用户名: 密码: 验证码:
断裂构造对地应力场的影响及其工程意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力是地质环境和地壳稳定性评价、地质工程设计和施工的重要基础资料之一。本文通过对大量实测地应力资料的深入分析和对云南丽江地区、川西北岷江上游地区等地区的现场地质调查,结合系统的数值模拟分析,进行了断裂构造对地应力场的影响及其工程意义的研究:(1)以相关领域的最新研究成果,系统研究了地应力的形成因素和影响因素,阐明了断裂在地应力场形成中的作用;(2)通过对国内外大量实测地应力资料的分析,分别研究了活动断裂和非活动断裂对地应力场的影响;(3)通过深入的现场调查和综合分析,研究了云南丽江地区和川西北岷江上游地区的断裂构造格架、主要断裂的现今活动性及其对应力场的影响;(4)通过应用离散元方法进行系统的数值模拟分析,研究了断裂引起附近应力场变化的规律及其机理;(5)通过工程实例的研究阐明了断裂构造对地应力场影响的工程意义。通过上述研究,本文取得了如下进展和新认识:
    (1)重力作用和地质构造运动是形成地应力的两个最基本的因素,地质构造、地形、岩性等则是影响地应力重要因素,而断裂构造是造成地壳岩体中应力发生复杂变化的主要因素之一。
    (2)不论是单一活动断裂还是复合活动断裂,均对岩体中的应力场有明显的影响。活动断裂附近的主应力方位和量值均不同程度地发生变化,而这种变化主要限于断裂附近一定距离内,远离断裂,逐渐趋于与区域应力场一致。同一条断裂不同段具有不同的应力状态,表现在最大主应力方向和量值都不同。活动断裂附近的应力是随时间而变化的,特别是在地震活动区。复合活动断裂能造成在断裂复合部位的局部应力集中,产生地震和其它高地应力现象。
    (3)非活动断裂对其附近的应力场也有明显的影响。在断裂附近,应力方位发生转向,旋转角度可从十几度到近90°度。断裂组成地应力局部分区的界面,断层的上盘与下盘应力大小和方向都有差别。断裂发育的复杂程度与地应力的变化的幅度密切相关。
    (4)本文首次用离散元方法对断裂构造对地应力场的影响进行了全面系统的模拟分析,揭示了断裂构造对地应力场的影响的规律及其机理。通过模拟分析可知,断层附近应力方位变化的幅度和发生变化的范围因断层的力学性质、围岩的物理力学性质及边界条件等的不同而不同。断层的内摩擦角(φ)和边界应力比值(K_b)及断层方向与边界最大主应力方向之间的夹角(α)对断层附近应力方位发生变化的范围和幅度影响最大。发生变化的范围随着断层的内摩擦角的增大而减小,随着边界应力比值的增大而增大。在影响断层附近应力方位的因素中,断层的内摩擦角是最重要的因素。
    (5)通过使用Kulatilake 等提出的起到完整岩石作用的假节理(或断裂)(fictitious joints)的方法成功地模拟分析了断层端部的应力状态。
    (6)现场调查和数值模拟分析结果表明,云南丽江地区和四川岷江上游地区的地应力场以及地震活动等受断裂的复合的影响。
Knowledge of the in situ stress in the Earth’s crust is very important for many problems in civil, mining and petroleum engineering as well as in geology and geophysics. Despite the importance of in situ stress and the development of a variety of methods to determine in situ stresses in rock masses, rock stress has not been well understood. Fracture is one of the most important factors affecting rock stresses and results of site measurements indicate that there exist reorientation and magnitude variation of stresses in the vicinity of fractures. This thesis is intended to study the effect of fractures by site measurement analysis, field geological survey and numerical modeling. It consists of five parts: (1) By studying current results in rock stress and its measurement, the factors in generating and affecting rock stresses is analyzed and the role of fractures in disturbing in situ rock stresses is documented; (2) By carefully studying the in situ stress measurement results over the world, the general features of the effect of both active faults and inactive faults on rock stresses are concluded; (3) The geological structural characteristics and the modern activities of major active faults in Lijiang region of Yunnan Province and upper stream of Minjiang River in Sichuan Province of West China and their effect on rock stresses are studied through site investigation and laboratory tests. (4) By systematic numerical modeling by the distinct element method with UDEC code, the features of rock stress perturbation caused by the existence of fractures ( both single fracture and compound fractures) and the mechanism are analyzed; (5) The significance of rock stress perturbation produced by fractures in geological engineering is discussed on the basis of engineering practice both in regional crustal stability and rock mass stability. The main conclusions drawn from this study are as follows:
    (1)Gravitation and tectonic movement are the fundamental causes for producing rock stresses. While factors that may influence rock stresses are various, such as geological structures, topography, rock types and the so on. However, the effect of fractures on rock stresses is very common, and the existence of fracture is one reason of the complicated variations of rock stresses in the Earth’s crust.
