用户名: 密码: 验证码:
水介质激光仿生蠕墨铸铁热疲劳性和耐磨性的一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蠕墨铸铁由于其在热效应较强的干滑动摩擦磨损条件下表现出高摩擦系数、低磨损率及优良的热疲劳性能,且制造工艺简单、成本低廉,被世界各国普遍应用于制造列车制动盘。制动盘的失效是磨损与热疲劳共同作用的结果,在以往的实验室基础研究中,两者的研究相对独立,为了使实验室基础研究更加贴近实际应用,本文提出了热疲劳性与耐磨性一体化研究的思路,考察了材料不同热疲劳程度对其耐磨性的影响。
     随着列车速度的提高,对制动盘材料的性能提出了更高的要求。利用激光可实现局部加工的特点,按照根据仿生学原理以材料和形态为耦元建立起来的仿生模型,在钢铁材料表面制造出仿生单元体,并与基体耦合形成耐磨损、抗疲劳的仿生表面,是近年来提出的一种新的提高钢铁材料性能的方法,由于对生产环境和使用环境做出相应改变的要求较低,也是受到产品生产者和使用者欢迎的一种途径。然而激光仿生熔凝处理的单元体仅存在于材料表层较浅的区域,对于磨损极限一般要求为单侧7mm的列车制动盘而言,激光仿生熔凝处理对其使用寿命的提高幅度是有限的,当仿生单元体因磨损而耗尽时,制动盘的磨损将回到原始状态,对制动装置的整体稳定性也会产生影响。另外,制动盘的质量及安装位置决定了其在列车部件中属于比较难更换的部件,也对提高制动盘的使用寿命提出了要求。从仿生原理的角度分析,激光仿生熔凝处理的仿生表面是材料与形态耦合出的软、硬相相间排布的非光滑表面,通过提高硬质相材料耦元的性能,可以提高非光滑表面的整体性能。因此提出了提高冷却速率的水介质激光仿生处理工艺。
     研究表明:与空气介质仿生处理工艺相比,水介质仿生处理工艺可以细化蠕墨铸铁仿生单元体的显微组织,仿生单元体的显微硬度也得到显著提高。在热疲劳实验中,与空气介质试样相比,水介质试样具有较好的抵抗热裂纹萌生的能力,但抵御热裂纹扩展的能力较差。仿生单元体上的裂纹是影响其抵御热裂纹扩展能力的关键因素。在磨损实验中,相同磨损条件下,水介质仿生蠕墨铸铁的耐磨性优于空气介质仿生蠕墨铸铁。随着仿生蠕墨铸铁的热疲劳程度加深(热疲劳循环次数增加/热疲劳温度提高),其耐磨性下降,但仿生试样的耐磨性始终优于未处理的试样,而水介质试样的耐磨性始终优于空气介质试样。仿生蠕墨铸铁的热疲劳对其耐磨性产生影响的根本原因是仿生单元体的显微组织在热疲劳过程中发生碎化,甚至层状剥离,导致仿生单元体的显微硬度下降。为了改善水介质仿生单元体抵御热裂纹扩展的能力,选用消除应力热处理(预热处理、后热处理)、二次激光熔凝处理和电脉冲处理三类途径、四种方法对仿生单元体进行了辅助处理。实验结果表明,四种方法均可改善水介质仿生单元体的抗热疲劳性,改善效果由大到小的顺序是:电脉冲处理>激光二次熔凝处理>后热处理>预热处理。
     本文创新地将材料的热疲劳性能和耐磨性能的研究有机地结合起来,试分析材料的热疲劳对磨损性能的影响及仿生单元体的表面质量与材料的整体性能的联系,为水介质仿生蠕墨铸铁的工程应用提供理论依据及实验基础。
It is generally used in the manufacture of train brake by countries around theworld based on its excellent property under conditions of dry sliding friction withstrong thermal effects, such as high friction coefficient, low wear rate and excellentthermal fatigue performance, and so on. Moreover its manufacturing process issimple and the cost is low. The main failure forms of brake disc are wear andthermal fatigue. The laboratory research of material wear properties and its thermalfatigue properties is usually independent. In order to make basic research inlaboratory more close to the practical application, the integration research ofthermal fatigue resistance and wear resistance is proposed, the thermal fatigueresistance of bionic vermicular cast iron processed in water is studied after its wearresistance has been studied.
