用户名: 密码: 验证码:
乌东德水电站库区岩体结构评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以“岩体结构控制论”为基本指导思想,研究了乌东德水电站库区内分布的不同结构类型的岩体。具体探讨了极易变形与破坏的马店河组堆积层、龙街粉砂层、强-全风化岩体与具有潜在危险的裂隙岩体。采用现场调查、颗分、微观结构与矿物成分分析的手段探讨了上述岩体的结构特征并研究了其易于变形与破坏的机理。针对裂隙岩体,本文在二维裂隙调查的基础上,采用三维裂隙网络模拟的方法生成了岩体内的裂隙系统,并采用Matlab语言对裂隙进行了可视化操作。本文在三维裂隙网络的基础上,通过设立一定数量的测线研究了RQD的空间效应与尺寸效应。考虑裂隙各项参数(产状、大小与密度)与参数的空间效应,计算了岩体参数的尺寸效应收敛值。将表征单元体REV(Representativeelemental volume)的概念延伸到一维尺度上的线表征单元体LREV(Linearrepresentative elemental volume)与三维长方体形状下的体表征单元体CREV(Cuboid representative elemental volume),建立了LREV与CREV的解析表达式。为更深入地了解裂隙岩体的变形与破坏机理,论文首次提出了改进随机动力学法、裂隙频率法与Dijkstra算法来搜索裂隙岩质斜坡的最危险滑动面。结构性岩体破坏后形成的松散堆积物可能产生次生灾害,结合现场调查发现,这些堆积物会因降雨诱发泥石流灾害。论文综合分析了泥石流的敏感度与动力学参数。提取了影响敏感度的各项指标并对其权重进行客观合理的获取。首次提出了能量守恒法在泥石流动力学参数计算中的应用,增强了动力学计算结果的普适性。
Various structural types of rock masses distributed in the Wudongde hydropowerreservoir region are broken because of the frequent tectonic activity and strong exogenicforces (e.g., weathering). The deformation and destruction of the rock masses threat thestructures and the constructors, which may lead to a great loss. Therefore, the brokenrock masses in the reservoir region should be regarded.
     Using “controling theory of rock mass struture” as the guiding ideology, variousmeasures were used to investigate the structural characteristics of the rock masses in thereservoir region. The particular features of the rock mass parameters and themechanisms of deformation and destruction, which are influenced by rock massstructures, were researched. Furthermore, susceptibility and dynamics of debris flowsinduced by the destruct rock masses were researched. The conclusions were drawn asfollows:
     1. Based on the generalized conception of rock masses, the rock masses can bedivided into6categories (considering the genetic mechanism, stability degree, anddeformation/destruction mechanisms), i.e., intact and semi-intact rock masses, stronglyfractured rock masses, highly to completely weathered rock masses, semi-consolidatedstratum, ancient accumulation bodies, and recent accumulation bodies. The diameters ofthe grains (which can be defined as gravel soil) in Madianhe Group layer varysignificantly. Large numbers of vertical cracks are developed. Calcareous structures willbe destroyed upon contact with water, leading to decrescendotype collapses and slides. The grains (which can be defined as fine sand) in Longjie layer are fine. Large numbersof crossed horizontal beddings and vertical cracks are developed. Thedeformation/destruction mechanisms of the Longjie layer are the same as those ofMadianhe layer (decrescendotype collapses and slides). For the red-bed soft rocks, thecontents of clay minerals, calcites, and dolomites in the silty mudstones are high. Grainyand flaky minerals are relatively concentrated, with extremely low resistance to weather.The soft and hard rock layers show interlaced distribution; thus, the stability degree ishigh, with few collapses and landslides. Taking highly to completely weathered phylliterocks as an example, the contents of clay and mica minerals are high. Mineral grainsshow laminated and aerial structures, with low resistance to weather and low strength.For the exterior weathered metamorphic rocks, only small-scale collapses happen. Forthe large-scale loose accumulation bodies, large-scale collapse and landslides frequentlyhappen.