    (2)Both a single active fault and compound active faults can perturb stresses in rock masses, Compared with regional stress, the orientation and magnitude of stresses around active faults changes in different extent, and most of this kind of change occurs in a certain range around the fault. However, the orientation of principal stresses trends to be in line with regional stress far from the fault. The variation of stress magnitude around active faults is a little bit complex, that is, stresses may be increased or be decreased. The decrease in stress magnitude is
    manifested by being lowered near the fault, increasing with the distance from the fault and becoming constant at certain distance from the fault. Increase or decrease of stress magnitude is determined by the geometry of the fault and the angle relations between the orientation of regional stress and that of fault, and the magnitude of variation largely depends on the scale of faults concerned. There are different stress regime in different sections along a fault, both in the orientation and magnitude of principal stresses. Stress regime in the vicinity of active faults changes with time, especially in the seismically active region. Compound active faults can lead to local stress concentration near the fault, generating earthquakes and high-stress phenomena. The effect of compound fault on stresses is strongly controlled by the geometry of the fault. The geometry of any single fault among the compound faults may influence the stress regime. (3) Non-active faults also have an effect on the stress field near fractures. Near fractures, the stress may reorients in an angle as large as 90°. Fractures make up local interface of stress regime, and both magnitude and orientation may be different at the two sides of a fault. The density and intersection of fractures determine the magnitude of stress variation. (4)Numerical modeling by the distinct element method demonstrate much information about stress variation caused by the existence of fractures. It is found from modeling that the variation stresses in the vicinity of fractures depends on the mechanical and strength properties of both fractures and rock masses as well as boundary conditions. The range of stress variation is strongly determined by the friction angle (φ) of the fault, the boundary stress ratio (Kb=σ1/σ2) and the angle (α) between the fault and the direction of regional maximum principal stress. Among the mechanical properties of faults influencing the stresses around a fault, the friction angle is the most important of those studied. (5) By employing the technique that uses fictitious joints behaving as intact rock, the stress state at fault ends is successfully modeled. (6) Site investigation and numerical modeling indicate that the stress field and seismic activity in Lijiang region of Yunnan Province and the upper stream of Minjiang River are controlled by the compounding of active faults. (7) The stress field in ?sp? area of Sweden is much dependent on the development of fractures and their combination. (8) The effect of fractures on rock stresses may be successfully applied to solve the problems concerned with geological engineering like regional crustal stability and rock mass stability. (9) The study of this thesis is a contribution to understand rock stresses in the Earth’s crust and provides theoretical evidence for the evaluation of crustal stability and design of rock engineering.
引文
[1] 孙广忠,1996,地质工程理论与实践,地震出版社
    [2] 张倬元,王士天,王兰生,1994,工程地质分析原理,地质出版社
    [3] 张祉道,1997,家竹箐隧道施工中支护大变形的整治,世界隧道,(1),7~16
    [4] 黄润秋,张倬元,王士天等,1991,黄河拉西瓦水电站高边坡稳定性的系统工程地质研究
    [5] 郭世凤,陈葛天,1991,三维光弹模拟实验在震源应力场研究中的应用,国家地震局地壳应力研究所编:地壳构造与地壳应力文集,5,地震出版社,219~233
    [6] 王成金,梁一鸣,1996,全球构造应力场理论与应用,长春出版社
    [7] 万天丰,1988,古构造应力场,地质出版社
    [8] 安欧,1992,构造应力场,地震出版社
    [9] Etchecopar A., Vasseur G. and Daignieres M., 1981, An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis, Journal of Structural Geology, Vol.3, No.1, 51~55
    [10] Armijo R., Carey E. And Cisternas A., 1982, The inverse problem in neotectonics and the separation of tectonic phases, Tectonophysics, 82:145~160
    [11] Trinh, 1993,Trinh, Phan-Trong, 1993, An inverse problem for the determination of the stress tensor from polyphased fault sets and earthquake focal mechanisms, Tectonophysics, 224: 393~411
    [12] 许志琴,侯立玮,王宗秀等,1992,中国松潘—甘孜造山带的造山过程,地质出版社
    [13] 谢富仁,刘光勋,1989,阿尔金断裂中段区域构造应力场分析,中国地震,Vol.5, No.3
    [14] 何玉林,1997,四川抚边河断裂的活动特征,地震地质,Vol.19, No.1, 31~36
    [15] 张之立,1994,断裂之间的相互作用和应力场计算,地震学报,Vol.16, No.1
    [16] Brady, B. H. G. and Brown, E. T., 1985, Rock Mechanics for underground mining, George Allen & Unwin, London.