     With the improvement of train speed, the higher performance of the brake discmaterials is need. According to the bionic model which was built by materialscoupling with forms, using laser surface local processing technology, a new methodto improve the performance of steel materials have been proposed in recent years,which can process bionic units on the surface of materials and make the bionicunits combine with the matrix to form the structure which has similar to the biological surface and has wear resistance, fatigue resistance. The bionic units onlyexist in the shallow range of the surface; while for train brake disc, their wear limitis7mm on unilateral side. The effect of laser bionic processing on improving itsservice life is limited, so the wear of brake disc is expected to return to originalstate, when the bionic units are run out, the overall stability of the brake disc willbe affected. Moreover the brake disc is one kind of parts which are difficult toreplace, because of its quality and installation location. It also needs to improve theservice life of the brake disc. Analysis from the perspective of the bionic principle,the bionic surface processed by laser bionic processing is the non-smooth surfaceformed by materials coupling with forms which characteristic is hard phasecombines with soft phase. Its overall performance can be improved by enhancingthe performance of bionic units. Therefore the laser bionic processing in water wasused to further improve the performance of bionic units.
     The researches of thermal fatigue properties and wear resistance areorganically combined. The influence of thermal fatigue on wear performance isstudied. The connection between the quality of the bionic units and the overallperformance of bionic specimens also is discussed. All of above provide theoreticaland experimental basis for the engineering application of laser bionic processing inwater.
     The conclusions are that:
     1. Using shells and leaves as biological prototype which have the performanceof wear resistance and fatigue resistance, the bionic surface on vermicular cast ironwhich has striped bionic units were obtained by water process. The microstructureof bionic unit is refined and its micro-hardness is raised from670HV to920HV.
     2. The time of the first thermal crack appearing on the bionic vermicular castiron processed in water lag behind than that processed in air, the time is200times thermal fatigue cycle. Under the same thermal fatigue condition, the thermal cracknumber of bionic vermicular cast iron processed in water is always less than that ofbionic vermicular cast iron processed in air. Yet the longest length of cracks islonger than that of processed in air. The laser bionic treatment in water improvesthe resistance to thermal cracks initiation. But more cracks of bionic unitsprocessed in water increase the chances that the cracks on unit and matrix cracksare overlapped together. So the resistance to thermal crack propagation of thebionic vermicular cast iron reduces.
     3. Under the same wear conditions, the wear resistance of bionic vermicularcast iron processed in water is increased by43%.
     4. The wear tests of bionic vermicular cast iron undergone thermal fatiguetests show that with the increasing of thermal cycles or thermal temperatures thewear resistance decreased and the wear loss linear increased. The equation of linerregression of wear loss belong to un-treated vermicular cast iron is y=0.554x-11.48,R2=0.9833, the x is used to show thermal fatigue cycles and the y is used to showwear losses. The equation of liner regression of wear loss belong to bionicvermicular cast iron processed in air is y=0.0363x-6.9, R2=0.9791, and that belongto bionic vermicular cast iron processed in water is y=0.0307x-8.08, R2=0.9812.From the slope of the trend lines, the slope of specimen treated in water is the least,so under the same wear conditions, its growth of wear loss is the least, and its wearresistance is the best.
     5. In the thermal fatigue tests, the microstructure of the bionic units broke, andeven layered dissection, it caused the wear resistance of the bionic vermicular castiron dropped. Under the same conditions, the wear resistance of bionic vermicularcast iron processed in water is always better than that of processed in air, becausetheir microstructure changes relatively lag behind.
