.
    [244]褚卫江,徐卫亚,杨圣奇等.基于FLAC3D的岩石粘弹塑性流变模型二次开发研究.岩土力学[J].2006,Vol.27(11):2005-2010.
    [245]刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[D].济南:山东大学,2006,3.
    [246]谢秀栋.软土地区深基坑施工变形安全性状的时间特性研究[D].上海:同济大学,2007,11.
    [247]张强勇,杨文东,张建国等.变参数蠕变损伤本构模型及其工程应用[M].岩石力学与工程学报,2009,28(4):732-739.
    [248]陈育民,刘汉龙.邓肯-张本构模型在FLAC3D中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
    [249]王国波,尹骥,杨林德等.Davidenkov模型在FLAC3D中的开发与验证[J].武汉理工大学学报,2008,30(8):143-146.
    [250]蓝航,姚建国,张华兴等.基于FLAC3D的节理岩土采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [251]冷先伦,盛谦,朱泽奇等.邓肯-张模型在FLAC3D中的实现及工程应用[J].建筑科学,2009,25(1):100-105.
    [252]朱泽奇,盛谦,梅松华等.改进的遍布节理模型及其在层状岩体地下工程中的应用[J].岩土力学,2009,30(10):3115-3122.
    [253]杨文东,张强勇,张建国等.基于FLAC3D的改进Burgers蠕变损伤模型的二次开发 研究[J].岩土力学,2010,31(6):1956-1964.
    [254]左双英,肖明,陈俊涛.基于Zienkiewicz-Pande屈服准则的弹塑性本构模型在FLAC3D中的二次开发及应用[J].岩土力学,2011,32(11):3515-3520.
    [255]何利军吴文军孔令伟.基于FLAC3D含SMP强度准则黏弹塑性模型的二次开发[J].岩土力学2012,32(5)1549-1556.
    [256]乐家根,曹平,蒲成志等.广义摩尔库仑模型及其在FLAC3D中的实现[J].铁道科学与工程学报,2013,9(3):112-116.
    [257]莫伟伟,曹平,丁秀丽.库水位涨落对滑坡稳定性影响研究进展[J].地下空间与工程学报,2006,2(6):997-1002.
    [258]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.214-216.
    [259]尹双增著.断裂·损伤理论及应用[M].北京:清华大学出版社,1992.
    [260]刘佑荣等著.岩体力学[M].北京:化学工业出版社,2008.
    [261]苏永华,封立志,李志勇等.Hoek-Brown准则中确定地质强度指标因素的量化[J].岩石力学与工程学报,2009,28(4):679-686.
    [262]胡盛明,胡修文.基于量化的GSI系统和Hoek-Brown准则的岩体力学参数的估计[J].岩土力学,2011,32(3):861-866.
    [263]THOMAS B, RADU S,REGINA. A. K,et al. Hoek-Brown criterion with intrinsic material strength factorization[J].International Journal of Rock Mechanics and Mining Sciences, 2008,45(2):210-222.
    [264]JOHAN C,LARS D. An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(6):831-847.BUSH G W, SI Y, ZHANG B,et al. Abc is abc[J].Rock Mechanics,2000,22(2):117-122.
    [265]宋琨,晏鄂川,毛伟等.广义Hoek-Brown准则中强度折减系数的确定[J].岩石力学与工程学报,2012,31(1):106-112.
    [266]王新刚,胡斌,刘强.松树南沟矿区节理岩质边坡开挖稳定性分析[J].金属矿山,2013,446(8):127-130.
    [267]HOEK E,MARTNOS P. BENISSI M. Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses[J].Bulletin of Engineering Geology and the Environment,1998,57(2):151-160.
    [268]HOEK E,CARRAN ZA-TORRES C,CORKUM B. Hoek-Brown failure criterion-2002 edition[C]//Proceedings of NARMS-TAC 2002,Minging Innovation and Technology. Toronto:[s. n.],2002:267-273.
    [269]Jiayi Shen, Murat Karakus, Chaoshui Xu. A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunnelling and Underground Space Technology 32 (2012),245-250.
    [270]张建海,何江达,范景伟.小湾工程岩体力学研究[J].云南水力发电,2000,16(2):26-27.
    [271]闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用[J].岩石力学与工程学报, 2005,24(22):40304035.
    [272]陈昌富,朱剑峰,周志军.H-B经验强度准则中参数m,s改进取值方法[J].湖南大学学报:自然科学版,2008,35(11):154-158.
    [273]袁文军,阮怀宁,孔不凡等.广义H-B准则中经验参数的改进取值方法[J].人民黄河,2013,35(4):98-100.
    [274]MARINOS V,MARINOS P, HOEK E. The geological strength index:applications and limitations[J].Bulletin of Engineering Geology and the Environment,2005,64(1):55-65.
    [275]SONMEZ H,ULUSAY R. Modifications to the geological strength index (GSI) and theirapplicability to stability of slopes[J].International Journal of Rock Mechanics & Mining Sciences,1999,36(6):743-760.
    [276]SONMEZ H,GOKCEOGLU CULUSAY R. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J].Intemational Journal of Rock Mechanics and Mining Sciences,2004,41(5):849-857.