    [17] Hudson J. A. and Harrison J. P., 1997, Engineering rock mechanics: an introduction to the Principals, Elsevier, Oxford
    [18] Amadei, B. and Stephansson, O., 1997, Rock stress and its measurement, Chapman & Hall, London
    [19] 陈宗基,1988,我国在复杂岩层中的巷道掘进,岩石力学与工程学报,Vol.7,No.1,1~14
    [20] 王士天,1989,区域稳定性研究现状,水文地质工程地质,16(4),38~43
    [21] 朱焕春,陶振宇,1994,不同岩石中的地应力分布,地震学报,(1)
    [22] Brown S. M., Leijon B. A. and Hustrulid W. A., 1986, Stress distribution within an artificially loaded, jointed block, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek
    Publishers, Lule?, 429~439
    [23] Richarderson A. A., Brown S. M., Hustrulid W. A. and Richardson, D. L., 1986, An interpretation of highly scattered stress measurements in foliated gneiss, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?. 441~447
    [24] Carlsson A. and Christiansson R., 1986, Rock stresses and geological structures in the Forsmark area, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?, 457~465
    [25] 李群芳,1987,几种典型交汇方式的断裂周围应力场和位移场的三维空间分布—论断裂对构造应力场的影响,国家地震局地壳应力研究所编:地壳构造与地壳应力文集,1,地震出版社,146~158
    [26] Barton C. A., Zoback M. D. And Moos D. 1992, In situ stress and permeability in fractured and faulted crystalline rock, Mechanics of Jointed and Faulted Rock, Rossmanith(ed.), Balkema, Rotterdam, 381~386
    [27] Obara Y., Chang H. K., Sugawara K. and Sakaguchi K., 1995, Measurement of stress distribution around fault and considerations, In: Rossmanith (ed.), Mechanics of Jointed and Faulted Rock, Balkema, Rotterdam, 495~500
    [28] 李铁汉,潘别桐,1980,岩体力学,地质出版社
    [29] 李方全,1986,重大工程建设中原地应力测量的意义,地壳构造与地壳应力文集,地震出版社,123~131
    [30] 丁恩保,1993,低地应力及其工程地质意义,水文地质工程地质,第4 期
    [31] Hyett A. J., Dyke C. G. and Hudson J. A., 1986, A critical examination of basic concepts associated with the existence and measurement of in situ stress, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?. 387~396
    [32] Terzaghi K. And Richart E. E., 1952, Stresses in rock, Geotechnique, 3, 57~90
    [33] Voight B., 1966, Interpretation of in-situ stress measurements, Panel report on Theme IV, In: Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, Lab. Nac de Eng. Civil, Lisbon, Vol. III, 332~348
    [34] Aytmatov, I. T., 1986, On virgin stress state of a rock in mobile folded areas, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?. 55~59
    [35] Lee J. S., The fundamental cause of evolution of the Earth’s surface-features, Bulletin, Geological Society of China, 5(3/4)
    [36] Judd W. R., 1964, Rock Stress, rock mechanics and research, In: State of stress in the Earth’s crust, N.Y.