     6. After auxiliary process, the number of bionic units' cracks and the chance ofthe units' cracks lap over the matrix's cracks reduced. The order of effects from bigto small is: electric pulse treatment﹥water bionic treatment﹥twice laser treatment﹥after heat treatment﹥preheat treatment.
     7. Twice laser process and electric pulse treatment can make bionic unitsprocessed in water formed network cracks which have less cross cracks. Theresistance to thermal crack propagation of the bionic vermicular cast iron enhanced.After electric pulse treatment, the micro-hardness of bionic units is improved, itproduced positive effects on wear resistance of bionic vermicular cast ironundergone thermal fatigue tests.
引文
[1]张永振,沈百令.蠕墨铸铁的干摩擦[M],北京:科学出版社,1995.
    [2] M. Hatate, T. Shiota, N. Takahashi, K. Shimizu. Influences of graphite shapeson wear characteristics of austempered cast iron [J]. Wear,2001,251:885-889
    [3] M. F. de Campos, L. C. Rolim Lopes, P. Magina, F. C. Lee Tavares, C. T.Kunioshi, H. Goldenstein. Texture and microtexture studies in different types ofcast irons [J]. Materials Science and Engineering A,2005,398:164-170
    [4]王文静,谢基龙,李强,韩建民.铁路列车制动盘常用材料的热疲劳性研究[J].机械工程材料,2005,29(2):40-41.
    [5] Ren Luquan, Tong Jin, Zhang Shujun. Reducing sliding resistance of soilagainst bull dozing plates by unsmoothed bionic surface [J]. Journal of Terramechanics,1995,32,6:303-309.
    [6] Tong J, Ren L Q, Li J Q et al. Abrasive wear behaviour of bamboo [J].Tribology Int.,1995,28:323-328.
    [7] Ren Luquan, Li Jianqiao, Chen Bingcong. Unsmoothed surface on reducingresistance by bionics [J]. Chinese Science Bulletin,1995,40,13:1077-1088.
    [8] Ren, L.Q., Han, Z.W., Li, J.Q., Tong, J.. Effects of non-smooth characteristicson bionic bulldozer blades in resistance reduction against soil [J]. J. Terramech.,2003,39:221-230.
    [9] H. Zhou, L. Chen, W. Wang, L.Q. Ren, H.Y. Shan, Z.H. Zhang. Abrasiveparticle wear behavior of3Cr2W8V steel processed to bionic non-smooth surfaceby laser [J]. Materials Science and Engineering A,2005,412:323-327.
    [10] L. Chen, H. Zhou, Y. Zhao, L.Q. Ren, X.Z. Li. Abrasive particle wearbehaviors of several die steels with non-smooth surfaces[J]. Journal of MaterialsProcessing Technology,2007,190:211-216.
    [11] Hong Zhou, Na Sun, Hongyu Shan, Dianyi Ma, Xin Tong, Luquan Ren.Bio-inspired wearable characteristic surface: Wear behavior of cast iron withbiomimetic units processed by laser [J]. Applied Surface Science,2007,253:9513-9520.
    [12] H. Zhou, Y. Cao, Z.H. Zhang, L.Q. Ren, X.Z. Li. Thermal fatigue behavior of3Cr2W8V die steel with biomimetic non-smooth surface[J]. Materials Science andEngineering A,2006,433:144-148.
    [13] H. Zhou, Z.H. Zhang, L.Q. Ren, Q.F. Song, L. Chen. Thermal fatiguebehavior of medium carbon steel with striated non-smooth surface[J]. Surface&Coatings Technology,2006,200:6758-6764.
    [14] Hong Zhou, Xin Tong, Zhihui Zhang, Xianzhou Li, Luquan Ren. The thermalfatigue resistance of cast iron with biomimetic non-smooth surface processed bylaser with different parameters[J]. Materials Science and Engineering A,2006,428:141–147.