    [277]韩凤山.大体积节理化岩体强度与力学参数[J].岩石力学与工程学报,2004,23(5):777-780.
    [278]CAIM, KAISERA P K, UNOB H, et al. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system [J].International Journal of Rock Mechanics & Mining Sciences,2004,41:3-19.
    [279]CAI M,KAISER P K. Visualization of rock mass classification systems[J].Geotechnical and Geological Engineering,2006,24(4):89-102.
    [280]王宇,李晓,李守定等.一种确定节理岩体残余强度参数方法的探讨[J].岩石力学与工程学报,32(8),2013,1701-1703.
    [281]傅晏.干湿循环水-岩相互作用下岩石劣化机制研究[博士学位论文][D].重庆:重庆大学,2010.
    [282]张永杰,曹文贵等.基于地质强度指标与区间理论的岩体抗剪强度确定方法[J].岩土力学,2011,32(8);2446-2452.
    [283]中华人民共和国国家标准.工程岩体分级标准(GB 50218-94)[S].北京:中国计划出版社,1994.
    [284]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99)[S].北京:中国计划出版社,1999.
    [285]贾洪彪等著.岩体结构面三维网络模拟理论与应用[M].北京:科学出版社出版,2008年.
    [286]张耀,胡卸文,汪雪瑞等.海域岛礁桥梁地基岩体质量分级体系研究.工程地质学报,2010;18(3):431-436.
    [287]周洪福,聂德新.水电站坝基河床地段岩件结构评价指标获取[J].湖南科技大学学报(自然科学版),2010,25(4):54-58.
    [288]PALMSTROM A. RMi-a rock mass characterization system for rock engineering purposes[Ph. D. Thesis][D]. Norway:University of Oslo,1995.
    [289]MARINOS P, HOEK E.2000. GSI-A geologically friendly tool for rock mass strength estimation[C]//Proceedings of the 2000 International Conference on Geotechnical and Geological Engineering. Melbourne,Australian:[s. n.],2000.
    [290]齐亚静,姜清辉,王志俭等.改进西原模型的三维流变本构方程及其参数辨识[J].岩石力学与工程学报,2012,31(2):347-355.
    [291]康永刚,张秀娥岩石蠕变的非定常分数伯格斯模型[J].岩土学,2011,32(11):3237-3241.
    [292]袁海平,曹平,许万忠等.岩石黏弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [293]方焘,刘新荣,黄明.不同建模假定下岩石损伤黏弹模型的参数转换关系探讨[J].岩土力学,2012,32(7):2000-2006.
    [294]陶波,伍法权,郭改梅等.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17):3165-3171.
    [295]夏才初,金磊,郭锐等.参数非线性理论流变力学模型研究进展及存在的问题[J].岩石力学与工程学报,2011,30(3):454-463.
    [296]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社出版,2008年,236237.
    [297]钟祖良.Q2原状黄土本构模型及其在隧道工程中的应用研究[D].重庆:重庆大学,2008.
    [298]刘艳辉,刘大安,李守定等.龙滩水电工程左岸B区边坡压脚工程效果分析[J].工程地质学报,2006,14(02):239-244.
    [299]程东幸,刘大安,丁恩保等.龙滩水电站左岸边坡工程地质研究及蠕变体B区岩体质量评价[J].工程地质学报,2007,15(03):362-368.
    [300]国家电力公司中南勘测设计研究院.龙滩水电站主体土建工程Ⅰ标施工招标文件参考资料(工程地质)[R].长沙:中南勘测设计研究院.
    [301]中国水电顾问集团中南勘测设计研究院.红水河-龙滩水电站左右岸边坡安全监测分析月报[R].广西:中国水电顾问集团中南勘测设计研究院龙滩水电工程安全监测项目部,20022013.
    [302]冯夏庭.岩石智能力学导论[M].北京:科学出版社,2000年.
    [303]夏元友,熊海丰.边坡稳定性影响因素敏感性人工神经网络分析[J].岩石力学与工程学报,2004,23(16):2703-2707.
    [304]Kennedy J,Eberhart R. Particle Swarm OPtimi Zation[A]. Proc. IEEE International Conferenee on Neural Networks[C].Piscataway NJ:IEEE Serviee Center,1995:1942-1948.
    [305]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A]. Proc. On 6th International Symposium on Micromachine and Human Seienee[C]. Piscataway NJ:IEEE Serviee Center,1995:39-43.
    [306]郑桂波.插入式阵列电导传感器两相流测量方法研究[博士学位论文][D].天津:天津大学,2008.
    [307]SHI Y H,EBERHART R C. Experimental study of particle swarmoptimization[C]// Proceedings of SCI Conference. Orlando:[s. n.],2000,1945-1950.
    [308]漆祖芳,姜清辉,周创兵.基于v-SVR和MVPSO算法的边坡位移反分析方法及其应 用[J].岩石力学与工程学报,2013,32(6):1185-1196.
    [309]赵洪波.岩土力学与工程中的支持向量机分析[M].北京:煤炭工业出版社,2008年.
    [310]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700