     2. Three-dimensional (3D) fracture network modeling can be applied to thefractured rock masses. The generated fractures can be described by numerical data.However, the data are nonobjective. Visualisation technique can show the spatial shapesof the fractures and the position relationships among the fractures. Then, thenonobjective fracture data can be checked.
     3. The fractured rock mass parameters are characterized by uncertainty, that is, sizeand spatial effects exists in the parameter determination. Only the parameter that canreflect the overall rock mass can be applied to the engineering analysis. Considering theeconomical factors, it is impossible to employ abundant samples with various sizes andzones to obtain parameter values. To solve the abovementioned problem, using3Dfracture network to generate samples can be used for uncertainty analysis.
     4. Considering size and spatial effects, a number of scanlines should be set for RQDdetermination. Linear representative elemental volume (LREV) can be used to reflect thesize effect of one-dimensional rock mass parameters (e.g., RQD). The analyticexpression of LREV extremely facilitates the determination of size effect. Consideringdifferent zones and parameters, the representative elemental volume (REV) values vary,leading to a poor universality. A universal REV can be obtained by comprehensively considering the spatial effects and the fracture parameters of the rock masses. Thegeneralized REV [cuboid representative elemental volume (CREV)] can fully reflect theanisotropy of rock masses. The analytic expression of CREV generated based on LREVmakes the determination of size effect convenient and economical.
     5. This paper proposed3methods, i.e., modified stochastic dynamics method,fracture frequency method, and Dijkstra algorithm search method, to search the criticalslip surface. These methods have fully considered the statistical features and locations ofthe fractures, making the determination of the critical slip surfaces more rational.Locations and shapes of the critical slip surfaces determined through theabovementioned methods vary. The features of the surfaces determined by modifiedstochastic dynamics and fracture frequency methods are similar, which are much smallerthan that determined by Dijkstra algorithm search method. In the field engineeringapplication, the modified stochastic dynamics and fracture frequency methods can beused in the original design stage, with larger safety factor and longer support facilities.The application of Dijkstra algorithm search method is opposite.
     6. The loose accumulation bodies of destruct rock masses constitute loose materialsof debris flows. Then, hazards will be educed by the rainfall. The rock mass structuresinfluence the debris flow characteristics. Susceptibility is influenced by factors of debrisflow gullies, and the influence degrees vary. The combination weighting methodconsiders both the preference of the engineers and the information among the factors;therefore, this method can educe rational weights. Then, the rational susceptibilityresults can be determined. From the point of view of conversation of energy, thedynamics equation, which can fully consider the gully topography, can be established.The dynamics equation facilitates the calculation and the results are universal.
引文
[1] SALAMON M D G. Elastic moduli of a stratified rock mass[J]. Int J Rock Mech Min Sci&Geomech Abstr,1968,5:519–527.
    [2] Gerrard C M. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers[J].Int J Rock Mech Min Sci&Geomech Abstr,1982,19:9–14.
    [3] AMADEI B. Strength of a regularly jointed rock mass under biaxial and axisymmetric loadingconditions[J]. Int J Rock Mech Min Sci&Geomech Abstr,1998,25:3–13.
    [4]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [5]孙广忠,孙毅.地质工程学原理[M].北京:地质出版社,2004.
    [6]鲜学福,谭学术.层状岩体破坏机理分析[M].重庆:重庆大学出版社,1989.
    [7]张玉军,刘谊平.层状岩体的三维弹塑性有限元分析[J].岩石力学与工程学报,2002,21(11):1615–1619.
    [8]张玉军,唐仪兴.考虑层状岩体强度异向性的地下洞室平面有限元分析[J].岩土工程学报,1999,21(3):307–310.
    [9]王全安.层状盐岩变形机理及非线性蠕变本构模型[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [10]蒋青青,胡毅夫,赖伟明.层状岩质边坡遍布节理模型的三维稳定性分析[J].岩土力学,2009,30(3):712–716.