    [15] Xin Tong, Hong Zhou, Zhi-hui Zhang, Na Sun, Hong-yu Shan, Lu-quan Ren.Effects of surface shape on thermal fatigue resistance of biomimetic non-smoothcast iron[J]. Materials Science and Engineering A,2007,467:97–103.
    [16] Xin Tong, Hong Zhou, Wei Zhang, Zhi-hui Zhang, Lu-quan Ren. Thermalfatigue behavior of gray cast iron with striated biomimetic non-smooth surface[J].Journal of materials processing technology,2008,206:473-480.
    [17] Qing-chun Guo, Hong Zhou, Cheng-tao Wang, Wei Zhang, Peng-yu Lin, NaSun, Luquan Ren. Effect of medium on friction and wear properties of compactedgraphite cast iron processed by biomimetic coupling laser remelting process[J].Applied Surface Science,2009,255:6266-6273.
    [18] Cheng tao Wang, Hong Zhou, Pengyu lin, Na Sun, Qingchen Guo, JiaxiangYu, MingxingWang, Yu Zhao and Luquan Ren. Fabrication of nano-sized grainsby pulsed laser surface melting[J]. J. Phys. D: Appl. Phys.,2010,43:1-9.
    [19] Peng-yu Lin, Yong-fu Zhu, Hong Zhou, Cheng-tao Wang, Lu-quan Ren. Wearresistance of a bearing steel processed by laser surface remelting cooled by water[J].Scripta Materialia,2010,63:839–842.
    [20]杨成美.高速列车制动方式的比较研究[J].上海铁道科技,2005(6):37-39.
    [21]宋光森,韩建民,李卫京,王金华.我国高速列车制动盘选材探讨[J].北方交通大学学报,2002,26(4):71-73.
    [22]李继山.高速列车合金锻钢制动盘寿命评估研究[D].北京:铁道科学研究院,2006.
    [23]汤伟杰.高速列车制动盘失效分析与材料逆向设计[D].成都:西南交通大学,2007.
    [24] H. Samrout, R. El Abdi. Fatigue behavior of28CrMoVS-08steel underthermo mechanical loading[J]. Int. j. Fatigue,1998(8):555-563.
    [25] Jean Jacques VIET,徐网大.制动盘裂纹机理的实验分析与数字化研究[J].国外机车车辆工艺,2004(5):28-33.
    [26] P. Dufrenoy, D. weiehert. A thermo-mechanical model for the analysis of discbrake fracture mechanisms [J]. Journal of Thermal stress,2003(26):815-828.
    [27]宋玉辒,高飞,陈吉光,于庆军.高速列车制动盘材料的研究进展[J].中国铁道科学,2008,8:11-17.
    [28]李和平,林祜亭.高速列车基础制动系统的设计研究[J].中国铁道科学,2003,2:8-13.
    [29]子澍.灰铸铁中石墨形态分级及特点[J].铸造设备与工艺,2009,5:53-54.
    [30]何金兆,张永振,戴宝林.蠕墨铸铁在铁道车辆制动系统的应用[J].洛阳工学院学报,2001,22(2):17-19.
    [31]戴稚康.高速列车摩擦制动材料的现状与发展[J].机车车辆工艺,1994,2:1~8.
    [32]王广达,方玉诚,罗锡裕.高速列车摩擦制动材料的研究进展[J].中国冶金,2007,7(17):12~15.
    [33] Bauer H.制动器用材料[J].国外机车车辆工艺,2005,3:41~43.
    [34]齐海波,樊云昌,籍凤秋.高速列车制动盘材料的研究现状与发展趋势[J].石家庄铁道学院学报,2001,1(14):52~57.
    [35]黄楠,刘世楷.我国高速列车制动摩擦材料的发展方向[J].铁道车辆,1993,31(9):29~32.