    [37] 刘世煌,1990,从实测资料谈地壳近地表岩体中地应力的发分布规律,水力发电学报,第1 期,83~86
    [38] Zoback M. L., 1989, Global patterns of tectonic stress, Nature, Vol.341, No.6240, 291~298
    [39] 马杏垣,1987,中国岩石圈动力学纲要,地质出版社
    [40] 高祥林,罗焕炎,平原和朗,1994,日本俯冲带应力产生与传播的数值模拟,地震地质,Vol.6, No.2, 97~108
    [41] Mercier J. G., 1980, Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology, Journal of Geophysical Research, 85, B11, 6293~6303
    [42] 黄润秋,王士天,胡卸文等,1996,澜沧江小湾水电站高拱坝坝基重大工程地质问题研究,西南交通大学出版社
    [43] 马启超,1986,工程岩体应力场的成一分析与分布规律,岩石力学与工程学报,Vol.5,No.4,329~342
    [44] Fairhurst, C., 1986, In situ stress determination -an appraisal of its significance in rock mechanics, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?, 3~17
    [45] Hudson J. A. and Cooling C. M., 1988, In situ rock stresses and their measurement in the UK-Part I, The current state of knowledge. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 363~370
    [46] Stephansson O., 1993, Rock stress in the Fennoscandian shield, In: Comprehensive Rock Engineering (ed. J. A. Hudson), Pergamon Press, Oxford, Vol.3, 445~459
    [47] Aleksandrowski P. Inderhaug O. H. and Knapstad B., 1992, Tectonic structures and well-bore breakout orientation, Proc. 33rd US Symp. Rock Mech., Santa Fe, Balkema, Rotterdam, 29~37
    [48] Sugawara K. and Obara Y., 1993, Measuring rock stress, In: Hudson J. A. (ed.), Comprehensive Rock Engineering, Pergamon Press, Oxford, Vol.3, 533~552
    [49] Martin C. D. and Simmons G. R., 1993, The atomic energy of Canada Limited Underground Laboratory: an overview of geomechanics characterization, In: Hudson J. A. (ed.), Comprehensive Rock Engineering, Pergamon Press, Oxford, Vol.3, 915~950
    [50] Martin C.D. and Chandler N.A., 1993, Stress heterogeneity and geological structures, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol.30, No.7, 993-999
    [51] Zoback M. D. et al., 1987, New evidence of the state of stress of the San Andreas fault system, Science, 238:1105~1111
    [52] Müller B. et al., 1992, Regional patterns of tectonic stress in Europe, J. Geophys. Res., 97: 11783~11803
    [53] Arjang B., 1989, Pre-mining stresses at some hard rock mines in the Canadian shield, Proc, 30th US Symp. Rock Mech., Morgantown, Balkema, Rotterdam, 545~551
    [54] 格佐夫斯基M. B. 等,1973,根据矿山巷道测量和构造物理分析的资料看地壳的应 力状态,裴伟等,地壳应力状态,国家地震局地震地质大队情报资料室译,地震出版
    社,17~26
    [55]ΚαзикаевД.М., ИщенкоВ.К.,СурживГ.Г., ФοминБ. А., Чух-ловГ.И., 1971, Некторыерезультатыизмерениянап-ряженногосостяниягорных, Породвнатурныхусловиях,-Сб.”МатериалыVI, научи. –техн. конф. ин-таВИОГЕМ”Белгород, ИздВИОГЕМ
    [56] Greiner G. and Lohr J., 1980, Tectonic stresses in the Northern Foreland of the Alpine System Measurement and Interpretation, Rock Mechanics, Suppl. 9, 5~15
    [57]МарковГ.А.,1983,地壳上部岩体中水平挤压应力的成因和表现规律,国家地震局地壳应力研究所情报室编译,地应力测量原理与应用,地质出版社,1987,59~65
    [58] 车用太等,1983,岩体工程地质学入门,科学出版社
    [59] 白世伟,李广煜,1982,二滩水电站坝区岩体应力场研究,岩石力学与工程学报,Vol.1,No.1,45~56
    [60] 赵仕广等,1984,郯庐断裂的中段的近地表和深部原地应力测量,地震学刊,1
    [61] Haimson B. C. and Rummel F., 1982, Hydrofracturing stress measurements in the Iceland drilling project drillhole at Reydasfjordur, Iceland, J. Geophys. Res., Vol.87, 6631~6649
    [62] McTigue D. F. and Mei C. C., 1981, Gravity-induced stress near topography of small slopes. J. Geophys. Res., 86: 9268~9278
    [63] McTigue D. F. and Mei C. C., 1987, Gravity-induced stress near axisymmetric topography of small slopes. Int. J. Num. Anal. Math. Geomech.,11:257~268