    [11]黄书岭,丁秀丽,邬爱清,卢波,张宜虎.层状岩体多节理本构模型与试验验证[J].岩石力学与工程学报,2012,31(8):1627–1635.
    [12] DUBEY R K, GAIROLA V K. Influence of structural anisotropy on creep of rocksalt fromSimla Himalaya, India: an experimental approach[J]. Journal of Structural Geology,2008,30(6):710–718.
    [13] NAUMANN M, HUNSCHE U, SCHULZE O. Experimental investigations on anisotropy indilatancy, failure and creep of Opalinus clay[J]. Physics and Chemistry of the Earth,2007,32:889–895.
    [14]张志强.非贯通裂隙岩体破坏细观特征及其宏观力学参数确定方法[J].岩石力学与工程学报,2009,28(9):121–126.
    [15]李燕,杨林德,董志良,张功新.各向异性软岩的变形与渗流耦合特性试验研究[J].岩土力学,2009,30(5):1231–1236.
    [16]柯建仲,许世孟,陈昭旭,冀树勇.基于边界元法各向异性岩石的裂纹传播路径分析[J].岩石力学与工程学报,2010,29(1):34–42.
    [17]陈益峰,李典庆,荣冠,姜清辉,周创兵.脆性岩石损伤与热传导特性的细观力学模型[J].岩石力学与工程学报,2011,30(10):1959–1969.
    [18]侯哲生,韩文峰,李晓.金川二矿区巷道围岩力学参数空间效应数值分析[J].岩石力学与工程学报,2004,23(1):64–68.
    [19]张庆松,高延法,孙宗军,刘松玉.开采沉陷数值计算的空间效应和层面效应分析[J].岩土力学,2004,25(6):940–942.
    [20]杨林德,颜建平,王悦照,王启耀.围岩变形的时效特征与预测的研究[J].岩石力学与工程学报,2005,24(2):212–216.
    [21]卢坤林,朱大勇,许强,杨扬.滑带土抗剪强度参数的三维反分析[J].岩土力学,2010,31(10):3319–3328.
    [22]刘会波,肖明,张志国,陈俊涛.考虑空间效应的地下洞室爆破开挖松动区参数场位移反分析[J].岩土力学,2012,33(7):2133–2141.
    [23]王家来,左宏伟.岩体弹性模量的尺寸效应初步研究[J].岩土力学,1998,19(1):60–64.
    [24]尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391–395.
    [25]周火明,盛谦,陈殊伟,熊诗湖,杨火平.层状复合岩体变形试验尺寸效应的数值模拟[J].岩石力学与工程学报,2003,23(2):289–292.
    [26]李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003,22(12):2032–2036.
    [27]喻勇,肖国强,王法刚.岩体变形模量的尺寸效应[J].岩土力学,2004,24(1):47–49.
    [28]洪亮,李夕兵,马春德,尹土兵,叶洲元,廖国燕.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报,2008,27(3):526–533.
    [29]吕兆兴.岩石非均质性对其峰值应力后弱化过程的影响[J].辽宁工程技术大学(自然科学版),2008,27(6):840–843.
    [30] HILL R. Elastic properties of reinforced solids: some theoretical principles[J]. J Mech PhysSolids,1963,11:357–372.
    [31] BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier,1972.
    [32]庞作会.基于节理网络模型的岩体REV数值估算与无网格伽辽金法(EFGM)[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [33]周创兵,於三大.论岩体表征单元体积REV-岩体力学参数取值的一个基本问题[J].工程地质学报,1999,7(4):332–336.
    [34]卢波,葛修润,朱冬林,陈剑平.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1356–1361.
    [35]向文飞,周创兵.裂隙岩体表征单元体研究进展[J].岩石力学与工程学报,2005,24(增2):5686–5692.
    [36]张红亮,王水林,李春光.基于数值试验的节理岩体变形特性的REV研究[J].岩石力学与工程学报,2008,27(增2):3643–3648.