    [36]吴云兴.日本、德国、法国高速列车用盘形制动元件的材料及工艺[J].机车车辆工艺,1996,2:128.
    [37]朱育权,马保吉,杜亚勤.制动盘(鼓)研究现状与发展趋势[J].西安工业学院学报,2001,21(1):73-79.
    [38] Niskanen J. Fracture toughness testing of ductile iron [J]. AFS InternationalCast Metals Journal,1977,2(3):31~35.
    [39]钱坤才,张棣.200km/h高速客车蠕铁制动盘及合成闸片的研究[J].现代铸铁,2006,(1):54-58.
    [40] Hornbogen F. Fracture toughness of gray cast iron[J]. AFS International CastMetals Journal,1977,2(3):46~51.
    [41]朱正宇,何国球,殷作虎.不同基体组织的蠕墨铸铁热疲劳性能的研究[J].现代铸铁,2004,6:8-11.
    [42]盛达.蠕墨铸铁的起源、发展及其熔炼工艺[J].现代铸铁,2009,5:20-26.
    [43]柳百成.用扫描电子显微镜研究铸铁中的石墨形态[J].清华大学学报,1980,20(3):25-42.
    [44]黄惠松,盛达,曾大本.蠕墨铸铁[M].北京:清华大学出版社,1983.
    [45]陈悦,张永振.蠕墨铸铁的干滑动摩擦学特性[J].现代铸铁,2006,1:42-52.
    [46] Tsujimura T, Yauda H. Friction materials for rolling stock brakes [J]. Journalof Japanese Society of Tribologists,1996,41:299-304.
    [47] Watremz M, Bricout J P. Friction, temperature and wear analysis for ceramiccoated brake disk [J]. Journal of Tribology, Transactions of the ASME,1996,118:457-465.
    [48]张永振.铸铁的干滑动摩擦磨损[J].现代铸铁,2000,2:35-42.
    [49]陈悦,张永振,沈百令.蠕墨铸铁/钢摩擦副干摩擦速度-载荷特性研究[J].机械科学与技术(增刊)摩擦学论文专集,1995,9:143-148.
    [50]任国胜.含磷铸铁的摩擦磨损性能[D].洛阳工学院材料工程系,1994.
    [51]沈百令,任国胜,张永振,陈悦,贺润桐.基体组织对蠕墨铸铁摩擦磨损性能的影响[J].兵器材料科学与工程,1992,9:55-59.
    [52]平修二.热应力与热疲劳[M].北京:国防工业出版社,1984.
    [53]贾利晓,孙小捞,宋联美,温广宇.基体组织对蠕墨铸铁热疲劳性能的影响[J].中国铸造装备与技术,2006,6(2):20-22.
    [54]中国机械工程学会铸造专业学会编.铸造手册(铸铁分册)[M].北京:机械工业出版社,1993.
    [55]陈飞帆,卢德宏,蒋业华,杨真.石墨形态对铸铁热疲劳性能影响的研究[J].铸造技术,2010,31(2):1576-1579.
    [56]马建平,金建平.不同石墨形态铸铁热疲劳性能试验研究[J].铸造技术,1994,6:38-42.
    [57]陈飞帆,卢德,卢德宏,蒋业华,杨真.石墨形态对铸铁热疲劳性能影响的研究[J].铸造技术,2010,12(31):1576-1579.
    [58] Xin Tong, Hong Zhou, Lu-quan Ren, etc. Effects of graphite shape on thermalfatigue resistance of cast iron with biomimetic non-smooth surface [J].International Journal of Fatigue,2009,31:668-677.
    [59]韩建德,李云惠,郑丽丽,于化顺.石墨形态及合金元素对铸铁抗热疲劳性能的影响[J].现代铸铁,2001,3:13-15.