    [64] Liao J. J., Savage W. Z. and Amadei B., 1992, Gravitational stresses in anisotropic ridges and valleys with small slopes. J. Geophys. Res., 97: 3325~3336
    [65] 王士天,黄润秋,李渝生等,1998,雅砻江锦屏水电站重大工程地质问题研究,成都科技大学出版社
    [66] 朱焕春,陶振宇,黄得凡,1995,河谷走向与河谷地应力分布,岩石力学与工程学报Vol.14,No.1,17~24
    [67] 张咸恭,工程地质学,地质出版社,1983
    [68] Hast N., 1973, Global measurement of absolute stress. Phil. Trans. Roy. Soc. London, A, 274: 409~419
    [69] 白世伟,朱维申,王可均,1982,在高地应力区与一个大型地下电站有关的岩石力学问题,岩石力学与工程学报,Vol.1,No.2,33~39
    [70] Savage W.Z., Swolfs H. S. and Powers P. S., 1985, Gravitational stress in long symmetric ridges and valleys, Int. I. Rock Mech. Min. Sci. & Geomech. Abstr., 22:291~302
    [71] 高莉青,陈宏德,1987,岩体应力状态的影响因素,国家地震局地壳应力研究所编译,地应力测理论研究与应用,地质出版社,86~97
    [72] 李光煜,白世伟,1979,岩体应力的现场研究,岩土力学,Vol.1,No.1
    [73] Warpinski N. R., Branagan P. and Wilmer R., 1985, In situ stress measurements at US DOE’s multiwell experiment site, Mesaverde group, Rifle, Colorado, J. Petrol. Technol.,
    Vol.37, 527~536
    [74] Teufel L. W., 1986, In situ stress and natural fracture distribution at depth in the Piceance Basin, Colorado: implications to stimulation and production of low permeability gas reservoirs, In: Proc. 27th US Symp. Rock Mech., Tuscaloosa, AME/AIME, 702~708
    [75] Warpinski N. R. and Teufel L. W., 1991, In-situ stress measurements at Rainier Mesa, Nevada Test Site –Influence of topography and lithology on the stress state in tuff, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.28, 143~161
    [76] Swolfs H. S., 1984, The triangular stress diagram –a graphical representation of crustal stress measurements, US Geol. Surv. Prof. Pap., Vol.1291, Washington, 19
    [77] Plumb R. A., 1994, Variation of the least horizontal stress magnitude in sedimentary rocks, In: Proc. 1st North Amer. Rock Mech. Symp., Austin, Balkema, Rotterdam, 71~78
    [78] 孙广忠,1988,岩体结构力学,科学出版社
    [79] 《中国岩石圈动力学地图集》编委会,1991,中国岩石圈动力学概论,地震出版社
    [80] 姚宝魁,1982,影响工程岩体原岩应力状态的地质因素,水文地质工程地质,第4 期,34~37
    [81] Harrison W., 1958,Marginal zones of vanished glaciers reconstructed from the pre-consolidation-pressure values of overridden silts, Journal of Geophysics, 66(1): 72~95
    [82] Paterson W. S. B., 1972, Laurentide ice sheet: estimated volumes during late Wisconsin, Reviews in Geophysics, 10: 885~917
    [83] Cathles L. M., 1975, The viscosity of the Earth’s mantle, Princeton University Press
    [84] Hardy H. R., Kim Jr. R. Y., Stefanko R. and Wang Y. J., 1970, Creep and microseismic activity in geological materials, Proc. 11th U.S. Symp. On Rock Mechanics, 377~413
    [85] Lee C. F. and Asmis H. W., 1979, An interpretation of the crustal stress field in Northwest North America, Proc. 20th U.S. Symp. On Rock Mechanics, 1: 655~662
    [86] 李焯芳,王可钧,1995,高水平地应力的显现与成因分析,岩石力学与工程学报,Vol.14,No.3,193~200
    [87] Terzaghi K, Van, 1923, Die Berechnyg der durchfassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Sitz. Akad. Wiss. Wien, Math, Naturwiss, Kl., Abt. 2A,132
    [88] Anderson E. M., 1951, The Dynamics of the formation of cone-sheets, ring-dykes and cauldron-subsidence, Proc. Roy. Soc., Edinburgh, 56
    [89] 格佐夫斯基M. B. , 1975,构造物理学基础,刘鼎文等译,地震出版社
    [90] Bell J. S., 1989, Vertical migration of Hydrocarbons at Alma, offshore eastern Canada, Bulletin of Canada Petroleum Geology, Vol.37, No.3, 358~364
    [91]王士天,李渝生,苏道刚,魏伦武,1988,黄河龙羊峡电站区域构造稳定性的工程地质研究,地质学报,No.4