    [37]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学,2008,29(6):1675–1680.
    [38]夏露,刘晓非,于青春.基于块体化程度确定裂隙岩体表征单元体[J].2010,31(12):991–3996.
    [39]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [40]谷德振.谷德振文集[M].北京:地震出版社,1994.
    [41]孙广忠.地质工程理论与实践[M].北京:地震出版社,1996.
    [42]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [43]孙广忠.岩体力学基础[M].北京:科学出版社,1983.
    [44]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [45]王坛华.基于三维裂隙网络模拟技术的裂隙网络水力研究及隧道涌水非线性预测[D].吉林大学,2008.
    [46] FISHER R A. Dispersion on a sphere[J]. Proceedings of the Royal Society A,1953,217:295–305.
    [47] BINGHAM C. Distributions on the sphere and on the projective plane [D]. New Haven: YaleUniversity,1964.
    [48] WATSON G S. The statistics of orientation data[J]. Journal of Geology,1966,74:786–797.
    [49] SHANLEY R J,MAHTAB M A. Fractan a computer code for analysis ofclusters defined onthe unit hemisphere[J]. Bureau of Mines,1975, IC8671.
    [50]陈剑平,石丙飞,王清.工程岩体随机结构面优势方向的表示法初探[J].岩石力学与工程学报,2005,24(2):241–245.
    [51] HAMMAH R E, Curran J H. Fuzzy cluster algorithm for the automatic identification of jointsets[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):889–905.
    [52] ZHOU W, NORBERT H. Implementation of multivariate clustering methods forcharacterizing discontinuities data from scan lines and oriented boreholes[J]. Computers&Geosciences,2002,7(28):827–839.
    [53]卢波,丁秀丽,邬爱清.岩体随机不连续面产状数据划分方法研究[J].岩石力学与工程学报,2007,26(9):1809–1816.
    [54] TOKHMECHI B, MEMARIAN H, MOSHIRI B, RASOULID V, NOUBARIC H A.Investigating the validity of conventional joint set clustering methods[J]. Engineering Geology,2011,118:75–81.
    [55] XU L M, CHEN J P, WANG Q, ZHOU F J. Fuzzy C-Means Cluster Analysis based onmutative scale chaos optimization algorithm for the grouping of discontinuity sets[J]. RockMechanics and Rock Engineering,2013,46:189–198.
    [56] TERZAGHI R D. Sources of error in joint surveys[J]. Geotechnique,1965,15:287–304.
    [57] KULATILAKE P H S W, WU T H. Sampling bias on orientation of discontinuities[J]. RockMechanics and Rock Engineering,1984b,17:243–253.
    [58] KULATILAKE P H S W, WU T H, Wathugala D N. Probabilistic modeling of jointorientation[J]. International Journal of Rock Mechanics and Mining Sciences,1990,14:325–350.
    [59] PRIEST S D. Hemispherical projection methods in rock mechanics[M]. London: GeorgeAllen&Unwin,1985.
    [60] WATHUGALA D N, KULATILAKE P H S W, Stephansson O. A general procedure to correctsampling bias on joint orientation using a vector approach[J]. Computers Geotechnics,1990,10:1–31.
    [61] MAULDON M, MAULDON J G. Fracture sampling on a cylinder: From scanlines toboreholes and tunnels[J]. Rock Mechanics and Rock Engineering,1997,30:129–144.
    [62] BAECHER G B, LANNEY N A, EINSTEIN H H. Statistical description of rock propertiesand sampling[C]. Proceedings of18th U. S. Symp. On Rock Mechanics, Colorado,1997
    [63] CRUDEN D M. Describing the size of discontinuities[J]. International Journal of RockMechanics and Mining Sciences,1977,14:133–137.
    [64] PRIEST S D, HUDSON J A. Estimation of discontinuity spacing and trace length usingscanline survey[J]. International Journal of Rock mechanics and Mining Sciences&Geomechanics Abstracts,1981,18:183–197.