    [60]孙小捞,贾利晓,温广宇,宋联美,张永红.石墨形态对铸铁热疲劳性能的影响[J].中国铸造装备与技术,2006,4::13-15.
    [61] D. A. Rigney, J. P. Hirth. Plastic deformation and sliding friction metals[J].Wear,1979(53):345~370.
    [62] Halacy D S. Bionics [J]. Holiday house,1965,1:7-15.
    [63] Ma Zuli. Biologic and bionics. Tianjin:Tianjin technology press,1984.
    [64] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape fromcontamination in biological surfaces. Planta,1997,202:1~8.
    [65]张春明,金环.从伦敦奥运会看泳衣研发的科技革命[J].国际纺织导报,2012,11:67-70.
    [66]田伟.激光仿生耦合非光滑表面模具与制件粘附机理的研究[D].长春:吉林大学材料科学与工程学院,2006.
    [67] Barthlott W. Epicuticular Wax ultrastrure and systematics [J]. In:Behnke HD,Mabry TJ(eds) Evolution and systematics of the Caryopnyllales,springer,Berlin,1993:75~86.
    [68] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent,self-cleaning plant surfaces [J]. Annals of Botany,1997,79:667~677.
    [69]张美玲.天然纳米结构——荷叶[J].云南大学学报(自然科学版),2005,26(5A):462~464.
    [70] Wilhelm Barthlott,Christoph Neinhuis,David Cutler,Friedrich Ditsch,IrisMeusel,Inge Theisen, Hiltrud Wilhelmi. Classification and terminology of plantepicuticular waxes[J]. Botanical journal of linnean society,1998,126:237~260.
    [71]郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,18(6):721-726.
    [72]“荷叶效应”揭秘[J/OL],中国科学院,[2012-07-10],http://www.cas.cn/kxcb/kpwz/201207/t20120710_3612649.shtml.
    [73]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2003,17(4):51~60.
    [74]任露泉,王再宙,韩志武.激光处理非光滑凹坑表面耐磨实验的均匀设计研究[J].材料科学与工程,2002,20(2):214-216.
    [75]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,34(2):86-88.
    [76]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [77]王淑杰,韩志武.典型生物非光滑理论及其仿生应用[J].农机化研究,2005,1:209-213.
    [78]张薇.单元体形态与基体组织对仿生耦合铸铁热疲劳性能的影响[D].长春:吉林大学材料科学与工程学院,2008.
    [79]陈维维.仿生耦和增强单元体对灰铸铁抗热疲劳性能的影响[D].长春:吉林大学材料科学与工程学院,2009.
    [80]丁阳喜,周立志.激光表面处理技术的现状及发展[J].热加工工艺,2007,36(6):69-72.
    [81]张庆茂,刘文令.激光熔凝层组织与摩擦学特性研究[J].强激光与粒子束,2006,18(3):389-392.
    [82] Aihua W. Laser beam cladding of seating surface on exhaust values [J].Welding Research Supplement,1991,(4):106-109.
    [83]常芳.激光熔覆陶瓷粉末对蠕铁抗热疲劳和耐磨性的影响[D].长春:吉林大学材料科学与工程学院,2013.
    [84] Zhengjun Jing, Hong Zhou, Peng Zhang, Chuanwei Wang, Chao Meng,Dalong Cong. Effect of thermal fatigue on the wear resistance of graphite cast ironwith bionic units processed by laser cladding WC[J]. Applied Surface Science,2013,271:329-336.
    [85]荆政军.激光熔覆WC对蠕铁热疲劳后耐磨性的影响[D].长春:吉林大学材料科学与工程学院,2013.
    [86]丛亦芳.镶铸仿生耦合蠕墨铸铁摩擦磨损性能的研究[D].长春:吉林大学材料科学与工程学院,2008.
    [87]张勇.原位烧结仿生单元体对摩擦磨损性能的影响[D].长春:吉林大学材料科学与工程学院,2012.