    [92] Zoback M. D. and Roller J. C., 1979, Magnitude of shear stress on the San Andreas fault; Implications of a stress measurement profile at shallow depth, Science, Vol.26
    [93] Keys W. S., et al., 1979, In situ stress measurement near the San Andreas fault in central California, Journal of Geophysical Research, Vol.85, No.B4
    [94] 丁旭初,梁海庆,1982,活动性断裂附近的剪应力,中国地震学会地震地质专业委员会,中国活动断裂,地震出版社,122~126
    [95] Sbar M. L., Engelder T., Plumb R. and Marshak S., 1979, Stress pattern near the San Andreas Fault, Palmdale, California from near surface in situ measurements, Journal of Geophysical Research, Vol.84, No.B1, 156~164
    [96] 李方全,孙世宗,李立球,1982,华北及郯庐断裂带地应力测量,岩石力学与工程学报,Vol.1,No.1,73~86
    [97] 高建理,丁建民,梁国平,郭启良,1990,龙羊峡水电站水压致裂应力测量,岩石力学与工程学报,Vol.9,No.2,134~145
    [98] 乔兰,蔡美峰,1995,应力解除法在某金矿地应力测量中的新进展,岩石力学与工程学报,Vol.14,No.1,25~32
    [99] 丁旭初等,1981,云南西部地区现今构造应力场与龙陵地震,地应力测量的原理和应用,地质出版社
    [100] 廖椿庭等,1981,矿区地应力测量与矿山设计,地应力测量的原理和应用,地质出版社
    [101] 孙叶等,1983,北京煤岭弧形断裂现今应力状态,中国科学,B缉,No.11, 1021~1028
    [102] 王宗杰,孙叶,1987,研究现今局部地应力场查明其断裂活动特征,岩石力学与工程学报,Vol.6,No.2,105~112
    [103] Ito H., Kuwahara Y and Nishizawa O., 1997, In: Sugawara and Obara (eds), Rock Stress, Balkema, Rotterdam, 351~354
    [104] Zoback M. D., Tsukara H., and Hickman S., 1980, Stress measurements at depth in the vicinity of the San Andreas Fault –Implications for the magnitude of shear stress at depth, Journal of Geophysical Research, Vol.85, No.B11, 6157~6173
    [105] 陈炳蔚,1987,怒江—澜沧江—金沙江地区大地构造,中华人民共和国地质矿产部专报,构造地质,地质出版社
    [106] 王运生,1998,虎跳峡水电枢纽区域构造稳定性工程地质研究,成都理工学院博士学位论文
    [107] 皇甫岗,1997,1996 年2 月3 日丽江7.0 级地震,地震研究,Vol.20, No.1, 92~100
    [108] 李康龙,1997,一九九六丽江七级大地震震害图集,德宏民族出版社
    [109] 任纪舜等(黄汲清指导),1980,中国大地构造及其演化,科学出版社
    [110] 韩新民等,1997,丽江7.0 级地震烈度分布,地震研究,Vol.20, No.1, 35~46
    [111] 王绍晋等,1997,丽江地震序列的震源机制、发震应力场和破裂特征,地震研究,Vol.20, No.1, 26~34
    [112] 蒋良文,岷江上游活动断裂及主要地质灾害研究,1999,成都理工学院博士论文
    [113] 王士天,黎克武,叶荣欣,向桂馥,1985,龙门山北段及其邻区的地应力场和现代 构造活动的基本特征,构造地质论丛,4,地质出版社,89~97
    [114] 唐荣昌,韩渭滨,1993,四川活动断裂与地震,地震出版社
    [115] 钱洪,马声浩,龚宇,1995,关于岷江断裂断裂若干问题的讨论,中国地震,Vol.11,No.2,140~146
    [116] 唐荣昌,文德华等,1991,松潘—龙门山地区主要活动断裂带第四纪活动特征,中国地震,Vol.7,No.3
    [117] 邓起东,陈社发,赵小鳞,1994,龙门山及邻区的构造和地震活动及动力学,地震地质,Vol.16,No.4
    [118] 四川省地质局,1991,四川省区域地质志,地质出版社
    [119] Martin C.D., 1990, Characterizing in situ stress domains at the AECL Underground research laboratory. Canadian Geotechnical Journal, 27, 631-646
    [120] Stephansson O. 1975, Polydiapirism of granitic rocks in the Svecofennian of Central Sweden, Precambrian Research, 2, 189~214
    [121] Stephansson O. and ?ngman P., 1986, Hydraulic fracturing stress measurements at Forsmark and Sidsvig, Sweden, Bull. Geol. Soc. Finland 58, Part I, 307~333
    [122] Bell J. S. and Babcock E. A., 1986, The stress regime of the Western Canadian Basin and implications for hydrocarbon production, Bulletin of Canadian Petroleum Geology, Vol.34, 364~378.
    [123] Aleksandrowski P., Inderhaug O. H. and Knapstad B., 1992, Tectonic structures and wellbore breakout orientation, Rock Mechanics, 30~31
    [124] ΚозыревА.А.,1983,捕捉地震前兆时判断和查明活动区里的构造应力场,见:国家地震局地壳应力研究所,地应力测理论研究与应用,地质出版社,98~103
    [125] Sengupta S., 1998, Influence of geological structures on in-situ stresses, A thesis submitted to Indian Institute of Technology in fulfillment of the requirement for the degree of doctor of philosophy
    [126] Stephansson O., Ljunggren C. and Jing L., 1991, Stress measurements and tectonic implications for Fennoscandia, Tectonophysics, Vol.189, 317~322.