    [65] PAHL P H. Estimation the mean length of discontinuity trace[J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1981,18:221–228.
    [66] KULATILAKE P H S W, WU T H. Estimation of mean trace length of discontinuities[J].Rock Mechanics and Rock Engineering,1984a,17:215–32.
    [67]范留明,黄润秋.一种估计结构面迹长的新方法及其工程应用[J].岩石力学与工程学报,23(1):53–57.
    [68]杨春和,包宏涛,王贵宾,梅涛.岩体节理平均迹长和迹线中点面密度估计[J].岩石力学与工程学报,25(12):2475–2480.
    [69]王贵宾,杨春和,包宏涛,殷黎明.岩体节理平均迹长估计[J].岩石力学与工程学报,25(12):2589–2592.
    [70]钱海涛,马平,秦四清.岩体不连续面迹长与直径间的概率关系模型分析[J].岩土力学,28(9):1828–1832.
    [71] ROBERTSON A M. The interpretation of geological factors for use in slope theory[C]. InPlanning Open Pit Mines. Cape Town, South Africa; Balkema,1970.
    [72] KULATILAKE P H S W, WU T H. Relation between discontinuity size and trace length[C].In: Proceedings of the27th US rock mechanics symposium, Tuscaloosa,1986.
    [73]黄磊,唐辉明,葛云峰,张龙.适用于半迹长测线法的岩体结构面直径新试算法[J].岩石力学与工程学报,2012,31(1):140–153.
    [74] SKEMPTON A W, SCHUSTER R L, PETLEY D J. Joints and Fissures in the London clay atWraysburg and Edgware[J]. Geotechnique,1969,19:205–217.
    [75] FOOKS P G, DENNESS B. Observational studies on fissure patterns in Cretaceous sedimentsof South-east England[J]. Geotechnique,1969,19:493–497.
    [76] PITEAU D R. Geological factors significant to the stability of slope cut in rock[C]. S. AF Inst.Min. Met. Symp. Planning Open Pit Mines. Johannesburg,1970.
    [77] PRIEST S D. Discontinuity Analysis for Rock Engineering[M]. London: Chapman&Hall,1993
    [78] PRIEST S D, HUDSON J A. Discontinuity spacing in rock[J]. International Journal of RockMechanics and Mining Sciences&Geomechanics Abstracts,1976,13:135–148.
    [79] HUDSON J A, PRIEST S D. Discontinuity frequency in rock mass[J]. International Journalof Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1983,20:75–89.
    [80] SEN Z, KAZI A. Discontinuity spacing and RQD estimates from finite length scanlines[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1984,21:203–212
    [81] ODA M. Fabric tensor for discontinous geological materials[J]. Soils Foundation,1982,22:96–108.
    [82] KARZULOVIC A, GOODMAN R E. Determination of principal joint frequencies[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1985,22:471–473
    [83] KULATILAKE P H S W. WATHUGALA D N, STEPHANSSON O. Joint network modelingwith a validation exercise in stripa mine Sweden[J]. International Journal of Rock Mechanicsand Mining Sciences&Geomechanics Abstracts,1993,30:503–526.
    [84]ZHANG L,EINSTEIN H H. Estimating the mean trace length of rock discontinuities[J]. RockMechanics and Rock Engineering,1998,31(4):217–235.
    [85]徐光黎,潘别桐,唐辉明,杜时贵.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [86]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [87] PARK B Y, KIMA K S, KWON S, KIMA C, BAE D S, HARTLEY L J, LEE H K.Determination of the hydraulic conductivity components using a three-dimensional fracturenetwork model in volcanic rock[J]. Engineering Geology,2002,66:127–141.
    [88] HUGHES R G, BLUNT M J. Network modeling of multiphase flow in fractures[J]. Advancesin Water Resources,2001,24:409–421.