    [88] John J. Coronado, Holman F. Caicedo, Adolfo L. Gomez. The effects ofwelding processes on abrasive wear resistance for hard facing deposits [J].Tribology International,2009,42:745-749.
    [89]郭龙飞.仿生堆焊磨辊高冲击力磨料磨损性能研究[D].长春:吉林大学材料科学与工程学院,2012.
    [90] H. zhou, L. Chen, W. Wang, L. Q. Ren, H. Y. Shan, Z. H. Zhang. Abrasiveparticle wear behavior of3Cr2W8V steel processed to bionic non-smooth surfaceby laser [J]. Materials Science and Engineering A,2005,412:323–327.
    [91]宋起飞,周宏,李跃,王磊,单宏宇,张志辉,任露泉.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学学报,2006,26(1):24-27.
    [92]宋起飞,刘勇兵,周宏,孙娜,任露泉.激光制备仿生耦合制动毂的摩擦磨损性能[J].吉林大学学报(工学版),2007,37(5):1069-1073.
    [93]孙娜,周宏,单宏宇,李孝艳,任露泉.激光制备仿生非光滑表面蠕墨铸铁的耐磨性[J].吉林大学学报(工学版),2009,39(5):1157-1161.
    [94]佟鑫.激光仿生耦合处理铸铁材料的抗热疲劳性能研究[D].长春:吉林大学材料科学与工程学院,2009.
    [95]江伟.灰铸铁仿生制备工艺及抗热疲劳性的研究[D].长春:吉林大学材料科学与工程学院,2009.
    [96]姚国凤,陈光南.激光熔凝加工中瞬时温度场及残余应力数值模拟[J].应用激光,2002,22(2):241-243.
    [97]高传玉,周明.激光快速熔40Cr钢表面硬度与残余应力研究[J].应用激光,2002,22(1):19-22.
    [98]刘志义,刘冰,邓小铁,雷毅,崔建忠,白光润.脉冲电流对2091Al-Li合金超塑性变形机理的影响[J].金属学报,2000,36(9):944-951.
    [99]董晓华,候东芳,李尧.直流脉冲电流对7475铝合金超塑性变形中位错运动的影响[J].机械工程材料,2005,29(2):17-20.
    [100]张伟,隋曼龄,周亦胄,何冠虎,郭敬东,李斗星.高密度电脉冲下材料微观结构的演变[J].金属学报,2003,39(10):1009-1108.
    [101]肖福仁,白象忠,乔桂英等.电磁热效应对35钢裂纹尖端组织及止裂效果的影响[J].材料热处理学报,2001,22(2):56~59.
    [102]周亦胄,肖素红,甘阳,高明,何冠虎,周本濂.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43~45.
    [103]周亦胄,周本濂,郭晓楠,何冠虎,张弗天.脉冲电流对45钢损伤的恢复作用[J].材料研究学报,2000,14(1):29-36.
    [104]张伟,隋曼龄,周亦胄,何冠虎,郭敬东,李斗星.高密度电脉冲下微观结构的演变[J].金属学报,2003,39(10):1009-1120.
    [105]付宇明.金属模具电磁热裂纹止裂的研究[D].河北:燕山大学机械工程学院,2003.
    [106] Conrad H, White J, Cao W D. Effect of electric current pulse on fatiguecharacteristics of polycrustalline[J]. Mater Sci Eng A.,1991,145(1):11.
    [107]孙娜.不同仿生耦合单元体对蠕墨铸铁摩擦磨损性能的影响[D].长春:吉林大学材料科学与工程学院,2010.
    [108] Kamat S, Su X, Ballarini R. Structural basis for the fracture toughness of theshell of conch strombus gigas [J]. Nature,2000,405(29):1036-1048.
    [109]马殿一.仿生耦合非光滑表面蠕墨铸铁干滑动磨损性能研究[D].长春:吉林大学材料科学与工程学院,2007.