    [127] Demboya N., Fukuhara A., Obara Y. and Sugawara K., 1997, Applicability of the compact overcoring method for initial stress measurement in highly cracked rock, Rock Stress, Sugawara & Obara (eds.), Balkema, Rotterdam, 83~88
    [128] Zienkiewicz O. C., Valliappan S. and King I. P., 1968, Stress analysis of rock as a “no-tension”material, Geotechnique, Vol. 18, 56~66
    [129] Ngo D. and Scordelis A. C., 1967, Finite element analysis of reinforcement concrete, J. Am. Concrete Inst., No.64-14, 152~163
    [130] Goodman R. E., Taylor R. L. And Brekke T., 1968, A model for the mechanism of jointed rock, J. Soil Mech. Found. Div., ASCE, Vol. 94, 637~659
    [131] Goodman R. E., 1976, Methods of geological engineering in discontinuous rocks, West Publishing, New York
    [132] Mhtab M. A., and Goodman R. E., 1970, Three-dimensional finite element analysis of jointed rock slopes, Pro. 2nd Int. Congress on Rock Mechanics, Belgrade
    [133] Zienkiewicz O. C. Emson C. and Stagg K. G., 1970, Analysis of non-linear problem in rock mechanics with particular reference to jointed rock systems, Pro. 2nd Int. Congress on Rock Mechanics, Belgrade
    [134] Ghaboussi J. Wilson E. L. AndIsenberg J., 1973, Finite elements for rock joints and interfaces, J. Soil Mech. Found. Div., ASCE, Vol. 94, 833~848
    [135] Katona M. G., 1981, Efficient analysis of shallow tunnels, Comp. Geotech., 15~31
    [136] 尚岳全,黄润秋,1991,工程地质研究中的数值分析方法,成都科技大学出版社
    [137] Pande G. N., Beer G. and Williams J. R., 1990, Numerical methods in rock mechanics, Wiley, New York
    [138] Crotty J. M. and Wardle L.J., 1985, Boundary integral analysis of piecewise homogeneous media with structural discontinuities, Int. J. Rock Mech..Min.Sci.& Geomech. Abstr., Vol.22, 419~427
    [139] Sinha K. P., 1979, Displacement discontinuity technique for analysis of stresses and displacements due to mining in seam deposits, PhD dissertation, University of Minesota
    [140] 潘别桐,黄润秋,1994,工程地质数值法,地质出版社
    [141] Wilkins M. L., 1969, Calculation of elastic-plastic flow, Report UCRL-7322-Revision I, Lawrence Radiation Laboratory, University of California, Livermore
    [142] Schwer L. E. And Lindberg H. E., 1992, Application of a finite element slideline approach for calculating tunnel response in jointed rock, International. Journal for Numerical and Analytical Methods in Geomechanics, Vol.16, 529~540
    [143] Chen Shougen, 1999, Discrete element modelling of jointed rock masses under dynamic loading, a thesis submitted to Nanyang Technological University in fulfillment of the requirement for the degree of Doctor of Philosophy
    [144] 王泳嘉,邢纪波,1991,离散单元法及其在岩土工程中的应用,东北工学院出版社
    [145] Cundall P. A., 1971, A computer model for simulating progressive large scale movements in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech., Nancy, France, Vol.1, Paper No. II-8
    [146] Cundall P. A. and Hart R., 1985, Development of generalized 2-D and 3-D distinct element programs for modelling jointed rock, Itasca Consulting Group. Misc. Paper SL-85-1, U.S. Army Corps of Engineers
    [147] Hart R. D., An introduction to distinct element modelling for rock engineering, In: Huason J. A., (ed), Comprehensive Rock Engineering, Vol.2, 245~261
    [148] Itasca, 1992, Universal Distinct element Code, Version 1.8, User’s manual. ITASCA Consulting Group, Inc., USA
    [149] Cundall P. A., Marti J., Beresford P. Last N. C. and Asgian M., 1978, Computer modelling of jointed rock masses, Technical Report N78-4, US Army Waterways Experiment Station
    [150] Shi G. H., 1988, Discontinuous deformation analysis –a new numerical method for the statics and dynamics of block systems, Ph.D. thesis, University of California, Berkeley
    [151] Barbosa R. And Ghaboussi J., 1992, Discrete element method, Engineering Computations, Vol.9, No.2, 253~266
    [152] Cundall P. A., 1980, UDEC –a generalized distinct element program for modelling jointed rock, Report PCAR-1-80, Peter Cundall Associates, U.S. Army European Research Office, London, Contract DAJA37-79-C-0548