    [89] JOURDE H, PISTRE S, PERROCHET P, DROGUE C. Origin of fractional flow dimensionto a partially penetrating well in stratified fractured reservoirs. New results based on the studyof synthetic fracture networks [J]. Advances in Water Resource,2002,25:371–387.
    [90] CHENG J T, MORRIS J P, TRANB J, LUMSDAINE A, GIORDANOA N J, NOLTE D D,PYRAK-NOLTE L J. Single-phase flow in a rock fracture: micro-model experiments andnetwork flow simulation[J]. International Journal of Rock Mechanics&Mining Sciences,2004,41:687–693.
    [91]赵红亮.裂隙岩体三维网络流的渗径搜索[D].长春:吉林大学,2003
    [92]赵红亮,陈剑平.裂隙岩体三维网络流的渗透路径搜索[J].岩石力学与工程学报,2005,24(4):622–627.
    [93]李晓春.小湾水电站坝肩岩体裂隙网络渗流的三维网络与无网格法耦合模型研究[D].长春:吉林大学,2005
    [94]陈剑平,卢波,谷宪民,范建华.用投影法求算岩体结构面三维连通率[J].岩石力学与工程学报,2005,24(15):2617–2621.
    [95]卢波,陈剑平,石丙飞,程永辉.用遗传算法求解节理岩体三维连通率[J].岩石力学与工程学报,2004,23(20):3470–3474.
    [96]卢波,陈剑平,葛修润,王水林.节理岩体结构的分形几何研究[J].岩石力学与工程学报,2005,24(3):461–467.
    [97]陈剑平,卢波,谷宪民,范建华,程永辉.节理岩体三维综合抗剪强度数值模拟研究[J].岩石力学与工程学报,2006,25(7):1463–1468.
    [98]向晓辉,王俐,葛修润,卢波,周欣.基于三维裂隙网络模拟的有限块体面积判断法[J].岩土力学,2006,27(9):1633–1636.
    [99]王环玲,何淼,徐卫亚.裂隙岩体的多孔介质水力等效性研究[J].岩土力学,2007,28(supp):187–191.
    [100]安玉华,王清.基于三维裂隙网络的裂隙岩体表征单元体研究[J].岩土力学,2012,33(12):3775–3780.
    [101] GUZZETTI F, CROSTA G, DETTI R, AGLIARDI F. A computer program for thethree-dimensional simulation of rockfalls[J]. Computers&Geoscience,2002,28(9):1079–1093.
    [102] BALIGH M M, AZZOUZ A S. End effects on cohesive slopes[J]. Journal GeotechnicalEngineering, ASCE,1975,101:1105–1107.
    [103] LAM L, FREDLUND D G A. General limit equilibrium model for three-dimensional slopestability analysis[J]. Canadian Geotechnical Journal,1993,30:905–919.
    [104] HUTCHINSON J N, SARMA S K. Discussion on three-dimensional limit equilibriumanalysis of slopes[J]. Geotechnique,1985,35:215–216.
    [105] BOUTROP E, LOVELL C W. Search techniques in slope stability analysis[J]. EngineeringGeology,1980,16:51–61.
    [106] GRECO V R. Efficient Monte Carlo technique for locating critical slip surface[J]. Journal ofGeotechnical Engineering, ASCE,1996,122:517–525.
    [107] GOH A T C. Genetic algorithm search for critical slip surface in multi-wedge stabilityanalysis[J]. Canadian Geotechnical Journal,1999,36:383–391.
    [108]莫海鸿,唐超宏,刘少跃.应用模式搜索法寻找最危险滑动圆弧[J].岩土工程学报,1999,21(6):696–699.
    [109]陈昌富,龚晓南.混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用[J].岩石力学与工程学报,2004,23(20):3450–3453.
    [110]谭新,丁万涛,李术才.一个新的非圆弧滑动全局最优化算法[J].岩石力学与工程学报,2005,24(12):2060–2064.
    [111]赵洪波.禁忌搜索在边坡稳定分析中的应用[J].岩土力学,2005,26(supp.):25–28.