    [110]汪矛,郑相如,张志农.叶脉的形态与结构[J].生物学通报,1998,33(8):10-12.
    [111]李明.高速列车制动盘热-机耦合数值模拟[D].成都:西南交通大学,2004.
    [112] P. dufrénoy, D. Weichert. A Thermomeehanieal Model for the Analysis ofDisc Brake Fraeture Mechanisms [J]. Joumal of Thermal Stresses,2003,26:815~828.
    [113] S. panier, P. dufrénoy, D. Weiehert. An experimental investigation of hotspots in railway disc brakes [J]. Wear,2004,256:764~773.
    [114]中国机械工程学会热处理学会.热处理手册[C].北京:机械工业出版社,2008.
    [115] Kamat, S., Su, X., Ballarini R.. Structural basis for the fracture toughness ofthe shell of conch strombus gigas[J]. Nature2000;405:1036–1048.
    [116] Li, H.D., Feng, Q.L., Cui, F.Z.. Biomimetic research based on the study ofnacre structure[J]. J. Tsinghua Univ.2001;41:41–47.
    [117] Blarasin A, Corcoruto S, Belmondo A, Bacci D. Development of a lasersurface melting process for improving of the wear resistance of gray cast iron[J].Wear1983;86:315-325.
    [118] P. SCHAAF, V. BIEHL, U. GONSER. Laser remelting of cast iron: aM ssbauer study[J]. Journal of Materials Science1991;26:5019-5024.
    [119] Benyounis, K.Y., Fakron, O.M.A., Abboud, J.H., Olabi, A.G., Hashmi,M.J.S.. Surface melting of nodular cast iron by Nd-YAG and TIG[J]. J. Mater.Process. Technol.2005;170:127–132.
    [120]王承滔.激光水膜熔凝制备单元体纳米晶对摩擦磨损性能的影响[D].长春:吉林大学材料科学与工程学院,2010.
    [121]郭青春.激光水介质仿生耦合处理对金属材料磨损性能的影响[D].长春:吉林大学材料科学与工程学院,2009.
    [122]刘天佑.金属学与热处理[M].北京:冶金工业出版社,2009.
    [123]朱波,齐立涛,王扬.水辅助激光加工技术的实验研究[J].现代制造工程,2003,12:93-94.
    [124] Xin Tong, Hong Zhou, Wei Jiana, Wei-wei Chen, Xian-zhou Li, Lu-quan Ren,Zhi-hui Zhang[J]. Materials Science and Engineering A,2009,513–514:294–301.
    [125]关振中.激光加工工艺手册[M].北京:中国计量出版社,1997.
    [126] Grum J, Sturm R. Influence of laser surface melt-hardening conditions onresidual stresses in thin plates [J]. Sur. Coat. Tech.,1998,100-101:455-458.
    [127] Grum J, Sturm R. A new experimental technique for measuring strain andresidual stresses during a laser re-melting process [J]. J. Mater. Process. Tech.,2004,147:351-358.
    [128] H.Q. Lin, Y.G. Zhao, Z.M. Gao, L.G. Han. Effects of pulse currentstimulation on the thermal fatigue crack propagation behavior of CHWD steel[J].Materials Science&Engineering A,2008,478:93-100.
    [129] O. A. Troitskii. Pressure shaping by the application of a high energy[J].Materials Science&Engineering A,1985,75:37-50.
    [130] A F. Sprecher, S. L. Mannan, H. Conrad. On the mechanisms for theelectroplastic effect in metals[J]. Acta Metallurgica.1986,34:1145-1162.
    [131] Stefanie K, Efrat M O, Elazar Z, Peter F, Ron S. Mechanical function of acomplex three-dimensional suture joining the bony elements in the shell of thered-eared slider turtle [J]. Advanced Materials,2009,21(4):407-412.
    [132]张晨朝.乌龟壳力学性能分析[D].大连:大连理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700