    [153] Cundall P. A., 1988, Formulation of a three-dimensional distinct element model –part I: a scheme to detect and represent contact in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.25, 107~116
    [154] Kulatilake P. H. S. W., Ucpirti H., Wang S., Radberg G. and Stephansson O., 1992, Use of the distinct element method to perform stress analysis in rock with non-persistent joints and to study the effect of joint geometry parameters on the strength and deformability of rock masses, Rock Mechanics and Rock Engineering, 25(4), 253-274
    [155] Price N. J. And Cosgrove J. W., 1990, Analysis of Geological Structures, Cambridge University Press
    [156] 尚岳全,李渝生,1993,锦屏电站区域构造稳定性数值模拟,工程地质研究进展,西南交通大学出版社,51~75
    [157] 唐荣昌,黄祖智,张耀国,1992,石棉—西昌地区地震区划研究,成都科技大学出版社
    [158] 李方全等,1992,滇西及邻区构造应力场基本特征,滇西地震预报实验场论文集,地震出版社,196~208
    [159] 董玉善,1985,鲜水河断裂带及其邻近地区的原地应力测量,鲜水河断裂带地震学术讨论会文集,地震出版社
    [160] 古迅,1995,核电工程地质(一),工程地质学报,Vol.3,No.2,86~96
    [161] Tirén S. A., Askling P. And W?nstedt S., 1999, Geologic site characterization for deep nuclear waste disposal on fractured rock based on 3D data visualization, Engineering Geology, 52: 319~346
    [162] Swedish Nuclear Fuel and waste Management Co., 1999, ?sp? Hard Rock Laboratory: Current research projects 1998
    [163] Shen B. and Stephansson O., 1996, Modelling of rock fracture propagation for nuclear waste disposal, SKI Report 96:18, Swedish Nuclear Inspectorate, Stockholm.
    [164] Hansson H., Jing L. and Stephansson O., 1995, 3-D DEM modelling of coupled thermo-mechanical response for a hypothetical waste repository, In: Pande G. N. and Pietruszczak S. (eds.), Numerical Models in Geomechanics -Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics, A.A.Balkema, 257~262
    [165] Wikberg P.(ed.), Gustafson G., Rhén I. and Stanfors R., 1991, ?sp? Hard Rock Laboratory, Evaluation and conceptual modeling based on the pre-investigations 1986-1990, SKB TR 91-22, Swedish Nuclear Fuel and Waste Management Co., Stockholm
    [166] Rhén I. (ed.), Gustafson G., Stanfors R., and Wikberg P., 1997, Geoscientific evaluation 1996/5. Models based on site characterization 1986-1995, SKB Technical Report 97-05, Swedish Nuclear Fuel and Waste Management Co., Stockholm
    [167] SKB, 1998, Crustal structure and regional tectonics of SE Sweden and the Baltic Sea, SKB TR 98-21, Swedish Nuclear Fuel and Waste Management Co., Stockholm
    [168] M?ner, N.-A., Somi,E. and Zuchiewicz,W.,1989, Neotectonics and paleoseismicity within the Stockholm Intracratonal Region in Sweden, Tectonophysics,163, 289~303.
    [169] Slunga, R., 1990, The earthquakes of the Baltic Sea, SKB Technical Report 90-30, Swedish Nuclear Fuel and Waste Management Co., Stockholm
    [170] Bjarnason B., Strphansson O., Torikka, A. and Bergstrs K., 1986, Four years of hydrofracturing rock stress measurements in Sweden, In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lule?. 421~427
    [171] Bjarmson B., Klasson H., Leijon B., Strindell L. and ?hman T., 1989, Rock stress measurements in borehole KAS02, KAS03 and KAS05 on ?sp?, Progress Report 25-89-17, SKB, Stockholm
    [172] Ljunggren C. and Klasson H., 1997,Deep hydraulic fracturing rock stress measurements in borehole KLX02, Laxemar, Project Report U-97-27, SKB, Stockholm
    [173] 黎克武,张立华,曾伟,1992,大桥水电站区域构造稳定性研究,地质灾害与环境保护,Vol.3,No.1,1~13
    [174] 唐荣昌,黄祖智,1986,攀西地区地震危险性研究,四川科学技术出版社
    [175] 国家地震局西南烈度队,1977,西昌—渡口地区地震烈度区划综合研究报告,地震出版社
    [176] 黄祖智,唐荣昌,1995,四川地区强震与发震构造几何结构特征关系的探讨,中国地震,Vol.11,No.2,133~139
    [177] Su S. and Stephansson O., 1999, Effect of a fault on in situ stress studied by distinct element method, Int. J. Rock Mech. & Mining Sci., Vol. 36, No.8, 1501~1506
    [178] Su S., Stephansson O. and Peng J., The effect of fracture pattern on in situ stresses studied by the distinct element method, Proceedings of GeoEng2000, Technomical Publishing Co. Inc. USA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700