    [112]赵洪波.基于GA与SVM的最危险滑动面识别[J].岩土力学,2006,27(11):2011–2014.
    [113]赵洪波.边坡非圆弧潜在滑动面全局优化的新方法[J].岩石力学与工程学报,2006,25(supp.2):3725–3729.
    [114]曹平,张科,汪亦显,胡汉华.复杂边坡滑动面确定的联合搜索法[J].岩石力学与工程学报,2010,29(4):814–821.
    [115]孙玉科,古讯.赤平极射投影在岩体工程地质力学中的应用[M].北京:科学出版社,1980.
    [116] MUALDON M, Ureta J. Stability of rock wedges with multiple sliding suarfces[C].Association of Engineering Geologists Annual Meeting, Williamsburg,1994.
    [117]朱大勇,钱七虎,周早生.岩体边坡临界滑动场计算方法及其在露天矿边坡设计中的应用[J].岩石力学与工程学报,1999,18(5):497–502.
    [118]段荣福,白世伟.基于临界滑动场的岩质边坡临界滑动面搜索方法[J].岩土力学,2007,28(5):861–870.
    [119]曹中兴.岩质边坡稳定性概率统计分析与可靠性研究[D].长春:吉林大学硕士学位论文,2010.
    [120]于莉.基于可靠度的裂隙岩质边坡稳定性评价[D].长春:吉林大学博士学位论文,2011.
    [121]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,22(4):397-402.
    [122]卢波.溪洛渡电站拱坝坝肩岩体三维连通率数值模拟研究[D].长春:吉林大学硕士学位论文,2002.
    [123]卢波,陈剑平,王良奎.基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几何形态的判定[J].岩石力学与工程学报,2002,21(8):1232–1238.
    [124]陈剑平.窗口测线法获取岩体RQD*[J].岩石力学与工程学报,23(9):1491–1495.
    [125]陈剑平,石丙飞,王树林,周子源.单测线法估算随机节理迹长的数值技术[J].岩石力学与工程学报,23(10):1755–1759.
    [126]王凤艳.数字近景摄影测量快速获取岩体裂隙信息的工程应用[D].吉林大学博士学位论文,2006.
    [127]朱宜莹,邵巨良,王树根.地面摄影测量测定地质结构面产状和几何要素方法的研究[J].武汉测绘科技大学学报,1991,16(3):84–93.
    [128]高永海,翟李越.利用非量测摄影机进行岩体产状测定研究[J].测法技术,1996,65(4):20–23.
    [129]孙宪春,万力,蒋小伟.节理产状分组的k均值聚类分析及其分组结果的费歇尔分布验证法[J].岩土力学,2008,29:533–537.
    [130] FOUCHE O, DIEBOLT J. Describing the geometry of3D fracture systems by Correctingfor linear sampling bias[J]. Mathematical Geology,2004,36(1):33–63.
    [131] VILLAESCUSA E, BROWN E T. Maximum likelihood estimation of fracture size fromtrace length measurements[J]. Rock Mechanics and Rock Engineering1992,25:67–87.
    [132] LASLETT G M. Censoring and edge effects in areal and line transect sampling of rock jointtraces[J]. Mathematical Geology1982,14:125–40.
    [133] ESMAIELI K, HADJIGEORGIOU J, GRENON M. Estimating geometrical and mechanicalREV based on synthetic rock mass models at Brunswick Mine[J]. International Journal ofRock Mechanics and Mining Sciences,2010,47:915–926.
    [134] MAULDON M. Estimating mean fracture trace length and density from observations inconvex windows[J]. Rock Mechanics and Rock Engineering,1998,31(4):201–216.
    [135]徐向阳.卡方检验在学生成绩差异性分析中的应用[J].常州技术师范学院学报,2001,7(4):13–16.
    [136]钱峰.基于卡方检验的国内外知识管理研究热点比较[J].情报杂志,2008,9:56–58.
    [137]卫超.卡方检验在华北地震前的应用[J].山西地震,2004,4:23–34.
    [138]潘兴仪.卡方检验在医学科研中的应用[J].广西医学,2001,23(6):1396–1401.
    [139] DEERE D U. Technical description of rock cores for engineering purposes[J]. Rockmechanics and Engineering Geology,1963,1:18–22.
    [140] VLASTOS S, LIU E, MAIN I G, LI X Y. Numerical simulation of wave propagation inmedia with discrete distributions of fractures: effects of fracture sizes and spatialdistributions[J]. Geophysical Journal International,2003,152:649–668.
    [141] HARRISON JP. Selection of the threshold value in RQD assessments[J]. InternationalJournal of Rock Mechanics and Mining Science,1999,36:673–685.
    [142]杜时贵,王思敬.岩石质量指标(RQD)的各向异性分析[J].工程地质学报,1996,4(4):48–54.
    [143]向文飞.裂隙岩体表征单元体及力学特性尺寸效应研究[D].武汉:武汉大学博士论文,2005.
    [144] DUKE J M, AULL-HYDE R. Identifying public preferences for land preservation using theanalytic hierarchy process[J]. Ecological Economics,2002,42:131–145.
    [145] CHEN C C, TSENG C Y, DONG J J. New entropy-based method for variables selection andits application to the debris-flow hazard assessment[J]. Engineering Geology,2007,94:19–26.
    [146] SAATY T L. A Scaling Method for Priorities in Hierarchical Structures[J]. Journal ofMathematical Psychology,1977,15:234–281.
    [147] TSENG C Y. Entropic criterion for model selection[J].2006, Physica, A,370:530–538.
    [148]冯庆高,周传波,傅志峰,章广成.基坑支护方案的灰色模糊可变决策模型[J].岩土力学,2010,31(7):2226–2231.
    [149] JUN Y. Application of extension theory in misfire fault diagnosis of gasoline engines[J].Expert Systems with Applications,2009,36:1217–1221.
    [150] WANG M H, TSENG Y F, CHEN H C, CHAO K H. A novel clustering algorithm based onthe extension theory and genetic algorithm[J]. Expert Systems with Applications,2009,36:8269–8276.
    [151]张晨.基于非线性系统的金沙江攀西河段水系形态及泥石流危害研究[D].长春:吉林大学博士学位毕业论文,2011.
    [152] WAN S, LEI T C, HUANG P C, CHOU T Y. The knowledge rules of debris flow event: Acase study for investigation Chen Yu Lan River, Taiwan[J]. Engineering Geology,2008,98:102–114.
    [153]匡乐红,徐林荣,刘宝琛.基于可拓方法的泥石流危险性评价[J].中国铁道科学,27(5):1-6.
    [154] IVERSON R M. The physics of debris flows[J]. Rev. Geophys.,1997,35(3):245–296.
    [155] IVERSON R M, Denlinger R P. Flow of variably fluidized granular masses acrossthree-dimensional terrain. Part I. Coulomb mixture theory[J]. Journal of geophysical research,2001,106:537–552.
    [156] LAJEUNESSE E, MONNIER J B, HOMSY G M. Granular slumping on a horizontalsurface[J]. Physics and Fluids,2005,17:103302.
    [157] PITMAN B, LE L. A two-fluid model for avalanche and debris flows[J]. Philosophicaltransactions of the Royal Society A.,2005,363:1573–1601.
    [158] DURAN J. Sands, powders, and grains-an introduction to the physics of granularmaterials[M]. New York: Springer,2000.
    [159] DENLINGER R P, IVERSON R M. Flow of variably fluidized granular masses acrossthree-dimensional terrain. Part II. Numerical predictions and experimental tests[J]. Journal ofGeophysical research,2001,106:553–566.
    [160] PALMSTROM A. Measurements of and correlations between block size and rock qualitydesignation (RQD). Tunnelling and Underground Space Technology,2005,20:362–377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700